Supporting Information

Highly fluorinated co-solvent enabling ether electrolyte for high-voltage lithium ion batteries with graphite anode

Ruo Wang1,2, Haonan Wang3, Huajun Zhao4, Mingman Yuan1, Zhongbo Liu3, Guangzhao Zhang1,*, Tong Zhang1, Yunxian Qian3, Jun Wang1,*, Iseult Lynch2,*, Yonghong Deng1,*

1Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

2School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

3Shenzhen CAPCHEM Technology Co. Ltd., Shenzhen 518118, Guangdong, China.

4School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.

*Correspondence to: Dr. Guangzhao Zhang, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, Guangdong, China. E-mail: zhanggz@sustech.edu.cn; Prof./Dr. Jun Wang, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, Guangdong, China. E-mail: wangj9@sustech.edu.cn; Prof./Dr. Iseult Lynch, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. E-mail: i.lynch@bham.ac.uk; Prof./Dr. Yonghong Deng, Department of Materials Science & Engineering, School of Innovation and Entrepreneurship,
Scheme S1. Proposed mechanism of H₂ formation.

Figure S1. Nyquist plots of Li||graphite cells after different cycle numbers with (a) fluorinated ether and (b) conventional ether electrolytes.
Figure S2. Cycling performance of NCM811||graphite full cell with fluorinated ether electrolyte for 1,000 cycles.

![Graph showing DCIR vs. cycle for NCM811||graphite full cell with different electrolytes](image)

Figure S3. Discharge direct current internal resistance (DCIR) of NCM811||graphite pouch cells with different electrolytes at 45°C.

Figure S4. SEM images of cycled electrodes after 100 cycles: (a) LCO, (b) NCM811, (c) AG
and (c) graphite using fluorinated ether electrolyte; (d) LCO, (e) NCM811 and (f) graphite using carbonate electrolyte.

Figure S5. N 1s XPS spectrum of graphite electrode after 100 cycles with fluorinated ether electrolyte.

Figure S6. X-ray diffraction (XRD) patterns of (a) LiCoO$_2$ (LCO) and (b) LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$ (NCM811).