Supplementary Materials

Probing interspecies metabolic interactions within a synthetic binary microbiome using genome-scale modeling

Kiumars Badr, Q. Peter He, Jin Wang

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.

Correspondence to: Prof. Jin Wang, Department of Chemical Engineering, Auburn University, 222 Foy Union Cir, Auburn, AL 36849, USA. E-mail: wang@auburn.edu

Supplementary Table 1. Major modifications made to GEM NIES-39

Reaction	Modification	Description and reason
6 h + 2 fdrd + pq -> 2 fdox + 4 h[t]	added	Photosynthesis and electron transport
+ pqh2		chain (Peltier, Aro, and Shikanai
		2016)
$atp + f6p \rightarrow adp + fdp + h$	blocked	Calvin cycle / Pentose phosphate
		pathway; inactivated by light (Plaxton
		1996)
g6p + nadp -> 6pgl + h + nadph	blocked	Pentose phosphate pathway; light
		inhibits it (Plaxton 1996)
fdp + h2o -> f6p + pi	blocked	Calvin cycle / Pentose phosphate
		pathway; light inactivates it (Lemaire
		2004)
ser-L -> nh4 + pyr	blocked	Serine metabolism; This reaction is
		not present (KEGG)
glu-L + h2o + nadp	Upper	Glutamate metabolism; This reaction
nadph + nh4	bound=0	is irreversible reaction (Muro-Pastor
		2005)
$gtp + h2o \rightarrow gmp + h + ppi$	blocked	This reaction is not present (KEGG)
		Pyrimidine metabolism
$dgtp + h2o \rightarrow dgmp + h + ppi$	blocked	This reaction is not present (KEGG)
dutp + h2o -> dump + h + ppi	blocked	This reaction is not present (KEGG)
$h2o + utp \rightarrow h + ppi + ump$	blocked	This reaction is not present (KEGG)
$10fthf + h2o \rightarrow for + h + thf$	blocked	This reaction is not present (KEGG)
		One carbon pool by folate

Metabolites	Name	
f6p	D-fructose-6-phosphate	
	Flavin adenine dinucleotide	
fad	oxidized	
g6p	D-glucose-6-phosphate	
6pgl	6-phospho-D-glucono-1-5-lactone	
ser-L	L-Serine	
pyr	Pyruvate	
glu-L	L-Glutamate	
akg	2-Oxoglutarate	
10fthf	10-Formyltetrahydrofolate	
thf	Tetrahydrofolate	
for	Formate	

Bibliography

Peltier, Gilles, Eva-Mari Aro, and Toshiharu Shikanai. 2016. "NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis." *Annual Review of Plant Biology* 67:55–80.

Plaxton, William. 1996. "The Organization and Regulation of Plant Glycolysis." Annual review of plant physiology and plant molecular biology. 47. 185-214.

Lemaire C, Guibet-Grandmougin F, Angles D, Dujardin G, Bonnefoy N. 2004. "A yeast mitochondrial membrane methyltransferase-like protein can compensate for oxal mutations." *J Biol Chem*, 279:47464-47472.

Muro-Pastor MI, Reyes JC, Florencio FJ. 2005. "Ammonium assimilation in cyanobacteria." *Photosynth Res.* 83(2):135-150.