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Supplementary Figure 1. Characterization of the measured EMG and capacitive

deformation for concentric, eccentric and isometric muscle contractions. (A) Time

difference between the measured EMG and the capacitive deformation. The measured

EMG occurred approximately 28 ms earlier than the muscle deformation; (B) Measured

EMG and capacitive deformation during passive stretching. The measured EMG

vanished during the muscle eccentric contraction when the muscle relaxed with passive

stretching by the holding weight; (C) Frequency features of the measured EMG and

capacitive deformation. The MPF, calculated with the Fast Fourier Transform (FFT),

was employed to characterize the muscle signals. The MPF of the EMG gradually

decreased by 31.8% during isometric contraction due to muscle fatigue, while the MPF

of Cs stayed about zero as the muscle did not deform during quasi-static holding of the

weight; (D) Variations of Ew during muscle fatigue. The Ew calculated using Eq. (1)

increased during concentric muscle contraction, remained constant during isometric

muscle contraction, and slightly decreased during the eccentric contraction by passive

stretching. During isometric contraction, Ew stayed constant as the muscle performed

little work. However, the muscle still needed to consume metabolic energy to maintain

muscle tensions as well as basic biological processes which would lead to fatigue

during prolong holding of the weight.



Supplementary Figure 2. Neural-mechanical sensing for passive compression on a

muscle. A stable interfacial impedance was achieved to eliminate artifacts of the

measured EMG during muscle motions, where the neural-mechanical sensor was

secured by the double-sided foam adhesive and preloaded with non-stretchable fabric

tapes on the skin. When the muscle was gently pressed and passively deformed by five

times, the attached sensor detected significant mechanical deformations without EMG

variation. This observation demonstrates that EMG sensing does not interfere with

muscle deformations.

Supplementary Figure 3. Linear relationship between the RMS of EMG and muscle

force levels. The measured EMG for different force levels was assessed with isometric

muscle contractions in tests of static-holding different weights. The RMS of EMG was

calculated using the data sample and lasted for three seconds. Their linear relationship

is quantified by the R2 exceeding 0.97, justifying the representation of muscle force

with RMS of EMG.





Supplementary Figure 4. Robustness of performed work sensing for a single muscle.

Each sub-figure illustrates results of one healthy volunteer in the weight lifting test. The

muscle work performed by the BIC muscles exhibited a similar variation as the

mechanical energy of the weight (left column). Linear regression of the muscle work

and mechanical energy was characterized by R2 with an average value of 0.88 (right

column).

Supplementary Figure 5. Calibration of muscle deformation and muscle force sensing.

(A and B) Linear regression of the contraction displacement with the change of Cs. It is

observed that the change of Cs matches with the muscle contraction displacement via

R2 = 0.98 and 0.85 for the BIC and TRI muscles, respectively. It validates the

assumption that displacement of muscle contraction is linear with change of the

measured Cs for collaborative muscle motions; (C and D) Relationship between RMS

of EMG and muscle contraction force. The RMS of EMG matches with the muscle

force via linear regression of R2 = 0.98 and 0.91 for the BIC and TRI muscles,

respectively. It validates the assumption that RMS of EMG is proportional to the

muscle force during collaborative muscle motions.



Supplementary Figure 6. Sensing robustness of effective work performed by multiple

muscles. Each sub-figure illustrates results of one subject out of six healthy volunteers

in the weight lifting test involving both BIC and TRI muscles. Summation of muscle

work individually done by the BIC (red line for Ew-BIC) and TRI (red line for Ew-TRI)

produces the total muscle work Ew, and it is consistent with the change in mechanical

energy Em of the weight (left column). The linear regression of Em with Ew is

characterized by R2 with an average value of approximately 0.83 (right column).



Supplementary Note 1. Dynamic analysis of the weight lifting motions.

In the case of weight lifting (Supplementary Figure 7), the angle γ ranges from ‒13° to

90°/‒36° to ‒90°, during which the BIC provides contraction force, and the TRI is in a

passively stretched state. Conversely, in the case of multiple muscle lifting

(Supplementary Figure 7B), the situation is reversed at γ = ‒90° to ‒144°. L11 and L12

denote the lengths of humerus and radius (ulna) bones, and (L21, α1) and (L22, α2)

characterize the attachment positions of BIC and TRI on the radius and ulna,

respectively; θ denotes the orientation of the upper arm with respect to the horizontal X

axis, γ is the rotation angle of the forearm.

The muscle length is estimated as
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where i = 1 for the BIC and i = 2 for the TRI, respectively, and their differentials with

respect to γ are given by
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where Li and Xi represent the axial and lateral dimensions of the muscle at the

undeformed state, respectively, and Poisson's ratio μ is 0.5 for an incompressible

muscle tissue. It has been calibrated by ultrasound imaging that the muscle lateral

deformation ΔXi is proportional to the measured capacitance change ΔCs via the

coefficient kC. The above leads to the relation between muscle deformation

displacement ΔLi and the capacitance change ΔCs

1i sL k C   (A4)

where  1 /i c ik Lk X . Calculate ΔLi for different orientations of the forearm γ using

(B2). The above linear relation between ΔLi and ΔCs is validated by the single muscle

case with R2 = 0.92 for BIC (Figure 4B) and the multiple muscle case with R2 = 0.98

and 0.85 for BIC and TRI, respectively (Supplementary Figure 5A and B).

Since the forearm weight can be negligible compared to the lifted weight, moment

equilibrium with respect to the elbow joint is given by
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where  is the angular acceleration of the forearm rotation, ( ) cosp ck    and

 1 2b b ck k    are active and passive antagonistic torque of the muscle when it is

stretched, the arm length of the muscle with respect to the elbow joint is

 11 2 sin /i i i id L L L     , and Fi represents the contraction forces with i = 1 for BIC

and i = 2 for TRI, respectively. For the case with only BIC working (Supplementary

Figure 7A), and TRI is passive; for the case with both BIC and TRI (Supplementary

Figure 7B), the active BIC and passive TRI produce the elbow rotation for ‒36° ≤ γ ≤

‒90°, the passive BIC and active TRI drive the elbow rotation for ‒90° < γ ≤ ‒144°. In

this way, each muscle force Fi is given by
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The relationship between the muscle force F and RMS of EMG UR has been

established in the previous study

2 RF kU (A7)

Calculate F for different orientations of the forearm γ using (A6). The above linear

relation between muscle force and RMS of EMG is validated by the single muscle case

with R2 = 0.9 for BIC (Figure 4D) and the multiple muscle case with R2 = 0.98 and 0.91

for BIC and TRI, respectively (Supplementary Figure 5C and D).



Supplementary Figure 7. Weight lifting tests with one single muscle and multiple

muscle coordination.



Supplementary Table 1. Comparison with existing techniques related to energy

sensing

Softness Wearable
In-situ

sensing

Sensing

rate

(Hz)

Measurements Applications

Metabolic

energy

analyzer[1, 2]

√ 0.5~1

Carbon

dioxide

concentration

Metabolic

cost

assessment

Near-infrared

spectroscopy
[3-5]

√ √ 2
Hemoglobin

concentration

oxygen

saturation

detection

Isotonic testing

system[6, 7]
200

Force and

acceleration

Muscle

power

sensing

EMG and

Inertial

Measuring

Unit[8, 9]

√
100~40

0

EMG and

acceleration

Motion

pattern

recognition

Coupled

neural-mecha

nical sensor

√ √ √ 100
EMG and

deformations

Muscle work

monitoring



Supplementary Table 2. Comparison with existing wearable sensing methods

Monitoring
Method

Advantages Disadvantages

Traditional
Surface EMG

1. Real-time neural
activation monitoring
2. Non-invasive,
cost-effective [10]

1. Inability to distinguish between
active contraction, passive
deformation, and static force
generation mechanisms.[11]

2. Lack of a direct method to
quantify the mechanical work
output of individual muscles.

Ultrasound
Imaging

1. Visualization of soft
tissue deformations[12]

2. Monitoring of local
muscle morphology

1. Requirement of complex image
processing algorithms [13]

2. Lack of real-time in-situ
monitoring capability
3. High equipment cost

Optical
Motion
Capture

1. High-precision
kinematic analysis [14]

2. Facilitation of
multi-joint synergy
modeling

1. Dependence on inverse dynamic
models that leads to error
propagation [15]

2. Lack of real-time in-situ
monitoring
3. Intensive computation [16]

Our Bimodal
Sensor

1. Simultaneous EMG and
capacitive displacement
sensing (shared electrodes)
2. Real-time in-situ
monitoring of individual
muscle work
3. Independence on
complex physiological or
kinematic models

1. Current version is insufficient
for whole-body muscle synergy
analysis, which requires sensor
network development.
2. Limited sensitivity for deep
muscle monitoring
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