Energy Materials

Supplementary Material

Porous array of BaLi₄ alloy microchannels enforced carbon cloth for a stable Li composite anode

Zihao Wang^{1,3}, Tao Chen², Zhicui Song^{1,3}, Jianxiong Xing^{1,3}, Aijun Zhou^{1,3}, Jingze Li^{1,3,*}

¹School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
²School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China.
³Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001,

Zhejiang, China.

Correspondence to: Prof. Jingze Li, School of Materials and Energy, University of Electronic Science and Technology of China, No. 4, Section 2, Jianshe North Road, Chenghua District, Chengdu, 611731, Sichuan, China, E-mail: lijingze@uestc.edu.cn

Supplementary Figure 1. Li-Ba phase diagram^[1]

Supplementary Figure 2. (A) The images of liquid Li infusion process on the CC at 400 °C. The (B, C) top-view and (D, E) side-view SEM images of the Li-C.

Supplementary Figure 4. Voltage profile of stripping Li from LBAC electrode to 2 V versus Li⁺/Li.

Supplementary Figure 5. The top-view SEM image of LBAC electrode after stripping 20 mAh cm⁻² Li.

Supplementary Figure 6. The top-view SEM images of Li-C electrode after (A) stripping 10 mA h cm⁻² Li, (B) plating 5 mA h cm⁻² Li back and (C) plating 10 mA h cm⁻² Li back. The side-view SEM images of Li-C electrode (D, G) stripping 10 mA h cm⁻² Li, (E, H) plating 5 mA h cm⁻² Li back and (F, I) plating 10 mA h cm⁻² Li back.

Supplementary Figure 7. Electrochemical characterization of symmetric cells at charge/discharge of 3 mAh cm⁻² and 3 mA cm⁻².

	Average quality (mg)	wt. (%)
LBAC	38.5	100
CC	9.5	24.5
Ba, from BaLi ₄	12.8	33.2
Li, from BaLi ₄ and metallic	16.2	42.3
Li phases		

Supplementary Table 1. Data used to calculate theoretical specific capacity of LBAC electrode.

LBAC theoretical specific capacity: $16.2 \div 38.5 \times 3860 \approx 1621$ mA h g⁻¹

Supplementary Table 2. Comparison of the LBAC anode in this work with other carbon-based scaffolds under carbonate electrolyte conditions reported in recent publications.

	Current density	Capacity of Li	
	(mA cm ⁻²)	(mAh cm ⁻²)	Time
C/SiNW/Li ^[2]	1	1	600 h
	3	1	200 h
CI ^[3]	1	1	450 h
	5	1	70 h
Li-C ^[4]	1	1	450 h
	3	1	120h
Li/C wood ^[5]	3	1	150 h
Li-Carbon ^[6]	1	1	500 h
Li-CF ^[7]	1	1	744 h

	3	1	120 h
This work	1	1	1000 h
	3	1	420 h
	3	3	300 h
	5	1	220 h

REFERENCES

1. Okamoto H. Ba-Li (Barium-Lithium). *Journal of Phase Equilibria and Diffusion* 2010;31:489. 10.1007/s11669-010-9755-z

2. Zhang P, Peng C, Liu X, Dong F, Xu H, Yang J, Zheng S. 3D Lithiophilic "Hairy" Si Nanowire Arrays @ Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode. *ACS Appl Mater Interfaces* 2019;11:44325-32. 10.1021/acsami.9b15250

3. Chen XR, Li BQ, Zhu C, Zhang R, Cheng XB, Huang JQ, Zhang Q. A Coaxial-Interweaved Hybrid Lithium Metal Anode for Long - Lifespan Lithium Metal Batteries. *Advanced Energy Materials* 2019;9:1901932. 10.1002/aenm.201901932

4. Go W, Kim MH, Park J, Lim CH, Joo SH, Kim Y, Lee HW. Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. *Nano Lett* 2019;19:1504-11. 10.1021/acs.nanolett.8b04106

5. Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz EM, Xu S, Yang C, Wang Y, Hu L. High-capacity, low-tortuosity, and channel-guided lithium metal anode. *Proc Natl Acad Sci U S A* 2017;114:3584-9. 10.1073/pnas.1618871114

6. Niu C, Pan H, Xu W, Xiao J, Zhang JG, Luo L, Wang C, Mei D, Meng J, Wang X, Liu Z, Mai L, Liu J. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. *Nat Nanotechnol* 2019;14:594-601. 10.1038/s41565-019-0427-9

7. Zhang Y, Wang C, Pastel G, Kuang Y, Xie H, Li Y, Liu B, Luo W, Chen C, Hu L. 3D Wettable Framework for Dendrite - Free Alkali Metal Anodes. *Advanced Energy Materials* 2018;8. 10.1002/aenm.201800635