Open Access

1 Supplementary Material:

2 Regulating the Electrocatalytic Performance for Nitrogen 3 Reduction Reaction by Tuning the N Contents in Fe₃@N_xC_{20-x} (x =4 0~4): A DFT Exploration

5	How to Use This Template						
6 7 8	This template shows the manuscript structure that can be used in supplementary material. Please note that each part has a corresponding style, which authors should follow. Please note that the fonts in gray show writing requirements. For any questions, you may contact the <u>editorial office</u> .						
9							
10							
11							
12							
13							
14							
15	Supplementary Table 1. The corrected values of gas molecules (in eV).						
	Gas						
	N ₂ -0.35						

NH₃ 0.42

-0.05

 H_2

16

17

18

19

20

21

22

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (<u>https://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or

format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

	es	Intermediates						
	Com t	*NN	*NNH	*NNH ₂	*N	*NH	*NH ₂	*NH
	Consecutive	0.13	0.44	0.65	0.08	0.34	0.67	0.95
	Enzymatic	*NN	*NNH	*NHNH	*NH ₂ NH	*NH2NH2	*NH ₂	*NH
		0.13	0.44	0.74	1.08	1.42	0.67	0.95
Fe3@C20	D'-4-1	*NN	*NNH	*NNH ₂	*N	*NH	*NH ₂	*NH
	Distal	0.10	0.43	0.73	0.07	0.34	0.66	0.95
	Alternative	*NN	*NNH	*NHNH	*NH ₂ NH	*NH ₂ NH ₂	*NH ₂	*NH
		0.10	0.43	0.78	0.97	1.42	0.66	0.90
	Consecutive	*NN	*NNH	*NNH ₂	*N	*NH	*NH ₂	*NH
	Enzymatic	0.08	0.44	0.65	0.08	0.34	0.67	0.9
Fe3@N4C16		*NN	*NNH	*NHNH	*NH ₂ NH	*NH ₂ NH ₂	*NH ₂	*NH
		0.08	0.44	0.74	1.08	1.42	0.67	0.9
24								
25								
26								
27								
28 Supplem 29 by N (<i>x</i> i	nentary Table 3 is the number of	3. Formation en of N atoms).	ergies (E _f , in	eV) of Fe3@	NxC20-x with	h Fe2-bonded (C replace	d
<i>x</i>	1	2-I	2-II	2	2-III	3		4
tructure Sup	plementary S	Supplementary	Supplementa	urv Supple	ementary	Supplementary	Supple	ementa

23 Su	pplementary Tabl	e 2. The corrected valu	es of intermediates or	n Fe3@C20 and Fe3	3@N4C16 (in eV).
-------	------------------	-------------------------	------------------------	-------------------	------------------

x	1	2-I	2-II	2-III	3	4
structure	Supplementary Figure 4A	Supplementary Figure 4B	Supplementary Figure 4C	Supplementary Figure 4D	Supplementary Figure 4E	Supplementary Figure 4F
$\mathbf{E_{f}}$	-0.20	-0.22	-0.50	-0.35	-0.33	-0.65
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						

40 Supplementary Table 4. Lattice constants (*a* and *b*, in Å) of Fe₃@N_xC_{20-x}, nitrogen adsorption 41 energies on Fe₂ sites and Fe₁ sites (E_{ads} , in eV).

		b	Fe ₂	site	Fe ₁ site	
	а		E _{ads}	E _{ads}	E _{ads}	E _{ads}
			(end-on)	(side-on)	(end-on)	(side-on)
Fe3@C20	11.14	7.95	-0.52	-0.57	-0.41	-0.10
Fe3@N1C19	11.08	7.90	-0.55	-0.62	-0.43	-0.11
Fe3@N2C18-I	11.00	7.91	-0.59	-0.55	-0.39	-0.06
Fe3@N2C18-II	11.02	7.73	-0.50	-0.48	-0.47	-0.08
Fe3@N2C18-III	11.04	7.66	-0.59	-0.52	-0.43	-0.17
Fe3@N3C17	10.95	7.85	-0.54	-0.52	-0.58	-0.08
Fe3@N4C16	10.87	7.74	-0.32	-0.20	-0.44	0.15

42

43

44 Supplementary Table 5. The free energy change (ΔG , in eV) of the step *NN \rightarrow *NNH (in eV).

	end-on	side-on
Fe3@C20	0.59	0.64
Fe3@N1C19	1.14	0.74
Fe3@N2C18-I	1.09	0.61
Fe3@N2C18-II	1.07	0.73
Fe3@N2C18-III	0.65	0.71
Fe3@N3C17	1.08	0.67
Fe ₃ @N ₄ C ₁₆	/	0.45

45

46 Supplementary Table 6. The Fe–Fe bond lengths (*d*_{Fe–Fe}) and *d*-band centers and *p*-band centers of

47 the Fe₂-bonded C/N for Fe₃@ N_xC_{20-x} (x = 0~4).

		d hand contang	<i>p</i> -band centers of Fe ₂ -
	d _{Fe-Fe} (Å)	<i>a</i> -band centers	bonded C and N atoms
Fe3@C20	2.22	-0.92	-3.51
Fe3@N1C19	2.22	-0.92	-3.57
Fe3@N2C18-I	2.23	-0.91	-4.43
Fe3@N2C18-II	2.22	-1.05	-4.02
Fe3@N ₂ C ₁₈ -III	2.24	-1.05	-3.96
Fe3@N3C17	2.23	-1.00	-4.81
Fe3@N4C16	2.16	-0.98	-3.89

49
50 Supplementary Figure 1. Evaluation of energy cutoff for optimizing Fe₃@C₂₀: the variation of the total
51 DFT energy (A) and the lattice constant *a* (B) against energy cutoff.

57 Supplementary Figure 2. The ELF plot of (110) section of Fe₃@C₂₀(A) and Mo₃@C₂₀(B) monolayer,
58 with the unit cells marked by black lines.

Supplementary Figure 3. The TDOS of 2D Mo₃@C₂₀ monolayer with the Fermi energy level indicated
 by the red dashed line.

Supplementary Figure 4. Different adsorption structures of N₂ on Mo₃@C₂₀: (A) end-on and (B) side-on
 configuration at Mo₁ site, and (C) end-on and configuration at Mo₂ site, with the unit cells marked by black
 lines.

Supplementary Figure 5. The final structure of $Fe_3@C_{20}$ after 5-ps' FPMD simulations at 300 K.

Supplementary Figure 6. The top and side views of $Fe_3@N_1C_{19}(A)$, $Fe_3@N_2C_{18}$ -I (B), $Fe_3@N_2C_{18}$ -II (C), 85 $Fe_3@N_2C_{18}$ -III (D), $Fe_3@N_3C_{17}$ (E), and $Fe_3@N_4C_{16}$ (F), with the unit cells marked by black lines.

86 87 **Supplementary Figure 7.** Different adsorption structures of N_2 adsorption on Fe₃@ N_xC_{20-x} ($x = 1 \sim 3$), with

the unit cells marked by black lines. 88

91 Supplementary Figure 8. The free energy diagram of eNRR through consecutive/ enzymatic (in red/green)

- 92 pathway on $Fe_3@N_4C_{16}$ including the solvation effect. Data denote the ΔG of each elementary step.
- 93

Supplementary Figure 9. The PDOS of Fe₃@N_xC_{20-x} (x = 0~4) structures without and with N₂ adsorption for Fe₃@C₂₀ (A,B) Fe₃@N₁C₁₉ (C,D), Fe₃@N₂C₁₈-I (E,F), Fe₃@N₂C₁₈-II (G,H), Fe₃@N₂C₁₈-III (I,J), Fe₃@N₃C₁₇ (K,L), and Fe₃@N₄C₁₆ (M,N). Only the *d*-orbital of the Fe₂ site and its 4 bonded C/N atoms are considered in the figure. The black, red, green and blue solid lines represent the C-*p*, Fe-*d*, doped N-*p* and *N₂ molecular *p* orbitals, respectively, and the red dashed line indicates the Fermi energy level.