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Abstract
Aim: Cardiac angina is a disease in which discomfort or retrosternal pain may occur. Atherosclerosis of coronary arteries 

is one of the main risk factors for cardiac angina. The aim of the investigation was to analyze the association of 11 

mitochondrial genome mutations with cardiac angina. In our preliminary studies an association of these mutations with 

atherosclerosis, a risk factor for cardiac angina, was found.

Methods: We used samples of white blood cells collected from 192 patients with cardiac angina and 201 conventionally 

healthy study participants. DNA from blood leukocyte samples was isolated using a phenol-chloroform method. 

DNA amplicons containing the investigated regions of 11 mitochondrial genome mutations (m.12315G>A, m.652delG, 

m.5178C>A, m.14459G>A, m.3336T>C, 652insG, m.3256C>T, m.1555A>G, m.15059G>A, m.13513G>A, m.14846G>A) 

were pyrosequenced. The heteroplasmy level of mitochondrial DNA (mtDNA) mutations was analyzed using a method 

developed by our laboratory on the basis of pyrosequencing technology. 

Results: According to the obtained data, three mitochondrial mutations of human genome correlated with cardiac angina. 

A positive correlation was observed for mutation m.14459G>A (P  ≤ 0.05). One single nucleotide substitution m.5178C>A 

(P  ≤ 0.1) had a trend for positive correlation. A negative correlation for mutation m.15059G>A with cardiac angina (P  ≤ 

0.05) was found. 



Conclusion: MtDNA mutations m.14459G>A and m.5178C>A can be used for evaluation the predisposition of individuals 

to atherosclerotic lesions. At the same time, mitochondrial genome mutation m.15059G>A may be used for gene therapy 

of atherosclerosis.
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INTRODUCTION
Cardiac angina is a disease in which discomfort or retrosternal pain may occur. Discomfort is felt by 
patients as pressure or retrosternal burning. Pain often occurs during physical exertion, excessive food 
ingestion, stress, being in cold air or with a sharp increase in blood pressure[1-5]. Cardiac angina is supposed 
to be caused by narrowing of the arterial lumen up to 50%-75%. As a result, there is a discrepancy between 
the blood flow to the heart and its need for blood. In this case, acute insufficiency of blood supply to the 
heart happens. The redox processes in the heart muscle become disrupted[2-6]. An excessive accumulation 
of insufficiently oxidized metabolic products (lactic, pyruvic, carbonic and phosphoric acids) and other 
metabolites occurs. Cardiac angina occurs most often in men over 40, and in women over 50 years. The 
prevalence of cardiac angina increases with age. For example, in patients who were older than 65 years, the 
frequency of occurrence of cardiac angina reached 10%-20%. One of the main risk factors for cardiac angina 
is a atherosclerosis of coronary arteries[2-6]. Other risk factors for cardiac angina include hypertension, 
diabetes mellitus, obesity, smoking; stress, hypodynamia, infectious diseases, allergic lesions and genetic 
mutations[7-12].

Molecular genetic markers for cardiac angina could help identification of predisposition to the disease much 
earlier than clinical methods for examining patients. At the present time, such studies are mainly devoted to 
polymorphisms of the genes in nuclear genome.

Our research group found a number of mitochondrial genome mutations associated with cardiac angina. 
It should be noted that in the study we investigated those mitochondrial mutations for which, in our 
preliminary studies, we detected an association with atherosclerosis[13-17]. Since atherosclerosis is a risk factor 
for cardiac angina, we decided to investigate whether these mutations are linked with cardiac angina.

It should be noted that during the investigation of the mitochondrial genome mutations, the level of 
heteroplasmy is determined. The ratio of the number of mutant mitochondrial DNA (mtDNA) copies in a 
sample to the total number of mtDNA copies is estimated[13-17]. This is the difference between quantitative 
analysis of mutations in the mitochondrial genome and the analysis of nuclear mutations. In the quantitative 
analysis of nuclear genome mutations, the number of homozygotes in which both alleles are either mutant or 
normal. The number of heterozygotes is detected too. Afterwards the mutation frequency in the investigated 
sample is estimated[18,19].

The level of heteroplasmy in mitochondrial genome mutations was measured using a quantitative method 
developed in our laboratory[14,17,20]. This method is based on the pyrosequencing technology[21,22]. Short DNA 
fragments (6-10 bp), containing the area of mutation were investigated. Such a small length of the studied 
DNA fragments significantly reduces the number of errors during sequencing.

METHODS
We used samples of white blood cells collected from 192 patients with cardiac angina and 201 conventionally 
healthy study participants. These individuals were examined in Moscow State University clinic. In order to 

Page 2 of 7                                                   Sazonova et al. Vessel Plus 2019;3:8  I  http://dx.doi.org/10.20517/2574-1209.2019.01



compare the samples of patients with cardiac angina and conventionally healthy study participants more 
correctly, the samples were composed so that they did not have significant differences in age and sex.

The work was conducted in complance with the Declaration of Helsinki. The study protocol has been 
accepted by Ethics Community of National Medical Research Center of Cardiology, and all subjects signed 
an informed consent for inclusion in the research. 

DNA from blood leukocyte samples was isolated using a phenol-chloroform method[13,14,23-25]. DNA 
amplicons containing the investigated regions of 11 mitochondrial genome mutations (m.12315G>A, 
m.652delG,  m.5178C>A, m.14459G>A, m.3336T>C, 652insG, m.3256C>T, m.1555A>G, m.15059G>A, 
m.13513G>A, m.14846G>A) were pyrosequenced. The heteroplasmy level of mtDNA mutations was analyzed 
using a method developed by our laboratory. 

The size of DNA amplicons and primers for PCR are listed in Table 1[13-16,20].

In order to be able to perform pyrosequencing of DNA amplicons, one of the primers for PCR was 
biotinylated.

The total volume of PCR reaction mixtures for each sample was 30 mL. The composition of the reaction 
mixture for PCR[13-16,20]: 0.4-0.6 mg mitochondrial DNA, 0.3 pmol/L of each primer, 200 mmol/L of each 
deoxyribonucleotriphosphate, 16.6 mmol/L (NH4)2SO4, MgCl2 (1.5 mmol/L for mutations m.14846G>A, 
m.15059G>A and m.14459G>A; 2.5 mmol/L for the rest of investigated mutations), 67 mmol/L tris-HCl (pH 
8.8), and 3 units of Taq-polymerase.

In PCR, the following annealing temperature was used for the primers[13-16,20]:
1. For mutations m.3336T>C, m.14846G>A, m.13513G>A, m.15059G>A and m.3256C>T - 55 °C;
2. For mutations m.5178C>A, m.652delG and m.652insG - 60 °C;
3. For mutations m.12315G>A, m.14459G>A and m.1555A>G - 50 °C.
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Table 1. The size of DNA amplicons and primers for PCR

Mutation Primers Size of DNA amplicons
m.12315G>A F: bio-CTCATGCCCCCATGTCTAA(12230-12249)

R: TTACTTTTATTTGGAGTTGCAC(12337-12317)
108 bp

m.652delG F: TAGACGGGCTCACATCAC(621-638)
R: bio-GGGGTATCTAATCCCAGTTTGGGT(1087-1064)

467 bp

m.3336T>C F: bio-AGGACAAGAGAAATAAGGCC(3129-3149)
R: ACGTTGGGGCCTTTGCGTAG(3422-3403)

294 bp

m.14459G>A F: CAGCTTCCTACACTATTAAAGT(14303-14334)
R: bio-GTTTTTTTAATTTATTTAGGGGG(14511-14489)

209 bp

m.5178C>A F: bio-GCAGTTGAGGTGGATTAAAC(4963-4982)
R: GGAGTAGATTAGGCGTAGGTAG(5366-5345)

383 bp

m.13513G>A F: CCTCACAGGTTTCTACTCCAAA(13491-13512)
R: bio-AAGTCCTAGGAAAGTGACAGCGAGG(13825-13806)

335 bp

m.652insG F: TAGACGGGCTCACATCAC(621-638)
R: bio-GGGGTATCTAATCCCAGTTTGGGT(1087-1064)

467 bp

m.3256C>T F: bio-AGGACAAGAGAAATAAGGCC(3129-3149)
R: ACGTTGGGGCCTTTGCGTAG(3422-3403)

294 bp

m.15059G>A F: bio-CATTATTCTCGCACGGACT(14671-14689)
R: GCTATAGTTGCAAGCAGGAG(15120-15100)

450 bp

m.1555A>G F: TAGGTCAAGGTGTAGCCCATGAGGTGGCAA(1326-1355)
R: bio-GTAAGGTGGAGTGGGTTTGGG(1704-1684)

379 bp

m.14846G>A F: bio-CATTATTCTCGCACGGACT(14671-14689)
R: GCTATAGTTGCAAGCAGGAG(15120-15100)

450 bp

bp: base pairs



PCR was conducted using “PTC DNA Engine 200”[13-16,20].

The DNA amplicons were analyzed on automated pyrosequencing device PSQTMHS96MA (Biotage, 
Sweden)[10,11]. Primers for pyrosequencing are listed in Table 2[13-16,20].

For statistical analysis of the obtained results software package SPSS 22.0 was used[26]. Bootstrap analysis was 
also conducted.  Correlation was considered statistically significant at the level of P ≤ 0.05. The results at the 
significance level of P ≤ 0.1 were considered to show a tendency to statistical significance.

RESULTS
The age characteristics for study participants are presented in Table 3. The age of conventionally healthy 
participants ranged from 51 to 73 years. In the meantime, the age of patients with cardiac angina ranged 
from 52 to 76 years. The average age of conventionally healthy study participants was 2 years less than the 
age of patients with cardiac angina. This age difference between samples of patients with cardiac angina and 
conventionally healthy participants was not statistically significant.

Demographic characteristics for study participants are presented in Table 4. The data in Table 4 is presented 
as an average value with indicating the standard deviation (in parentheses).

According to Table 4, statistically significant differences by clinical and anthropometric characteristics 
between samples of patients with cardiac angina and conventionally healthy study participants were not 
found.

The aim of the investigation was to analyze the association of 11 mitochondrial genome mutations with 
cardiac angina: m.12315G>A, m.652delG, m.5178C>A, m.14459G>A, m.3336T>C, 652insG, m.3256C>T, 
m.1555A>G, m.15059G>A, m.13513G>A, m.14846G>A. In our preliminary studies, an association of these 
mutations with atherosclerosis, a risk factor for cardiac angina, was identified. Therefore, we decided to 
investigate whether these mutations have a link with cardiac angina.

Statistical analysis of the link of these mitochondrial genome mutations with cardiac angina is presented in 
Table 5. 

As illustrated in Table 5, three mitochondrial mutations of human genome correlated with cardiac angina. 
A positive correlation was observed for mutation m.14459G>A (P ≤ 0.05). One single nucleotide substitution 
m.5178C>A (P ≤ 0.1) had a trend for positive correlation with  this disease. We suppose that in case of 

Table 2. Primers for pyrosequencing

Mutation Primer
m.12315G>A TTTGGAGTTGCAC(12328-12316)
m.652delG CCCATAAACAAATA(639-651)
m.3336T>C TGCGATTAGAATGGGTAC(3354-3337)
m.14459G>A GATACTCCTCAATAGCCA(14439-14456)
m.5178C>A ATTAAGGGTGTTAGTCATGT(5200-5181)
m.13513G>A AGGTTTCTACTCCAA(13497-13511)
m.652insG CCCATAAACAAATA(639-651)
m.3256C>T AAGAAGAGGAATTGA(3300-3286)
m.15059G>A TTTCTGAGTAGAGAAATGAT(15080-15061)
m.1555A>G ACGCATTTATATAGAGGA(1537-1554)
m.14846G>A GCGCCAAGGAGTGA(14861-14848)
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expansion of the sample, positive correlation m.5178C>A with cardiac angina will become significant. For 
mutation m.15059G>A a significant negative correlation with this disease was found (P ≤ 0.05). 

DISCUSSION
From the data obtained in this study, it can be concluded that mitochondrial genome mutations m.14459G>A 
and m.5178C>A are risk factors for the occurrence and development of cardiac angina. Meanwhile, the 
mutation m.15059G>A had a protective effect in this disease.

The detected mutations were localised in the coding region of mtDNA. Single nucleotide replacements 
m.14459G>A and m.5178C>A were localised in the genes of the second and sixth subunits of NADH 
dehydrogenase. We assume that the defects of this mitochondrial respiratory chain enzyme is a trigger of 
pathological mechanisms in the human body, as a result of which ATP deficiency occurs. Energy deficit, in 
turn, leads to the emergence and development of cardiac angina.

At the same time, mtDNA mutation m.15059G>A is localised in the cytochrome B gene. Perhaps this 
mutation is involved in molecular cell processes which protect a person from the occurrence of cardiac 
angina.

Mitochondrial genome mutations m.14459G>A and m.5178C>A may be candidates for the creation of 
molecular cell models in the development of drug therapy for patients with cardiac angina. Mutation 
m.15059G>A can be used for creating gene therapy approaches to this disease.

Molecular genetic markers for cardiac angina could help the identification of predisposition to the disease 
much earlier than clinical methods for examining patients. At the present time, such studies are mainly 
devoted to polymorphisms of nuclear genome genes. Studies of mitochondrial genome mutations in cardiac 
angina are practically absent. Therefore, analysis of the association of mtDNA mutations with cardiac 
angina, conducted by our research group, is very relevant.

In conclusion, according to the obtained data, three mitochondrial mutations of human genome correlated 
with cardiac angina. A positive correlation was observed for mutation m.14459G>A (P ≤ 0.05). One single 
nucleotide substitution m.5178C>A (P ≤ 0.1) had a trend for positive correlation. A negative correlation for 
mutation m.15059G>A with cardiac angina (P ≤ 0.05) was found. 

Table 3. Age characteristics of the study participants

Investigated individuals
Age

Standard deviationMinimum, 
(years)

Mean, 
(years)

Maximum, 
(years)

Conventionally healthy study participants 51 62 73 8.3
Patients with cardiac angina 52 64 76 8.1

Table 4. Demographic characteristics of the study participants

Parameter Conventionally healthy study participants Patients with cardiac angina Significance of differences
Sex, M/F 91:101 103:98 0.146
Age, years 62 (8.3) 64 (8.1) 0.111
Body mass index, kg/m2 24.8 (5.9) 26.5 (6.3) 0.152
Systolic blood pressure, mmHg 123 (16) 147 (26) 0.214
Diastolic blood pressure, mmHg 82 (18) 91 (23) 0.319
Smoking, % 29 38 0.167
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MtDNA mutations m.14459G>A and m.5178C>A can be used for evaluation the predisposition of individuals 
to atherosclerotic lesions. At the same time, mitochondrial genome mutation m.15059G>A may be used for 
gene therapy of atherosclerosis.
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