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Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social interaction and the presence of 
stereotypy and restrictive behavior. The clinical heterogeneity of ASD makes it difficult to explain the mechanisms 
underlying the disease. In recent years, the association between autophagy and neuropsychiatric diseases has 
been investigated. In this review, we aimed elucidate the relationship between autism and autophagy mechanism 
in well-known autism relevant animal models. Autophagy is a cell-protective mechanism that allows cell survival in 
low nutrient conditions, often through the degradation of aging and damaged proteins and organelles. The target 
of rapamycin (TOR) complex is activated for the activation of autophagy. Apart from mTOR animal models, the 
valproic acid model is frequently used in autism studies. The coiled-coil and C2 domain containing 1A (CC2D1A ) 
gene is one of the new candidate genes associated with ASD. In a recent study that used Cc2d1a  knock-out mice, 
microtubule-associated protein 1A/1B-light chain 3 (LC3) and Beclin 1 expression levels were dysregulated in the 
hippocampus. It is thought that the impaired autophagy mechanism contributes to the etiology of ASD. These 
results showed that CC2D1A  acts as a new biological pathway in autophagy. Choosing the right model is crucial 
for ASD studies, and further progress will be made as these results become available in the clinic. In particular, it is 
expected that further studies on CC2D1A  will provide new information in this field.
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CHARACTERISTICS AND GENETIC BACKGROUND OF AUTISM SPECTRUM DISORDERS 
Autism spectrum disorders (ASD) is a lifelong disorder with onset during childhood which is characterized 
by rigidity and ritualistic/repetitive patterns of interest disturbing various brain regions including 
prefrontal, hippocampal, cerebellar, and striatal and other midbrain regions [1]. In approximately half 
of the cases, ASD is associated with intellectual disability (ID), comorbidity with other conditions 
including epilepsy, attention-deficit hyperactivity disorder, anxiety, depression, tics, sleep disorders, and 
gastrointestinal problems[2-7]. ASD prevalence and diagnostic rates have risen significantly over the past two 
decades reaching 1.0%-2.5%, with a male to female ratio of 4 to 1[8,9]. The reasons for sex discrepancy are 
not yet clearly understood[8,9]. Some studies argue that the differential expressions of ASD between sexes 
may result in an underdiagnosis of females because male patients tend to have more external behaviors 
such as increased repetitive behavior or aggression while female patients show more internal behaviors 
including depression, anxiety, and other emotional symptoms[2,10]. Males and females show similar levels 
of depression in childhood, but those levels diverge in adolescence, becoming dramatically greater in 
females[11]. During adolescence, females of autism are associated with high comorbidity including tic and 
eating disorders, high incidence of suicide, and high rates of other medical problems[12]. Additionally, ASD 
is diagnosed later in life in girls than in boys and some studies have reported that ASD symptoms may 
be milder in females or are masked by the occurrence of other comorbidities, such as depression, ID, or 
anxiety. Girls are expected to be more verbal and social by society than boys, and they can be more skilled 
at hiding social deficits[13].

ASD was considered a complex disorder that includes the complex interaction of genetic, epigenetic, 
and environmental factors which may lead to the alteration of brain structures and functions[14-16]. 
Clinical heterogeneity is the characteristic of ASD cases, and this heterogeneity is present at different 
levels of analysis such as genetics, neural systems, cognition, development, and behavior, as well as in 
clinical features from response to treatment[17]. Despite the current technological advances, the etiology 
of autism is still unknown and great efforts are being made to understand the nature of autism and its 
associated molecular pathways[18]. Rett’s syndrome, fragile X syndrome, and tuberous sclerosis (TS) are 
classified as syndromic ASD. Patients with syndromic autism have chromosome structure abnormalities 
or mutations[16]. These syndromes have a unique single gene mutation which is linked to the synaptic 
protein called as mammalian target of rapamycin (mTOR)[19]. mTOR is a critical protein responsible for 
dendritic plasticity and cell survival. mTOR may be implicated in disrupted cell signaling in idiopathic 
ASD. A unique gene has not been identified to cause idiopathic autism. Several candidate genes have 
been identified for autism[20-22]. Idiopathic autism that is not associated with a syndrome is called classic 
autism. It is estimated that rare genetic variants are responsible for about 10%-30% ASD cases[16]. Autism 
has a strong genetic basis with a complex transmission model that is thought to be the result of at least 
1000 interacting genes[23,24]. These genes are associated with pathways such as cell growth and proliferation, 
synaptic activity and organization, transcription regulation, ubiquitination, chromatin rearrangement, 
protein synthesis, and transcription factors[25] [Figure 1]. Several autism susceptibility genes including 
NRXN1, NLGN3, NLGN4, GABRB3, SHANK2, SHANK3, SCN1A, and CNTNAP2 have been identified by 
sequencing technologies[1,4,15]. Dysregulation of transforming growth factor β, bone morphogenetic protein 
(BMP), WNT/β-catenin, fibroblast growth factor (FGF), sonic hedgehog (SHH), and retinoic acid (RA) 
signaling pathways have been implicated in the pathogenesis of ASD[1]. 

Several alterations have been detected in both the macro and microscopic structures of the brain in 
autism. In most ASD cases, the cerebral cortex is qualitatively similar to typically developing subjects in 
its general organization[26-29]. Abnormalities of brain development may contribute to the autism pathology. 
Neuritogenesis may also represent the structural basis of autism pathology[30]. Abnormal functioning and 
changes of the cerebellum have been revealed in the postmortem brains of autism patients. There is a 
decrease in the number of Purkinje cells in the cerebellum[31]. Neuropsychiatric developmental disorders 
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including schizophrenia and autism are associated with synapse development and abnormal dendritic spine 
formation[32]. Pathological events affecting the temporal lobe, especially the amygdala and the hippocampus, 
are thought to be related to the development of symptoms similar to autism[33]. Bilateral disorders in the 
cerebellum, thalamus, hippocampus, and amygdala regions were detected in autism[34].

AUTOPHAGY MECHANISM
Autophagy is a type of cell death mechanism that functions as an intracellular quality control system to 
maintain homeostasis by removing damaged proteins[35]. Autophagy is also a cell-protective mechanism 
that allows cell survival in low nutrient conditions and controls cell quality under stress conditions, often 
through degradation of aging and damaged proteins and organelles[36]. Autophagy is carried out by at least 
three different mechanisms, microautophagy, macroautophagy, and chaperone dependent autophagy. 
Macroautophagy occurs at the basic level in most cells, playing an important role in the breakdown of 
damaged organelles and proteins. Microautophagy is the event of lysis of the cytoplasm directly by the 
lysosome and digestion of the cytoplasm content within the lysosome with the lysosome membrane 
collapsing inward. And, chaperone-mediated autophagy selectively transfers proteins with KFERQ motifs 
to the lysosome membrane[37].

Autophagy is induced by starvation, oxygen deficiency, and various stress conditions. In these cases, 
the target of rapamycin (TOR) complex is activated for the initiation of autophagy. The TOR complex is 
the key protein that controls the cell’s energy metabolism, protein synthesis, and cell growth. It was first 
identified as the target molecule of rapamycin, an immunosuppressive agent developed for use against 
yeast in fungi. The isoform in mammals is known as mTOR, and suppression of this protein or silencing of 
the mTOR gene through various gene modifications provides stimulation of autophagy[38]. It is also known 
that the dysregulation of the autophagy mechanism is associated with human diseases such as cancer and 
neurodegeneration. Therefore, autophagy has attracted considerable interest in the biological sciences [39]. 
Several autophagic proteins control this pathway. BECN1 is a principal player in autophagy, triggering 

Figure 1. Genetic architecture of ASD. Genetic contributions to ASD can also be caused by direct or indirect effects on genes and 
proteins by environmental influences. ASD: autism spectrum disorder
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autophagosome formation[40]. LC3, serving as another important marker of autophagy, undergoes cleavage 
to become LC3-I and is then conjugated to phosphatidylethanolamine (PE), to produce LC3-II[41] [Figure 2].

Neuronal autophagy is crucial for the interaction, signaling, and development of neurons, and the 
alteration of autophagy negatively affects the growth and function of neurons. Proper growth of axons 
and dendrites is important for neuronal balance. Organelles or proteins with impaired functions are 
normally degraded for structural plasticity during development. Recent studies have shown that genes 
associated with autophagy are very important in the development and maturation of dendrites, axons, 
and synapses[42]. ASD, as a neurodevelopmental disorder, may result in synaptic abnormalities. Autophagy 
and its related pathways are thought to be associated with the development of ASD, but the precise roles 
of neuronal autophagy in ASD were not fully understood[43,44]. Some studies have shown that activation 
of excess autophagy causes autism, while other studies have shown that deficiency of autophagy causes 
autism[24,29,45-48]. Recently, in the postmortem brains of patients with ASD, impaired autophagy, and 
hyperactive mTOR signaling were observed[45]. Autophagy is inhibited in mice with phosphatase and tensin 
homolog (PTEN) mutation and these mice exhibit autistic behaviors and abnormal neuronal development. 
This result suggests that the dysregulation of autophagy in individuals with ASD[49]. Mutation of the 
activity-dependent neuroprotector protein (ADNP) gene has also been identified as one of the causes 
of ASD[50]. ADNP is a gene encoding a transcription factor located on the long arm of chromosome 20 
(20q13.13). ADNP syndrome is characterized by global developmental delays, ID, speech barriers, and 
motor dysfunctions[51]. Deletions in this chromosomal region cause ID[52]. ADNP controls the expression of 

Figure 2. Molecular mechanism of autophagosome formation in mammalian autophagy process. Three major steps of the autophagy 
are figured out as initiation (A), nucleation (B) and elongation (C). PM: plasma membrane; PE: phosphatidylethanolamine
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genes during embryonic and postnatal development, including neurogenesis-crucial genes and BECN1[53]. 
Given the direct relationship between ADNP and MAP1-LC3B, as well as the connection of autism with 
eukaryotic initiation factor 4E (Eif4e) and its tight relationship with autophagy, ADNP is also inevitable to 
play a role in autism and autophagy[51,54]. ADNP knock-out mice resulted in embryonic death during the 
closure of the neural tube[53]. ADNP +/- male mice showed cognitive deficiencies in behavior tests[55].

ANIMAL MODELS ON AUTOPHAGY: A PERSPECTIVE FROM AUTISM
An ideal animal model of a human disorder should present some characteristics features of the disease. 
The model should resemble the symptoms of human disorder and can be genetically modified by specific 
stimulation. Both the models and human patients should respond similarly to certain treatments[16]. Animal 
models can provide an advantage over human studies by allowing controlled testing of the effects of specific 
disease-causing factors on synaptic function and behavioral outcomes[56].

Many of the known genetic variations which contribute to the risk of ASD affect the expression of 
proteins that have roles in the chromatin remodeling or function, formation, and maintenance of 
synapses[57]. Deletions of such genes in animals can cause a behavioral phenotype reminiscent of ASD with 
impairments in communication, social interaction, and repetitive behaviors[56]. Knock-out models that 
include monogenic ASD genes are NRXN1, MECP2, NLGN3, SHANK3, NLGN4, FMR1, and TSC1/2[45,58-64]. 
Although there are few neuropathological data available in some models, there is growing interest of 
carrying specific ASD genes. The emerging risk genes are as follows: CHD8, SCN2A, SYNGAP1, DSCAM, 
and TBR1[65-69]. In the literature, there are syndromic animal models (i.e., Rett Syndrome, Prader-Willi, and 
Angelman Syndromes, fragile X, and Tuberous Sclerosis Complex) and environmental animal models [i.e., 
valproic acid (VPA), maternal autoantibodies, and maternal immune activation] that can be generated. In 
this review, the most studied mTOR related models and VPA models related to autophagy are discussed. 
Also, we explain the developments in the coiled-coil and C2 domain containing 1A (CC2D1A) animal 
models, which are not well-known in the literature, through the autophagy mechanism. 

mTOR related models
The correct protein level is provided by the delicate balance between protein synthesis and breakdown. 
High synaptic protein levels can occur as a result of high translation and/or accumulation of damaged 
protein. In neurons, mTORC1 takes the role of braking autophagy. It is strategically positioned in the 
presynaptic and postsynaptic regions. Under rich nutrient conditions, the target of mTORC1 is Unc-51-
like autophagy-activating kinase 1 (ULK-1) which phosphorylates in Ser757, the anti-autophagy region[70]. 
In this case, ULK-1 moves away from the AMP kinase (AMPK) and autophagy initiation is stopped. On 
the contrary, in the starvation conditions, AMPK phosphorylates and activates ULK-1 in Ser317 which 
mediates the phosphorylation and activation of Beclin-1 in Ser14, an important step in the “nucleation 
phase” of autophagy[71]. Beclin-1 promotes the lipidization of LC3-I to achieve the lipid form LC3-II which 
enables membrane elongation and formation of autophagosomes[72]. With lipidation, LC3-II is localized 
to the phagophore membrane and mediates the formation of mature LC3-II autophagosomes, limiting 
membrane elongation and cargo[73]. Neuronal autophagy has a key role in protein balance and is an 
important regulator of memory formation, synaptic plasticity, and structural remodeling[73,74].

A possible scenario is that over-activated mTOR from hippocampal neurons from fragile X mice results 
in decreased autophagy and accumulation of a particular group of synaptic proteins. Neurons from Fmr-1 
knock-out mice showed the accumulation of ubiquitin-protein aggregates localized by p62, and autophagy 
was impaired in Fmr-1 knock-out neurons. This findings in this study showed that autophagy and protein 
degradation decreased in hippocampal neurons of this model. Excess mTOR activity is causally associated 
with decreased autophagy causing spinal defects, impaired cognition, and exaggerated synaptic plasticity in 
Fmr1- knock-out mice[75].
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Interestingly, a recent study found that increased activity of mTOR and MAPK pathways in the peripheral 
blood samples of idiopathic ASD patients. ERK1-2, rpS6, p-eIF4E, and p-MNK1 (components of the mTOR 
and MAPK signaling pathways) showed a significant increase in patients with ASD compared to controls. 
TSC1, rpS6, p-eIF4E, and p-MNK1 protein expression discriminated patients according to their clinical 
severity[76]. Overactive mTOR signals suppress autophagy in the brains of tuberous sclerosis complex 
(TSC) 1+/- and TSC2+/- mice during postnatal development and decreased autophagy causing an imbalance 
in the pruning of the spines in the cortical layer V pyramidal neurons. Dysregulation of autophagy and 
its association with impaired spinal pruning may be more common in at least one subset of ASD in Tsc 
mutant mice[45]. TS is a genetic disease caused by mutations in the TSC1 or TSC2 genes and mTOR activity 
is regulated negatively with these genes[77]. TSC1+/- mice showed impairments in social interactions and 
hippocampus-dependent contextual fear conditioning[78]. TSC2 mutations created learning and memory 
deficits and contextual fear conditioning[79]. Mice carrying a dominant-negative TSC2 mutation had 
reduced social interactions and preference for social innovations[80].

Human with mutations in the PTEN gene tend to develop ASD, macrocephaly, seizures, and ID. It 
is thought that neurological symptoms associated with the loss of PTEN and other “mTORopathies” 
are caused by hyperactivation of mTORC1-mediated protein synthesis. One study with Pten knock-
out mice revealed that rapamycin-mediated inhibition of MTORC1 activity increased behavioral and 
neurophysiological abnormalities and showed a reduction in brain size. The group also found that genetic 
deletion of mTORC2 activity suppressed seizures, recovered ASD-like behavior and long-term memory, 
and normalized metabolic changes of Pten knock-out mice. They found that reducing mTORC2 rescued 
behavioral and neurophysiological abnormalities[81]. The contactin associated protein 2 (CNTNAP2) is the 
first widely studied autism susceptibility gene. CNTNAP2 knock-out mice show core ASD-like phenotypes. 
By RNA sequencing of CNTNAP2 knock-out mouse, hyperactive Akt-mTOR signals were detected in the 
hippocampus. After treatment with mTOR inhibitor rapamycin or Akt inhibitor LY294002, it was reported 
that the social deficit was recovered in mice but had no effect on hyperactivity and recurrent/restricted 
behavior. Additionally, the effect of rapamycin and LY294002 on social behavior is reversible. Thus, the 
hyperactive Akt-mTOR signaling pathway has been identified as a therapeutic target for abnormal social 
behavior in patients with CNTNAP2 dysfunction[82].

According to latest study by Lieberman et al.[83], autophagy is downregulated during postnatal development 
following the upregulation of mTOR activity in the mice striatum. In the same study, a VPA model has 
been also conducted; autophagy is specifically reduced. They concluded that the impairment of autophagy 
is accompanied by impairments in synaptic transmission and social behavior in the late postnatal 
development in this mouse model[83]. In the TRIM32-/- model, the authors generated impaired GABAergic 
interneurons and leading autism relevant behaviors in mice, concomitant with an increased autophagy 
mechanism. Therefore, they suggested that theTRIM32-/- mouse is a novel autism mouse model[84].

VPA models 
VPA is commonly used as an antiepileptic drug. Clinical studies have shown that exposure to VPA in utero 
is associated with cognitive deficits, birth defects, and an increased risk of ASD[85]. Clinical evidence 
shows that there is a link between VPA exposure and both cognitive abnormalities and autism. Animal 
studies in recent years have investigated anatomical, behavioral, molecular, and physiological changes due 
to in utero VPA exposure. The behavioral tests revealed that VPA exposure causes autistic-like behavior 
in offspring; these include social behavioral deficits, increased repetitive behavior, and communication 
deficits in rodents[86]. In the embryonic period, a single intraperitoneal VPA injection to 12.5-day-old 
female rats causes autism relevant symptoms in their offspring, and the brain structures and biomarker 
levels of the offspring are similar to those in autistic patients[87,88]. The VPA model is often used in ASD 
studies[89-91]. mTOR, the main marker of cellular metabolism, cell growth, and autophagy, has been reported 
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to contribute to ASD development via the IGF1/PI3K/AKT/mTOR pathway[92]. Accordingly, it was 
assumed that autophagy will increase or decrease through PI3K/AKT/mTOR, thereby contributing to the 
development of ASD. Based on this assumption, VPA was given to rats and it was observed that the rats 
had autistic-like behaviors. Zhang et al.[46] rats were given VPA and autistic-like behaviors were observed. 
Various autophagic markers were examined in the hippocampus of these rats by the immunohistochemical 
method and mTOR inhibition was found to increase PI3K/AKT/mTOR-mediated autophagic activity.

Sphingosine 1-phosphate (S1P) is abundant in the brain tissue and plays an important role in brain 
development, regulation of neuronal differentiation, proliferation, survival, and apoptosis[93]. There 
is growing evidence that abnormal S1P levels are associated with the pathogenesis of schizophrenia, 
Alzheimer’s disease, and anxiety disorder[94]. In a study that investigated the pathogenesis of S1P in autism, 
a VPA rat model was used to evaluate S1P expression levels in the serum and brain tissue. Expression of 
autophagic proteins Beclin-1, LC3-II, and P62 were investigated in rats exposed to VPA. The investigators 
in the study found that increased S1P may be associated with decreased autophagy in this model[95]. A 
study was carried out to illuminate the link between the Notch signaling pathway and the pathogenesis 
of autism. They also investigated whether 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester 
(Dapt) caused autism relevant behavior in the VPA rat model by regulating autophagy and affecting the 
morphology of dendritic spines. Autophagy-dependent proteins LC3B, Becn1, and phospho-p62 were 
inhibited by Dapt in rat VPA model in the hippocampus, cerebellum, and prefrontal cortex. The Notch 
signaling pathway participates in the ASD pathogenesis by affecting dendritic spine growth and regulating 
autophagy[96].

CC2D1A models for autism
The CC2D1A (coiled-coil and C2 domain-containing 1A) gene is one of the new candidate genes associated 
with autism[4]. In humans, the CC2D1A gene mutation was first associated with autosomal recessive 
nonsyndromic intellectual disability[97]. This means that the CC2D1A gene has a function in the central 
nervous system. Cc2d1a knock-out mouse model has been shown that regulates multiple intracellular 
signaling pathways, involved in neuronal differentiation and brain development, activators of Protein 
Kinase B (PKB), and NF-κB[98,99]. CC2D1A protein consists of a COOH-terminal C2 domain and NH2-
terminal domains. The CC2D1A gene family consists of two homologous units, CC2D1A and CC2D1Bfor 
both humans and mice. The CC2D1A protein has two main isoforms containing 950 and 388 amino acids. 
The shorter isoform of the protein does not include exons 14 to 16, which are deleted in patients with 
ASD. Therefore, only the long protein isoform plays a central role in disease pathogenesis in the patients. 
The most conserved motif is a C2 domain and the other motif, DM14, is unique to the CC2D1A protein 
family, but its role is unknown. The C2 motif is located at the C-terminus of CC2D1A at positions 661-762, 
and is found in proteins that function in calcium-dependent phospholipid binding, where the C2 domain 
itself participates in the binding pocket of the Ca2+ cation. The DM14 motif repeats four times in the 
human CC2D1A sequence but only three times in the Caenorhabditis elegans orthologue sequence. The 
DM14 motif also appears only in the long isoform of CC2D1A, while the C2 domain is present in both 
isoforms, suggesting that it probably plays a central role in its protein activity[100-103]. The CC2D1A gene 
functions to bind to DNA and suppress transcription of serotonin receptor 1 A (HTR1A). The physiological 
role of the CC2D1A gene is not fully known. In a study, CC2D1A knock-out mice were produced to 
examine this role. Mice with the homozygous CC2D1A gene mutation died immediately after birth due 
to their inability to breathe, while mice with the heterozygous mutation remained alive and productive. 
Therefore, since the CC2D1A gene is vital, the absence of this gene as in the homozygous case is fatal[104]. 
The absence of the CC2D1A gene primarily affects brain function. Studies with animal models have 
revealed that this gene has a role in the regulation of endosomal traffic and signaling pathways. Disruption 
of this gene affects numerous biochemical pathways including cAMP response element-binding protein 
(CREB), NF-κB, protein kinase A (PKA), protein kinase B (PKB/AKT), Notch, and BMP[100]. CC2D1A 
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plays a role in the transcriptional regulation o both dopamine and serotonin receptors in the brain. 
All studies have shown that CC2D1A regulated critical pathways for cognitive functions with neuronal 
differentiation[102,103]. Although there are not many studies in this animal model, abnormalities were found 
in the brain in the studies performed. Developmental changes in neurons of Cc2d1a knockout mouse 
brains were demonstrated during synapse maturation and induced neurotransmitter release. Based on these 
findings, it is thought that the CC2D1A gene serves as a developmental regulator of synapse function[100]. 
CC2D1A knock-out or knock-down in vitro experiments showed a decrease in hippocampal neurons. 
Also, delays in synaptic maturation have been observed in cortical neurons. In these animal models, it has 
been determined that there is a lack of neuronal plasticity, spatial learning, and memory accompanying 
decreased socialization, hyperactivity, anxiety, and excessive self-care[101] and Cc2d1a has been shown to 
control synaptic maturation of excitatory neurons[100]. Further studies are needed to determine whether 
CC2D1A controls sex-specific circuit function. Conditional removal of CC2D1A from the dorsal raphe 
demonstrated increased anxiety and depression-like behavioral phenotypes which correlated with reduced 
serotonin levels and increased 5HT-1A autoreceptor in the raphe, in both males and females[103], suggesting 
that there may be regional specificity in the function of CC2D1A.

In vitro studies in hippocampal neurons and embryonic fibroblasts from CC2D1A knock-out mice showed 
that CC2D1A binds to phosphodiesterase 4D (PDE4D), an enzyme involved in cAMP degradation[105]. In 
a recent study, PDE4D activation and downstream signaling molecules were tested in the hippocampus 
of Cc2d1a knock-out mice. Cc2d1a knock-out male mice were hyperactive and show a deficit in spatial 
memory, which led to a reduction in cAMP response element-binding protein signaling but this finding has 
not been correlated with female mice. These findings showed that CC2D1A regulates cAMP intracellular 
signaling in the male-specific regions of the hippocampus[106]. In our recent study, we showed the 
dysregulation of autophagy with CC2D1A deficient mice in the hippocampus. We wanted to evaluate the 
severity of autism by creating two different groups and followed them over the next three generations. LC3 
and Beclin gene and protein expression levels in the hippocampus tissues of male and female mice in both 
groups were examined. All of the animal groups were observed to be extremely aggressive and hyperactive. 
Overall decreases were observed in autophagy levels. In the literature, this was the first major study in the 
CC2D1A mouse model in which autism was associated with autophagy[48].

CONCLUSION
Genetic studies of autism have made surprising progress over the past 20 years. Our understanding of 
the genetic and epigenetic factors in ASD etiology and the interaction on the disease will be continued to 
improve with future studies and ongoing research results.

Animal models are used to study potential disorder mechanisms. The well-known causes of autism are 
commonly based on specific human genetic mutations; however, ASD pathogenesis is most likely shaped 
by a complex interaction between several genetic variants as well as environmental factors in humans. In 
the animal models, monogenic mutations can lead to milder phenotypes that might explain some of the 
differences observed in behavioral manifestations between ASD patients and animal models. Given the 
clinical heterogeneity of the ASD patients, it is controversial whether it is necessary or even possible to see 
all the human symptoms in rodent models. However, monogenic rodent models are a valuable resource 
for solving the cause-and-effect relationships of ASD since the majority of susceptibility genes appear to 
converge in shared biological pathways. Therefore, rodent models are important preclinical tools necessary 
to investigate the validation of pathophysiology, gene function, and therapeutic approaches in ASD[107].

Choosing the right model is of great importance for ASD studies and progress will be made in the 
reflection of the results to be obtained in the clinic. Especially, the studies to be done with CC2D1A models 
are expected to gain new information in this field.
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