Energy Materials

Recent advances in porous multimetallic alloy-based anodes for rechargeable alkali metal-ion batteries

Adewale K. Ipadeola^{1,2}, Aboubakr M. Abdullah^{1,*}, Kamel Eid^{2,*}

¹Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
²Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.

Correspondence to: Dr. Aboubakr M. Abdullah, Center for Advanced Materials, Qatar University, Doha 2713, Qatar. E-mail: bakr@qu.edu.qa; Dr. Kamel Eid, Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar. E-mail: kamel.eid@qu.edu.qa

Supplementary Table 1. Comparative reviews of transition metal Alloy anodes for lithium-ion (LIBs), sodium-ion (SIBs) and potassium-ion batteries (PIBs), metal-organic framework (MOF)

Titles	Focus	Refs.
	This review focuses on the amazing	
Porous multi-	performance of porous multi transition metal	
transition-metal alloy	alloy (PMTMA) anodes, including Sn-, Mn-,	
anodes for	Mo-, Co-, V and Fe-based alloys, for high-	This
rechargeable alkali	energy LIBs, SIBs and PIBs, besides the	work
metal-ions batteries	fundamental and mechanism, parameters of	
	indicator and engineering methods including	
	lithium (Li), sodium (Na), and potassium (K))	
	This reviewed the nanostructural design of Al	
Al-based materials for	powder, Al/C composite, Al ₂ O ₃ , AlN, AlF ₃ and	[1]
advanced lithium	Al alloys (i.e., AlCu, AlFe, and AlSiFe) anodes	
rechargeable batteries:	for LIB, lithium-metal and lithium dual-ion	

recent progress and batteries. prospects

Microstructure engineered silicon alloy anodes for LIBs: advances and challenges This presented the engineering (i.e., high energy ball milling, magnetron sputtering, pulsed laser deposition and electron beam evaporation) of Si alloy anodes (i.e., SiGe, NiSi, TiSi, FeSi, ZnSi MgSi, SiGeCu) for improved performance of LIBs.

[2]

[3]

Metal sulfide-based PIB anodes: storage mechanisms and synthesis strategies This reported the different synthesis methods (i.e., template, hydro/solvothermal, solid-phase chemical, electrospinning, ion-exchange) of 2D metal sulfide (VS₄,) composites (Mo₂S/PC, SnS₂@C, CoS_x@CNT, NiS₂@C@C, InS₃/C and Cu₂S/NC) and binary metal sulfides (Ni-Co-PBA@GO, CoS@SnS, VS₄/SnS@C, BiSbS_x) anodes for enhanced potassium-ion batteries (PIBs) was summarized.

Metal-organic framework-derived transition metal sulfides and their composites for alkaliion batteries: a review This discussed the sulfurization strategies of MOF-derived metal sulfides (i.e., ZnS, MoS₂, Fe_{1-x}S, MnS, CoS₂, SnS₂, Ga₂S₃, and Bi₂S₃), binary metal alloys (Zn-Co-S, MoS₂-Co₃S₄,) and their composites (i.e., ZnS/C, FeS₂/RGO, ^[4] S/CoS₂-NC, ZnCoS@NC, FeS@MnS/C S@ZnS-FeS@NC, Bi₂S₃@Co₉S₈/NC, MnS/MoS₂/C, and Co₉S₈@N-C@MoS₂) as high-performance anodes for LIBs, SIBs and PIBs.

CoSn@C), Sb-based (Sb/C, Sb/Sb₂O₄/Fe₃C, Sb/Na-Ti₃C₂T_x, and MoS/Sb/N-doped G) and Bi-based (Bi@N-doped C, and CuBi) anodes for the development of PIBs.

Review of room- temperature liquid metals for advanced metal anodes in rechargeable batteries	This presented the application of Ga-based liquid alloys (Ga with In, Sn, Zn, Cu, Li, Mg, Al, Au, Ag, and Ni) and liquid Na-K alloys anodes for rechargeable Li-, Na-, K-, Zn-, and Mg-ions batteries.	[6]
SiO ₂ -based LIB anode materials: a brief review	This discussed the utilization of SiO_2 - composites (i.e., Li_xSi/Li_2O and $SiO_2@C$) and binary oxides alloy ($SiO_2@TiO_2$) as impressive anode for improved LIB performance.	[7]
A comprehensive review study on pure titanium niobium oxide as the anode material for LIBs	This work discussed the various approaches (i.e, solid-state, solvo/hydrothermal, sol-gel, and electrospinning) for tailoring dimensions (1D and 3D), morphologies, structural defect of titanium niobium oxides (i.e., TiNb ₂ O ₇ and Ti ₂ Nb ₁₀ O ₂₉) anodes for LIBs.	[8]
Recent progress and perspectives on alloying anodes for PIBs	This summarized the recent progress of metals (Sn, Sb, Sb, Bi, SnP), composites (i.e., Sn-C, Sb-C, Sb/Mxene, Bi@N-CT) and binary alloys (SnSb and SbBi) anodes for PIBs and their fundamentals.	[9]
Insights into metal/metalloid-based alloying anodes for PIBs	This gave overview of volumetric capacities and trend of metal/metalloid (Sb, Bi, Ge, Sn and Pb), oxides/sulfides (Sb ₂ O ₃ , Sb ₂ S ₃ , and SnS ₂ ,), composites (Sb ₂ Se ₃ @C, and Sn@rGO,)	[10]

and alloys (BiSb, SnSb, SiGe, Bi₂WO₆, Pd₃Nb₄O₁₃, and SnSb₂Te₄,) anodes for improved PIBs with much focus on the reaction mechanism and structural-performance relationship

Applications of low-	This emphasized the progress of utilizing low-	
melting-point metals in	melting point metals (i.e., In, Ga, Hg) and their	[11]
rechargeable metal	alloys with others (Mg, Zn, Sn, Cu, Ge, Ca and	
batteries	Al) as remarkable anodes for LIBs, SIBs, PIBs,	
	Mg-ion (MIBs) and Zn-ion batteries (ZIBs)	

	This highlighted the development and	
Dealloyed nanoporous materials for rechargeable lithium batteries	microstructural regulation of dealloyed	
	nanoporous metals (i.e, Si, Ge, Tn, and Sn),	
	metal oxides (Fe ₃ O ₄ , Mn ₃ O ₄ , Co ₃ O ₄ , CuO,	[12]
	GeO ₂ and TiO ₂) and metal sulfides (Fe ₃ S ₄ ,	
	Co_9S_8 , and CuS) and their alloys with other	
	metals (Ag, Cu, Mo, Ge, Zn, and Al) anode	
	materials for rechargeable LIBs.	
	This gave an overview of metals (Sn, Sb, and	
	Bi), phosphides (K-P, Sn _x P _y , and GeP ₅) and	

Recent advances in alloy-based anode materials for PIBs

Antimony-based

their binary alloys with other metals (Sb, Si, Pb, and Ge) anodes with regards to their morphology, potassium storage activity, phase transition mechanism, solid electrolyte interphases formation and ionic transport kinetics in PIBs.

[13]

nanomaterials for	This presented the strategies for designing and	[14]
high-performance	synthesizing Sb metal, chalcogenides (Sb ₂ S ₃ ,	
PIBs	and Sb ₂ Se ₃), composites (Sb/C, Sb/CNS,	

MXene@Sb, MoS₂/Sb, BiSb/C, Sb₂S₃/C, Sb₂Se₃/C and FeSb/NC) and alloy (Sb-Co, Sb-Fe, SnSb, and BiSb) anodes for PIBs, in addition to electrolyte optimization.

REFERENCES

1. Sun B, Xu Y, Yang S, Zhang D, Pei C, Ni S. Al-based materials for advanced lithium rechargeable batteries: recent progress and prospects. *Mater Chem Front* 2023;7:2554-2569. DOI:10.1039/D2QM01283A

2. Zheng P, Sun J, Liu H, Wang R, Liu C, Zhao Y, Li J, Zheng Y, Rui X. Microstructure Engineered Silicon Alloy Anodes for Lithium-Ion Batteries: Advances and Challenges. *Batteries Supercaps* 2023;6:e202200481. DOI:10.1002/batt.202200481

3. Du Y, Zhang Z, Xu Y, Bao J, Zhou X. Metal sulfide-based potassium-ion battery anodes: storage mechanisms and synthesis strategies. *Acta Phys-Chim Sin* 2022;38:2205017. DOI:10.3866/PKU.WHXB202205017

4. Zhou J-E, Chen J, Peng Y, Zheng Y, Zeb A, Lin X. Metal-organic framework-derived transition metal sulfides and their composites for alkali-ion batteries: A review. *Coord Chem Rev* 2022;472:214781. DOI:10.1016/j.ccr.2022.214781

5. Gu Y, Ru Pei Y, Zhao M, Cheng Yang C, Jiang Q. Sn-, Sb-and Bi-Based Anodes for Potassium Ion Battery. *Chem Rec* 2022;22:e202200098. DOI:10.1002/tcr.202200098

6. Wei C, Tan L, Zhang Y, Wang Z, Xi B, Xiong S, Feng J, Qian Y. Review of roomtemperature liquid metals for advanced metal anodes in rechargeable batteries. *Energy Stor Mater* 2022;50:473-94. DOI:10.1016/j.ensm.2022.05.024

7. Khan M, Ding X, Zhao H, Wang Y, Zhang N, Chen X, Xu J. SiO2-Based Lithium-Ion Battery Anode Materials: A Brief Review. *J Electron Mater* 2022;51:3379-90. DOI:10.1007/s11664-022-09628-1

8. Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R. A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries. *J Alloys Compd* 2022;911:165117. DOI:10.1016/j.jallcom.2022.165117

9. Suo G, Cheng Y, Zhang J, Ahmed SM. Recent Progress and Perspectives on Alloying Anodes for Potassium-Ion Batteries. *ChemNanoMat* 2021;7:1291-308. DOI:10.1002/cnma.202100364

10. Wang J, Liu Z, Zhou J, Han K, Lu B. Insights into metal/metalloid-based alloying anodes for potassium ion batteries. *ACS Mater Lett* 2021;3:1572-98. DOI:10.1021/acsmaterialslett.1c00477

11. Li Q, He G, Ding Y. Applications of Low-Melting-Point Metals in Rechargeable Metal Batteries. *Chem Eur J* 2021;27:6407-21. DOI:10.1002/chem.202003921

12. Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable lithium batteries. *Electrochem Energy Rev* 2020;3:541-580. DOI:10.1007/s41918-020-00070-7

13. Qi S-H, Deng J-W, Zhang W-C, Feng Y-Z, Ma J-M. Recent advances in alloy-based anode materials for potassium ion batteries. *Rare Met* 2020;39:970-988. DOI:10.1007/s12598-020-01454-w

14. Gao H, Guo X, Wang S, Zhang F, Liu H, Wang G. Antimony-based nanomaterials

for high-performance potassium-ion batteries. *EcoMat* 2020;2:e12027. DOI:10.1002/eom2.12027