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Supplementary Figure 1. The experimental devices used for material synthesis,

characterization, and application.
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Supplementary Figure 2. PXRD patterns of MOF-808 and its derived FM-MOFs.
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Supplementary Figure 3. N2 adsorption-desorption isotherms of MOF-808 and its

derived FM-MOFs. The BET surface areas were calculated to be 2424 m2 g-1 for (a),

1150 m2 g-1 for (b), 1482 m2 g-1 for (c), 813 m2 g-1 for (d), 587 m2 g-1 for (e) and 670

m2 g-1 for (f).
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Supplementary Figure 4. SEM images of (a) MOF-808, (b) FM-MOF-1, (c) FM-

MOF-2, (d) FM-MOF-3, (e) FM-MOF-4 and (f) FM-MOF-5.
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Supplementary Figure 5. FT-IR spectra of MOF-808 (black) and FM-MOF-1 (red).

Supplementary Figure 6. 1H NMR spectra of (a) alkaline-digested FM-MOF-1, (b)

MOF-808, and (c) M1 (thioglycolic acid) in KOH/D2O solution.
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Supplementary Figure 7. Kinetics investigation of FM-MOF-1 for Hg2+ adsorption.

Inset shows the pseudo-second-order kinetic plot for the adsorption.

Supplementary Figure 8. Hg2+ adsorption isotherm of FM-MOF-1. Inset shows the

linear regression by fitting the experimental data with the Langmuir model.
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Supplementary Figure 9. FT-IR spectra of MOF-808 (black) and FM-MOF-2 (red).

FM-MOF-3 exhibits a new peak at 2110 cm-1, which can be attributed to the

stretching frequency of the alkynyl group in M2 (propiolic acid).
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Supplementary Figure 10. 1H NMR spectra of (a) acid-digested FM-MOF-2, (b)

MOF-808, and (c) M2 (propiolic acid) in DMSO/D2SO4 solution. It is obvious that

the signal of the formate group in FM-MOF-2 almost disappears and a new peak

corresponding to the hydrogen of M2 emerges, indicating the formate ligands on Zr6
clusters in MOF-808 have been successfully substituted by M2.

Supplementary Figure 11. Kinetics investigation of FM-MOF-2 for Ag+ adsorption.

Inset shows the pseudo-second-order kinetic plot for the adsorption.
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Supplementary Figure 12. FT-IR spectra of FM-MOF-3 (red) and MOF-808 (black).

FM-MOF-3 exhibits a new peak at 1715 cm-1, which can be attributed to the

stretching frequency of the free carboxylic group in M3 (oxalic acid).

Supplementary Figure 13. 1H NMR spectra of (a) alkaline-digested FM-MOF-3 and

(b) MOF-808 in KOH/D2O solution. It is obvious that the peak at 8.34 ppm for the
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hydrogen of the formate group in FM-MOF-3 almost disappears, suggesting the

formate ligands on Zr6 clusters in MOF-808 have been successfully substituted by M3

(oxalic acid).

Supplementary Figure 14. 13C NMR spectra of (a) alkaline-digested FM-MOF-3, (b)

alkaline-digested MOF-808, and (c) M3 (oxalic acid) in KOH/D2O solution. It is

obvious that the peak at 171.1 ppm for the carbon of the formate group in FM-MOF-3

reduces significantly and one additional chemical shift at 173.4 ppm corresponding to

the carbon signal of oxalic acid emerges, indicating most of the formate ligands on

Zr6 clusters are substituted by M3.
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Supplementary Figure 15. Nyquist plots of FM-MOF-3 at (a) 33% RH, (b) 53% RH,

(c) 65% RH, (d) 75% RH, (e) 85% RH and (f) 100% RH under room temperature.
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Supplementary Figure 16. Nyquist plots of MOF-808 at 100% RH under room

temperature.
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Supplementary Figure 17. FT-IR spectra of MOF-808 (black) and FM-MOF-4 (red).



S19

Supplementary Figure 18. 1H NMR spectra of (a) alkaline-digested FM-MOF-4, (b)

MOF-808, and (c) M4 (1-pyrenecarboxylic acid) in KOH/D2O solution. It is obvious

that the peak at 8.34 ppm for the hydrogen of the formate group in FM-MOF-4

decreases and new peaks around 7.8-8.4 ppm emerge, indicating the formate ligands

on Zr6 clusters in MOF-808 have been successfully substituted by M4.

Supplementary Figure 19. FT-IR spectra of MOF-808 (black) and FM-MOF-5 (red).

FM-MOF-5 exhibits a new peak at 1262 cm-1, which is attributed to the stretching

frequency of C-F in M5 (perfluorooctanoic acid).
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Supplementary Figure 20. 19F NMR spectra of (a) acid-digested FM-MOF-5 and (b)

M5 (perfluorooctanoic acid) in D2SO4/DMSO solution. It is obvious that the peaks

for the fluorine signals in FM-MOF-5 are consistent with those in M5, indicating

perfluorooctanoic acid has been successfully inserted into MOF-808.

Supplementary Figure 21. Reduction in emission intensity of FM-MOF-4 upon

addition of TNP solution in DMF.
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Supplementary Figure 22. Percentage of fluorescence quenching of FM-MOF-4

after addition of different explosive analytes (1 mM), including 3-Nitrophenol (3-NP),

2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (DNB), nitromethane (NM), 2,6-

dinitrotoluene (2,6-DNT), 2,3-dimethyl- 2,3-dinitrobutane (DMNB) and nitrobenzene

(NB).
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Supplementary Figure 23.Water adsorption isotherms of FM-MOF-5 and MOF-808

collected at 298 K.

Supplementary Figure 24. PXRD patterns of FM-MOF-7 and MOF-808. The related

peaks of FM-MOF-7 are in good agreement with those of pristine MOF-808,

confirming that the crystal structure remains intact after M7 (propenoic acid) insertion.
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Supplementary Figure 25. N2 adsorption-desorption isotherm of FM-MOF-7. The

BET surface area of FM-MOF-7 was calculated to be 1612 m2 g-1.
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Supplementary Figure 26. SEM image of FM-MOF-7. It is obvious that FM-MOF-7

possesses octahedral morphology, indicating no apparent morphology change after

M7 (propenoic acid) insertion.

Supplementary Figure 27. FT-IR spectra of MOF-808 (black) and FM-MOF-7 (red).
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Supplementary Figure 28. 1H NMR spectra of (a) alkaline-digested FM-MOF-7, (b)

MOF-808, and (c) M7 (propenoic acid) in KOH/D2O solution.
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Supplementary Figure 29. PXRD patterns of FM-MOF-6 and MOF-808. The related

peaks of FM-MOF-6 are in good agreement with those of pristine MOF-808,

confirming that the crystal structure remains intact after such tandem postsynthetic

modification.

Supplementary Figure 30. N2 adsorption-desorption isotherm of FM-MOF-6. The

BET surface area of FM-MOF-6 was calculated to be 704 m2 g-1.
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Supplementary Figure 31. SEM image of FM-MOF-6. Octahedral morphology was

observed for FM-MOF-6.

Supplementary Figure 32. FT-IR spectra of MOF-808 (black), FM-MOF-7 (red),

and FM-MOF-6 (blue).
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Supplementary Figure 33. 1H NMR spectra of alkaline-digested FM-MOF-6 (red)

and FM-MOF-7 (black) in KOH/D2O solution.

Supplementary Figure 34. Kinetics investigation of FM-MOF-6 for Hg2+ adsorption.

Inset shows the pseudo-second-order kinetic plot for the adsorption.
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Supplementary Figure 35. Hg 4f XPS spectra of Hg2+@FM-MOF-6.
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Supplementary Figure 36. S2p XPS spectra of FM-MOF-6 before and after Hg2+

loading.

Supplementary Figure 37. FT-IR spectra of FM-MOF-6 before and after Hg2+

loading.
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Supplementary Figure 38. PXRD patterns of FM-MOF-9 and MOF-808. The related

peaks of FM-MOF-9 are in good agreement with those of pristine MOF-808,

confirming that the crystal structure remains intact after M9 (bromoacetic acid)

insertion.
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Supplementary Figure 39. N2 adsorption-desorption isotherm of FM-MOF-9. The

BET surface area of FM-MOF-9 was calculated to be 1325 m2 g-1.

Supplementary Figure 40. SEM image of FM-MOF-9. Octahedral morphology was

observed for FM-MOF-9.

Supplementary Figure 41. FT-IR spectra of MOF-808 (black) and FM-MOF-9 (red).



S33

Supplementary Figure 42. 1H NMR spectra of (a) alkaline-digested FM-MOF-9, (b)

MOF-808, and (c) M9 (bromoacetic acid) in KOH/D2O solution. It is obvious that the

peak at 8.34 ppm for the hydrogen of the formate group in FM-MOF-9 decreases

significantly and a new peak at 3.8 ppm corresponding to the hydrogen of -CH2- in

M9 emerges, indicating the formate ligands on Zr6 clusters in MOF-808 have been

successfully substituted by M9.
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Supplementary Figure 43. PXRD patterns of FM-MOF-8 and MOF-808. The related

peaks of FM-MOF-8 are in good agreement with those of pristine MOF-808,

confirming that the crystal structure remains intact after such tandem postsynthetic

modification.

Supplementary Figure 44. N2 adsorption-desorption isotherm of FM-MOF-8. The

BET surface area of FM-MOF-8 was calculated to be 756 m2 g-1.

.
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Supplementary Figure 45. SEM image of FM-MOF-8. Octahedral morphology was

observed for FM-MOF-8, indicating no apparent morphology change after such

tandem postsynthetic modification.

Supplementary Figure 46. FT-IR spectra of MOF-808 (black), FM-MOF-9 (red),

and FM-MOF-8 (blue). In contrast with MOF-808 and FM-MOF-9, a new peak at

1316 cm-1 emerges, which can be ascribed to the stretching frequency of C-N in M8

(1-allylimidazole).



S36

Supplementary Figure 47. 1H NMR spectra of acid-digested FM-MOF-8 (red) and

M8 (1-allylimidazole) in DMSO/D2SO4 solution. It is obvious that several new peaks

attributed to the hydrogen signals of M8 emerge in FM-MOF-8, indicating the

successful insertion of M8 into MOF-808 through such tandem postsynthetic

modification.
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Supplementary Figure 48. 1H NMR spectra of (a) as-transformed FM-MOF-9 from

FM-MOF-2 and (b) FM-MOF-9 in KOH/D2O solution.

Supplementary Figure 49. 1H NMR spectra of (a) as-transformed FM-MOF-9 from

FM-MOF-7 and (b) FM-MOF-9 in KOH/D2O solution.
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Supplementary Figure 50. 1H NMR spectra of (a) as-transformed FM-MOF-7 from

FM-MOF-2 and (b) FM-MOF-7 in KOH/D2O solution.
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Supplementary Figure 51. 1H NMR spectra of (a) as-transformed FM-MOF-7 from

FM-MOF-9 and (b) FM-MOF-7 in KOH/D2O solution.

Supplementary Figure 52. 1H NMR spectra of (a) as-transformed FM-MOF-2 from

FM-MOF-9 and (b) FM-MOF-2 in D2SO4/DMSO solution.
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Supplementary Figure 53. 1H NMR spectra of (a) as-transformed FM-MOF-2 from

FM-MOF-7 and (b) FM-MOF-2 in D2SO4/DMSO solution.
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Supplementary Figure 54. PXRD patterns of MOF-808, as-transformed FM-MOF-7

from FM-MOF-9 and parent FM-MOF-9.

Supplementary Figure 55. PXRD patterns of MOF-808, as-transformed FM-MOF-9

from FM-MOF-7 and parent FM-MOF-7.
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Supplementary Figure 56. PXRD patterns of MOF-808, as-transformed FM-MOF-7

from FM-MOF-2 and parent FM-MOF-2.
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Supplementary Figure 57. PXRD patterns of MOF-808, as-transformed FM-MOF-9

from FM-MOF-2 and parent FM-MOF-2.

Supplementary Figure 58. PXRD patterns of MOF-808, as-transformed FM-MOF-2

from FM-MOF-9 and parent FM-MOF-9.
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Supplementary Figure 59. PXRD patterns of MOF-808, as-transformed FM-MOF-2

from FM-MOF-7 and parent FM-MOF-7.
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Supplementary Figure 60. PXRD patterns of MOF-808 and FM-MOF-1-4. The

related peaks of FM-MOF-1-4 are in good agreement with those of pristine MOF-808,

confirming that the crystal structure remains intact after modification.

Supplementary Figure 61. N2 adsorption-desorption isotherm of FM-MOF-1-4. The

BET surface area of FM-MOF-1-4 was calculated to be 344 m2 g-1.
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Supplementary Figure 62. SEM image of FM-MOF-1-4. Octahedral morphology

was observed for FM-MOF-1-4.

Supplementary Figure 63. 1H NMR spectra of alkaline-digested FM-MOF-1 in

KOH/D2O solution after integral analysis.
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Supplementary Figure 64. 1H NMR spectra of alkaline-digested FM-MOF-1-4 in

KOH/D2O solution after integral analysis.

Supplementary Table 1. Comparison of the maximum adsorption capacities of

FM-MOF-2 for Ag+ with various porous materials

Adsorbents Maximum adsorption capacity/ mg g-1 Supplementary refs.

Ag-IISHPs 80.5 [1]

EBG 90.06 [2]

ITG-OCMC 156.32 [3]

F-WS2 MCs 186.2 [4]

PP-g-GMA@MEA 262.51 [5]

KMS-2 408 [6]

MoS4-LDH 450 [7]

BBCF 600 [8]

N,S-CDs 714.3 [9]

PPy/MAA 714.28 [10]

FM-MOF-2 806 this work
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Supplementary Table 2. Comparison of the maximum adsorption capacities of

FM-MOF-6 for Hg2+ with various MOF-based materials

Adsorbents Maximum adsorption capacity/ mg g-1
Supplementary

refs.

Zr-DMBD 197 [11]

Zr-M1 275 [12]

Zn(hip)-MOF 278 [13]

Cys-UIO-66 350.14 [14]

PCN-224 -

MAA/MF
412.5 [15]

FJI-H12 439.8 [16]

In2S3@MIL-101 518.2 [17]

NENU-401 596.57 [18]

CoCNSP 716 [19]

BioMOF 900 [20]

TLMSM 954.7 [21]

FM-MOF-6 1077 this work

Experimental details

Characterization

PXRD patterns were collected on Bruker AXS D2 Phaser equipped with a Cu sealed

tube (λ = 1.5418 Å) operating at 40 kV and 15 mA. The nitrogen adsorption-

desorption isotherms of FM-MOFs were measured using Autosorb-IQ-MP

(Quantachrome Instruments) at -196 °C. The scanning electron microscopy (SEM)

images of FM-MOFs were obtained using a Hitachi SU8200 instrument. The IR

spectra were measured with a Nicolet 6700 FTIR spectrophotometer. NMR spectra

were determined on a Bruker Fourier 600M spectrometer. The XPS data were

collected using an ESCALAB 250 X-ray photoelectron spectroscopy with Al Kα X-

ray as the excitation source. The concentration of metal ions in aqueous solution was

measured by an inductively coupled plasma-mass spectrometry (ICP-MS). The

fluorescence data were measured by fluorescence spectrometer (F-7000).
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Chemicals

Solvents were purified base on standard laboratory methods. Other reagents were used

as received from commercial supplies without further purification.

Synthesis of FM-MOF-1

MOF-808 was prepared according to previous literature[22,23]. Then, the activated

MOF-808 (0.100 g) was added to thioglycolic acid (2.5 ml) in a solution containing

10 ml of N,N-Dimethylformamide (DMF). The mixture was stirred and heated to

60°C for 24 h under N2 atmosphere. The resultant precipitate was obtained by

centrifugation, washed with DMF and acetone several times, and then dried at 60 °C

overnight under vacuum condition to produce the solid of FM-MOF-1.

Synthesis of FM-MOF-2

The activated MOF-808 (0.100 g) was added to propiolic acid (2 ml) in a solution

containing 10 ml of acetonitrile. The mixture was stirred and heated to 60°C for 24 h

under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with DMF and acetone several times, and then dried at 60 °C overnight under

vacuum condition to produce the solid of FM-MOF-2.

Synthesis of FM-MOF-3

The activated MOF-808 (0.100 g) was added to oxalic acid (0.900 g) in a solution

containing 10 ml of DMF. The mixture was stirred and heated to 70°C for 24 h under

N2 atmosphere. The resultant precipitate was obtained by centrifugation, washed with

DMF and acetone several times, and then dried at 60 °C overnight under vacuum

condition to produce the solid of FM-MOF-3.

Synthesis of FM-MOF-4

The activated MOF-808 (0.100 g) was added to 1-pyrenecarboxylic acid (0.800 g) in

a solution containing 10 ml of DMF. The mixture was stirred and heated to 60°C for

24 h under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with DMF and acetone several times, and then dried at 60 °C overnight under

vacuum condition to produce the solid of FM-MOF-4.
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Synthesis of FM-MOF-5

The activated MOF-808 (0.100 g) was added to perfluorooctanoic acid (0.400 g) in a

solution containing 10 ml of DMF. The mixture was stirred and heated to 60°C for 24

h under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with DMF and acetone several times, and then dried at 60 °C overnight under

vacuum condition to produce the solid of FM-MOF-5.

Synthesis of FM-MOF-7

The activated MOF-808 (0.100 g) was added to propenoic acid (2 ml) in a solution

containing 10 ml of acetonitrile. The mixture was stirred and heated to 60°C for 24 h

under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with DMF and acetone several times, and then dried at 60 °C overnight under

vacuum condition to produce the solid of FM-MOF-7.

Synthesis of FM-MOF-6

The activated FM-MOF-7 (0.100 g) and azobisisobutyronitrile (AIBN, 0.010 g) were

added to 1,2-Ethanedithiol (4 ml). The mixture was stirred and heated to 80 °C for

48 h under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with acetone several times, and then dried overnight under vacuum condition

to produce the solid of FM-MOF-6.

Synthesis of FM-MOF-9

The activated MOF-808 (0.100 g) was added to bromoacetic acid (0.700 g) in a

solution containing 10 ml of DMF. The mixture was stirred and heated to 60°C for

24 h under N2 atmosphere. The resultant precipitate was obtained by centrifugation,

washed with DMF and acetone several times, and then dried at 60 °C overnight under

vacuum condition to produce the solid of FM-MOF-9.

Synthesis of FM-MOF-8

The activated FM-MOF-9 (0.200 g) was added to 1-allylimidazole (2 ml) in a solution

containing 18 ml of acetonitrile. The mixture was stirred and heated to 80°C for 12 h

under N2 atmosphere, and then continued to react for another 12 h when the system

was cooled to room temperature. The resultant precipitate was obtained by
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centrifugation, washed with DMF and acetone several times, and then dried at 60 °C

overnight under vacuum condition to produce the solid of FM-MOF-8.

Synthesis of FM-MOF-1-4

The activated FM-MOF-1 (0.100 g) was added to 1-pyrenecarboxylic acid (0.800 g)

in a solution containing 10 ml of DMF. The mixture was stirred and heated to 60°C

for 24 h under N2 atmosphere. The resultant precipitate was obtained by

centrifugation, washed with DMF and acetone several times, and then dried under

vacuum condition to produce the solid of FM-MOF-1-4.

Adsorption experiments

Metal ions adsorption isotherms. To obtain metal ions adsorption isotherms, FM-

MOF sample (0.010 mg) was added into 10 ml aqueous solutions with different

concentrations of metal ions. The mixture was shaken in an incubated shaker at room

temperature for 48 h to ensure that adsorption equilibrium had been reached. The

treated solutions were filtered through a 0.22 µm membrane filter. Subsequently, the

filtrates were measured by using ICP to determine the remaining metal ions

concentration. The adsorption capacity at equilibrium, qe (mg g-1), was calculated as

follows:

0( )e
e

c c Vq
m

 


where c0 and ce are the initial and final equilibrium concentrations of metal ions (mg

L-1) in the solution, respectively. V is the volume of the testing solution (ml), and m

represents the amount of adsorbent (g). In order to estimate the metal ions uptake

capacities of FM-MOFs, the experimental data were fitted with the Langmuir

isotherm model using the following equation[24]:

1e e

e m L m

c c
q q k q

 

where qe (mg g-1) and ce (mg L-1) are the adsorbed amount of metal ions on the

adsorbent and the metal ions concentration at equilibrium, qm (mg g-1) is the saturated

sorption capacity at monolayer, and kL is the Langmuir constant.
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Metal ions adsorption kinetics. FM-MOF sample (0.010 g) was added into 10 ml

aqueous solution of metal ions with a concentration of 10 ppm. The mixture was

shaken in an incubated shaker at room temperature for 24 h. During the adsorption

period, the mixture was filtered at appropriate time intervals through a 0.22 µm

membrane filter. Subsequently, the filtrates were measured by using ICP to determine

the residual metal ions concentration. These experimental data were fitted with the

pseudo-second-order kinetic model using the following equation[25].

2
2

1

t e e

t t
q k q q
 

where qt (mg g-1) and qe (mg g-1) are sorption quantity of metal ions at time t (min)

and at equilibrium, and k2 (g mg-1min-1) is the rate constant of the pseudo-second-

order equation.

Fluorescence experiments

In a typical experimental setup, 2 mg of FM-MOF sample was added into 2 ml of

prepared analyte solutions with different concentrations. The mixture was shaken in

an incubated shaker at room temperature for 24 h. Subsequently, the mixture was

sonicated for a few minutes to maintain the homogeneity of the solution before

luminescent measurements. For all measurements, the dispersed solutions of FM-

MOFs were excited at λex = 279 nm.

Catalytic experiments

In a typical catalytic cycloaddition, 10 mmol epoxides and catalyst (0.09 g, 0.5 mol%)

were placed in a Schlenk tube. The reaction mixture was stirred at 80 °C for 12 h and

0.1 MPa CO2 atmosphere. The yields were calculated according to 1H NMR analysis.

Proton conductivity measurements.

The MOF powder (ca. 50 mg) was pressed at 1000 kg cm−2 pressure for 2 min to

make a pellet (6 mm in diameter). Both sides of the pellet were attached to silver

wires with silver paste and then sealed in a homemade double-walled glass chamber.

The relative humidity (RH) inside the chamber was controlled by different saturated

salt aqueous solutions as reported previously[26,27]. The impedance was measured at
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room temperature by using a CHI660E electrochemical workstation. The proton

conductivity (σ, S cm-1) of the sample was estimated as follows:

L
RA

 

where L (cm) is the thickness of the pellet, R (Ω) is the impedance, and A (cm2) is the

face area of the pellet.

Modules switching process

Transformation from FM-MOF-2 to FM-MOF-9. The activated FM-MOF-2

(0.100 g) was added to bromoacetic acid (0.700 g) in a solution containing 10 ml of

DMF. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere. This

process can be repeated several times to ensure full conversion.

Transformation from FM-MOF-2 to FM-MOF-7. The activated FM-MOF-2

(0.100 g) was added to propenoic acid (2 ml) in a solution containing 10 ml of

acetonitrile. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere.

This process can be repeated several times to ensure full conversion.

Transformation from FM-MOF-9 to FM-MOF-2. The activated FM-MOF-9

(0.100 g) was added to propiolic acid (2 ml) in a solution containing 10 ml of

acetonitrile. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere.

This process can be repeated several times to ensure full conversion.

Transformation from FM-MOF-9 to FM-MOF-7. The activated FM-MOF-9

(0.100 g) was added to propenoic acid (2 ml) in a solution containing 10 ml of

acetonitrile. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere.

This process can be repeated several times to ensure full conversion.

Transformation from FM-MOF-7 to FM-MOF-2. The activated FM-MOF-7

(0.100 g) was added to propiolic acid (2 ml) in a solution containing 10 ml of

acetonitrile. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere.

This process can be repeated several times to ensure full conversion.
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Transformation from FM-MOF-7 to FM-MOF-9. The activated FM-MOF-7

(0.100 g) was added to bromoacetic acid (0.700 g) in a solution containing 10 ml of

DMF. The mixture was stirred and heated to 60°C for 24 h under N2 atmosphere. This

process can be repeated several times to ensure full conversion.
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