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DETAILS FOR THE NETWORKS 

Details for the allegro model 

For the Allegro model[1] using MLPs, the two-body latent MLP consists of two layers 

of dimensions[16,32], using SiLU nonlinearities. The latent MLP consists of one layer of 

dimension 32, also using a SiLU nonlinearity. The output block MLP has one layer of 

dimension 32 and no nonlinearity. 

 

For the Allegro model using B-spline basis[2], the two-body latent part consists of two 

layers of KANs of dimensions[5,10], using SiLU nonlinearities. The latent “MLP” part 

consists of one layer of KAN of dimension 10, also using a SiLU nonlinearity. The 

output block has one hidden layer of KAN of dimension 10 and SiLU nonlinearity. For 

all the KAN networks, the spline grid size is set to 5 and the spline order is set to 3.  

 

For the Allegro model using Gaussian and Fourier basis[3], the two-body latent part 

consists of two layers of KANs of dimensions[5,10], using SiLU nonlinearities. The 



 

 

latent “MLP” part consists of one layer of KAN of dimension 10, also using a SiLU 

nonlinearity. The output block has one hidden layer of KAN of dimension 10 and SiLU 

nonlinearity. For all the KAN networks, the number of grids is set to 8. 

 

When replacing MLPs from different parts of the Allegro model with KANs, the part 

using MLPs has the same parameters as the Allegro model using MLPs, and the parts 

using KANs has the same parameters as the Allegro model using KANs. 

 

The Allegro model using MLPs has 48,840, while the Allegro model using KANs with 

Gaussian basis functions contains 55,822 trainable weights. This increase is due to the 

more complex structure of KANs, which enhances the model's flexibility and accuracy 

but at the cost of longer training times. When KANs with Gaussian basis functions are 

used exclusively in the output block, the number of trainable weights is reduced to 

53,849. This configuration leverages the expressive power of KANs while limiting 

parameter growth in the two-body latent embedding and latent MLP part, striking a 

balance between computational efficiency and predictive accuracy. Consequently, the 

Allegro model using KANs in the output block achieves both higher accuracy and 

shorter training times compared to the models using only MLPs or KANs.  

 

Details for the Neural Equivariant Interatomic potentials (NequIP) model 

We only replaced MLPs form the “output_hidden_to_scalar” part in the NequIP 

model[4] by KANs. Both the MLP and the KAN in the “output_hidden_to_scalar” part 

is a linear layer. The parameters of the KAN networks are the same as with the Allegro 

model. 

 

Details for edge-based tensor prediction graph neural network (ETGNN) model 

We only replaced the up projection part of the node output block and update block in 

the ETGNN model[5]. Both the MLP and the KAN in the “output_hidden_to_scalar” 

part is a linear layer. The parameters of the KAN networks are the same as with the 

Allegro model. 

 

DETAILS FOR THE TRAINING DATASETS 



 

 

Details for the Ag dataset 

The Ag dataset[1] was generated from ab-initio molecular dynamics (AIMD) 

simulations of a bulk face-centered cubic structure containing a vacancy and 

comprising 71 atoms. The AIMD simulations were conducted at a temperature of 1111 

K, corresponding to 90% of the melting point of Ag. Frames were extracted at intervals 

of at least 25 fs to minimize correlation within the trajectory, and each frame was 

recalculated using converged density functional theory (DFT) parameters. The 

simulations were carried out with the Vienna Ab-Initio Simulation Package (VASP)[6], 

employing the PBE exchange-correlation functional[7] and a cutoff energy of 520 eV, 

with Gamma-point k-point sampling. The dataset consists of 1,000 unique structures, of 

which 950 were used for training and 50 were used for validation. 

 

Details for the HfO2 dataset 

The HfO2 dataset[8] was created using density functional theory (DFT) calculations 

conducted with the VASP package[6]. Initial structures were generated by randomly 

perturbing the ground-state configurations of the P21/c, Pbca, Pca21, and P42/nmc 

phases of HfO2. These structures were then sampled through NPT simulations across a 

range of temperatures (100 to 3300 K) and pressures (-50 to 400 kBar). The projected 

augmented wave method[9,10] was utilized, along with the PBE exchange-correlation 

functional[7]. An energy cutoff of 600 eV was applied. From this dataset, we selected 

10,000 structures, with 9,000 used for training and 1,000 for validation. 

 

Details for the SiO₂ dataset 

The SiO₂ dataset[5] consists of 3,992 randomly perturbed SiO₂ structures calculated 

using density functional perturbation theory (DFPT). The dataset was split into training, 

validation, and test sets in a 6:2:2 ratio. We calculated the Born effective charges using 

ETGNN with MLPs and KANs with Gaussian and B-spline basis functions. 

 

Details for the LAMMPS simulation 

We assessed the inference speeds and GPU memory usage of different models by 

running molecular dynamics simulations with the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS)[11]. These simulations utilized the Allegro 

pair style implemented in the Allegro interface[1]. The initial structure was obtained 



 

 

from the Ag dataset[1]. Simulations were carried out under an NVT ensemble at 300 K, 

with a time step of 1 ps. For each model, we conducted 5,000 time steps to evaluate 

inference speed. 
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