Supporting Information

Highly fluorinated co-solvent enabling ether electrolyte for high-voltage lithium ion batteries with graphite anode

Ruo Wang^{1,2}, Haonan Wang³, Huajun Zhao⁴, Mingman Yuan¹, Zhongbo Liu³, Guangzhao Zhang^{1,*}, Tong Zhang¹, Yunxian Qian³, Jun Wang^{1,*}, Iseult Lynch^{2,*}, Yonghong Deng^{1,*}

¹Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

²School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

³Shenzhen CAPCHEM Technology Co. Ltd., Shenzhen 518118, Guangdong, China.
⁴School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.

*Correspondence to: Dr. Guangzhao Zhang, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, Guangdong, China. E-mail: <u>zhanggz@sustech.edu.cn</u>; Prof./Dr. Jun Wang, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, Guangdong, China. E-mail: <u>wangj9@sustech.edu.cn</u>; Prof./Dr. Iseult Lynch, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. E-mail: <u>i.lynch@bham.ac.uk</u>; Prof./Dr. Yonghong Deng, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship,

Scheme S1. Proposed mechanism of H₂ formation.

Figure S1. Nyquist plots of Lillgraphite cells after different cycle numbers with (a) fluorinated ether and (b) conventional ether electrolytes.

Figure S2. Cycling performance of NCM811||graphite full cell with fluorinated ether electrolyte for 1,000 cycles.

Figure S3. Discharge direct current internal resistance (DCIR) of NCM811||graphite pouch cells with different electrolytes at 45°C.

Figure S4. SEM images of cycled electrodes after 100 cycles: (a) LCO, (b) NCM811

and (c) graphite using fluorinated ether electrolyte; (d) LCO, (e) NCM811 and (f) graphite using carbonate electrolyte.

Figure S5. N 1s XPS spectrum of graphite electrode after 100 cycles with fluorinated ether electrolyte.

Figure S6. X-ray diffraction (XRD) patterns of (a) LiCoO₂ (LCO) and (b) LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ (NCM811).