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Supplementary Figure 1. Characterization of the measured EMG and capacitive
deformation for concentric, eccentric and isometric muscle contractions. (A) Time
difference between the measured EMG and the capacitive deformation. The measured
EMG occurred approximately 28 ms earlier than the muscle deformation; (B) Measured
EMG and capacitive deformation during passive stretching. The measured EMG
vanished during the muscle eccentric contraction when the muscle relaxed with passive
stretching by the holding weight; (C) Frequency features of the measured EMG and
capacitive deformation. The MPF, calculated with the Fast Fourier Transform (FFT),
was employed to characterize the muscle signals. The MPF of the EMG gradually
decreased by 31.8% during isometric contraction due to muscle fatigue, while the MPF
of C; stayed about zero as the muscle did not deform during quasi-static holding of the
weight; (D) Variations of E), during muscle fatigue. The E,, calculated using Eq. (1)
increased during concentric muscle contraction, remained constant during isometric
muscle contraction, and slightly decreased during the eccentric contraction by passive
stretching. During isometric contraction, £, stayed constant as the muscle performed
little work. However, the muscle still needed to consume metabolic energy to maintain
muscle tensions as well as basic biological processes which would lead to fatigue

during prolong holding of the weight.
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Supplementary Figure 2. Neural-mechanical sensing for passive compression on a
muscle. A stable interfacial impedance was achieved to eliminate artifacts of the
measured EMG during muscle motions, where the neural-mechanical sensor was
secured by the double-sided foam adhesive and preloaded with non-stretchable fabric
tapes on the skin. When the muscle was gently pressed and passively deformed by five
times, the attached sensor detected significant mechanical deformations without EMG
variation. This observation demonstrates that EMG sensing does not interfere with

muscle deformations.
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Supplementary Figure 3. Linear relationship between the RMS of EMG and muscle
force levels. The measured EMG for different force levels was assessed with isometric
muscle contractions in tests of static-holding different weights. The RMS of EMG was
calculated using the data sample and lasted for three seconds. Their linear relationship

is quantified by the R? exceeding 0.97, justifying the representation of muscle force

with RMS of EMG.



—— Muscle work

P g
B e

Em (N-m)

0.

0 5 1015 20 25 30 35 40 45
Time (s)

B s

0 5 10 15 20 25 30 35 40
Time (s)

C 5,
41

0 5 10 15 20 25 30 35
Time (s)

Ern (N-m)

10 15 20 25
Time (s)

0 5

6

5
E4
2 3]
£2
L

1

0

0 5 10 15 20 25 30 35 40
Time (s)

Ey (WV-pF

- - - Mechanical energy

R%=0.92
44
Eg)
Z
£21
w
1
0 - - — regression
0 3 6 9 12
Ey (MV-pF)
5
RZ=0.91
44
E 3
Z
£21
I
1
04 = — — — regression
30 3 6 9 12 15 18
Eyw (V-pF)
4 rd
R2=0.87
44
E 3
z
£21
w
1
04, - = = regression
0 3 6 9 12 15 18
Ey (MV-pF)
41R2=0.77
E¥
=
£4]
w
1
0 = I—I——rggre,:ssiqn
-4 0 4 8 12 16 20 24
Ey (HV-pF)
4 4
R%=0.93
—~ 37
E
=
£
L
1_
0lZ - - - regression
-3 0 3 6 9 1215 18
Ey (MV-pF)
6
R2=0.96 L
5 5
€4
Z 3
2]
14
047 - — — regression

3 86 9 12
Ey (MV-pF)



Supplementary Figure 4. Robustness of performed work sensing for a single muscle.
Each sub-figure illustrates results of one healthy volunteer in the weight lifting test. The
muscle work performed by the BIC muscles exhibited a similar variation as the
mechanical energy of the weight (left column). Linear regression of the muscle work

and mechanical energy was characterized by R?> with an average value of 0.88 (right

column).
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Supplementary Figure S. Calibration of muscle deformation and muscle force sensing.
(A and B) Linear regression of the contraction displacement with the change of Cs. It is
observed that the change of Cs matches with the muscle contraction displacement via
R?=0.98 and 0.85 for the BIC and TRI muscles, respectively. It validates the
assumption that displacement of muscle contraction is linear with change of the
measured Cs for collaborative muscle motions; (C and D) Relationship between RMS

of EMG and muscle contraction force. The RMS of EMG matches with the muscle
force via linear regression of R’ = 0.98 and 0.91 for the BIC and TRI muscles,
respectively. It validates the assumption that RMS of EMG is proportional to the

muscle force during collaborative muscle motions.
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Supplementary Figure 6. Sensing robustness of effective work performed by multiple
muscles. Each sub-figure illustrates results of one subject out of six healthy volunteers
in the weight lifting test involving both BIC and TRI muscles. Summation of muscle
work individually done by the BIC (red line for Ey-z/c) and TRI (red line for E\-7rr)
produces the total muscle work E,, and it is consistent with the change in mechanical
energy En of the weight (left column). The linear regression of £, with E, is

characterized by R?> with an average value of approximately 0.83 (right column).



Supplementary Note 1. Dynamic analysis of the weight lifting motions.

In the case of weight lifting (Supplementary Figure 7), the angle y ranges from —13° to
90°/-36° to —90°, during which the BIC provides contraction force, and the TRI is in a
passively stretched state. Conversely, in the case of multiple muscle lifting
(Supplementary Figure 7B), the situation is reversed at y = —-90° to —144°. L1 and L12
denote the lengths of humerus and radius (ulna) bones, and (L2, a1) and (L22, a2)
characterize the attachment positions of BIC and TRI on the radius and ulna,
respectively; @ denotes the orientation of the upper arm with respect to the horizontal X
axis, y is the rotation angle of the forearm.

The muscle length is estimated as

L=\L,+ L, ~2L, L, cos(6 - ~7) (A1)

where i = 1 for the BIC and i = 2 for the TRI, respectively, and their differentials with

respect to y are given by

AL =—1L,-Lysin(0—a,~y)- Ay, + L 2L, - L, cos(0 -, )

(A2)
The lateral displacement of muscle deformation is given as
AX, = uX, &
L (A3)

where L; and X; represent the axial and lateral dimensions of the muscle at the
undeformed state, respectively, and Poisson's ratio u is 0.5 for an incompressible
muscle tissue. It has been calibrated by ultrasound imaging that the muscle lateral
deformation AX; is proportional to the measured capacitance change AC; via the
coefficient kc. The above leads to the relation between muscle deformation

displacement AL; and the capacitance change AC;

AL =kAC (A4)

where h =Lk (uX,) . Calculate AL, for different orientations of the forearm y using
(B2). The above linear relation between AL; and AC; is validated by the single muscle
case with R? = 0.92 for BIC (Figure 4B) and the multiple muscle case with R?> = 0.98
and 0.85 for BIC and TRI, respectively (Supplementary Figure SA and B).

Since the forearm weight can be negligible compared to the lifted weight, moment

equilibrium with respect to the elbow joint is given by



Fd, - Fd, =mgL, 0057+mﬁ27+[kp|9057| +(kbl _kbz):l|(7/+7c)

(AS5)

v . . k
where ” is the angular acceleration of the forearm rotation, 7 (7 +7.)cos7] and

(kbl —k; )|7/+ Ve

are active and passive antagonistic torque of the muscle when it is

stretched, the arm length of the muscle with respect to the elbow joint is

d;=LLy sm(@—al. —7 ) /L , and F; represents the contraction forces with i = 1 for BIC

and i = 2 for TRI, respectively. For the case with only BIC working (Supplementary
Figure 7A), and TRI is passive; for the case with both BIC and TRI (Supplementary
Figure 7B), the active BIC and passive TRI produce the elbow rotation for —36° <y <
—90°, the passive BIC and active TRI drive the elbow rotation for —90° <y <—-144°. In

this way, each muscle force F; is given by

(_I)H mLy,(gcosy+7L,)/d, +k, |(7 +y.)/d. for active contraction

E= :
l [(—1)1_1 k,|cosy|/d, +k, /d, }|(y/ +7.) for passive elongation
(A6)
The relationship between the muscle force Fand RMS of EMG Uk has been
established in the previous study

Calculate F for different orientations of the forearm y using (A6). The above linear
relation between muscle force and RMS of EMG is validated by the single muscle case
with R? = 0.9 for BIC (Figure 4D) and the multiple muscle case with R> = 0.98 and 0.91
for BIC and TRI, respectively (Supplementary Figure 5C and D).
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Supplementary Figure 7. Weight lifting tests with one single muscle and multiple

muscle coordination.
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Supplementary Table 2. Comparison with existing wearable sensing methods

Monitoring Advantages Disadvantages
Method
Traditional 1. Real-time neural 1. Inability to distinguish between
Surface EMG activation monitoring active contraction, passive
2. Non-invasive, deformation, and static force
cost-effective [17] generation mechanisms.[!!]
2. Lack of a direct method to
quantify the mechanical work
output of individual muscles.
Ultrasound 1. Visualization of soft 1. Requirement of complex image
Imaging tissue deformations!!?! processing algorithms [13]
2. Monitoring of local 2. Lack of real-time in-situ
muscle morphology monitoring capability
3. High equipment cost
Optical 1. High-precision 1. Dependence on inverse dynamic
Motion kinematic analysis 4 models that leads to error
Capture 2. Facilitation of propagation [1°]
multi-joint synergy 2. Lack of real-time in-situ
modeling monitoring
3. Intensive computation ['6]
Our Bimodal 1. Simultaneous EMG and 1. Current version is insufficient
Sensor capacitive displacement for whole-body muscle synergy

sensing (shared electrodes)
2. Real-time in-situ
monitoring of individual
muscle work

3. Independence on
complex physiological or

kinematic models

analysis, which requires sensor
network development.
2. Limited sensitivity for deep

muscle monitoring
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