Supplementary Information

Porous Nb₄W₇O₃₁ microspheres with a mixed crystal structure for highperformance Li⁺ storage

Xingxing Jin^{1,#}, Qiang Yuan^{1,#}, Xiaolin Sun^{2,3,4,#}, Xuehua Liu¹, Jianfei Wu^{2,3,4,*}, Chunfu Lin^{1,*}

¹Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China.
²Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
³Shandong Energy Institute, Qingdao 266101, Shandong, China.
⁴Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China.
[#]Authors contributed equally.

Correspondence to: Prof./Dr. Chunfu Lin, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China. E-mail: linchunfu@qdu.edu.cn; Prof./Dr. Jianfei Wu, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong, China; Shandong Energy Institute, 189 Songling Road, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, Shandong, China. E-mail: wujf@qibebt.ac.cn

EXPERIMENTAL

Material preparation

0.86 mmol of ammonium tungstate hydrate (H₂₈N₆O₄₁W₁₂, Macklin, 99.99%) and 5.3 mmol of niobium chloride (NbCl₅, Macklin, 99.99%) were completely dissolved in 60 mL isopropyl alcohol (IPA). Then, 8 g hexadecyl trimethyl ammonium bromide (CTMAB, Macklin, 99.99%), 1 mL tetrabutylammonium bromide (TBA, Macklin, 10% in H₂O), and 3 mL hydrochloric acid were slowly added to the above solution with continuous stirring. The resultant homogeneous solution was loaded into a Teflon-lined autoclave (50 mL) and maintained at 180 °C for 24 h. The formed precipitate was separated and washed with distilled water and ethyl alcohol, followed by vacuum drying at 80 °C for 12 h. Finally, the dried precipitate was calcinated at 800 °C for 4 h in air, forming porous Nb₄W₇O₃₁ microspheres.

Material characterization

The powder X-ray diffraction (XRD) pattern of Nb₄W₇O₃₁ was collected using an X-ray diffractometer (Rigaku Smart Lab) with Cu K α radiation (λ = 1.5406 Å) at a voltage of 40 kV and a scanning rate of 5° min⁻¹. The *in-situ* XRD experiments were conducted based on an electrochemical cell module equipped with a low-X-ray-absorption Be window (0.2 mm thickness). The lattice constants were obtained by Rietveld refinements of the powder XRD pattern using the free GSAS software with the EXPGUI interface^[S1,S2]. The particle size and microstructure were recorded using field emission scanning electron microscopy (FESEM, Hitachi S-4800) equipped with energy-dispersive X-ray spectroscopy (EDX, HORIBA EX-350), and high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20 and JEM2100). The valence states of the cations were determined by X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250Xi). The nitrogen adsorption–desorption isotherm for calculating the Branauer–Emmett–Teller (BET) specific surface area was recorded on

a surface area analyzer (ASAP 2460). The Barrett–Joyner–Halenda (BJH) model was employed to compute the pore size distribution curve from the desorption branch. The high-angle annular dark field (HAADF) and annular bright field (ABF) scanning transmission electron microscopy (STEM) images were obtained by sphericalaberration-corrected STEM (JEOL JEM-ARM 200F).

Electrochemical test

CR2016-type coin cells were assembled in a glove box filling with pure Ar for evaluating the electrochemical properties of Nb₄W₇O₃₁ on an automatic battery testing system (CT-3008, Neware) at ~25 °C. Li metal foils were used as anodes and counter electrodes in the half cells. The working electrodes were fabricated by casting a mixture composed of Nb₄W₇O₃₁, Super-P[®] conductive carbon, and polyvinylidene fluoride (7:2:1 in mass) on Cu current collectors. The electrolyte was composed of 1 M LiPF₆ in an ethylene carbonate/diethylene carbonate/dimethyl carbonate mixed solvent (1:1:1 in volume). Celgard[®] 2325 microporous polypropylene films were employed as separators. The galvanostatic intermittent titration technique (GITT) tests were performed using alternate galvanostatic charge–discharge current pulse at 0.1C for 10 min and rest interval for 20 min. Cyclic voltammograms (CV) were tested on an electrochemical workstation (CHI660E, Chenhua). The electrochemical impedance spectroscope (EIS) experiments were performed on another electrochemical workstation (Interface 1010E, Gamry). All the electrochemical properties of the half cells were examined within 0.8–3.0 V. Furthermore, LiFePO₄//Nb₄W₇O₃₁ full cells with a CR2025 coin type were assembled, and their fabrication process is the same as that of the Nb₄W₇O₃₁/Li half cells, except for the cathode fabrication. The cathodes were fabricated by casting a mixture composed of LiFePO₄ (P198-S21, Shenzhen Kejing Star Technology Co., LTD.), Super-P[®] conductive carbon, and polyvinylidene fluoride (7:2:1 in mass) on Al current collectors. The electrochemical properties of the full cells were examined within 1.0–2.5 V.

Figure S1. XRD pattern of Nb₄W₇O₃₁ containing three obvious peaks of WO₃

(JCPDS 43-1035). ♦: WO₃.

Figure S2. Larger images of three available cavities (pentagonal tunnel, quadrangular

tunnel, and triangular tunnel) for possible Li⁺-storage in Nb₄W₇O₃₁.

Figure S3. FESEM image of broken Nb₄W₇O₃₁ microsphere, showing that the

microspheres are not hollow.

Figure S4. Schematic illustration of solvothermal experiments using different

precursors.

Figure S5. Discharge/charge curves of Nb₄W₇O₃₁/Li cell in different cycles at 1C.

Figure S6. FESEM image of Nb₄W₇O₃₁ electrode after 100 cycles at 5C, revealing

that porous-microspherical morphology can be retained during the cycling.

Figure S7. Electrochemical properties of LiFePO₄/Li cell (the fabrication process of the LiFePO₄/Li cell is the same as that of the Nb₄W₇O₃₁/Li cell): (a) charge/discharge curves at various current rates ($1C = 170 \text{ mA g}^{-1}$), (b) rate capability, and (c) cyclic

stability at 10C over 1000 cycles (after rate-capability test).

Figure S8. *Ex-situ* XPS spectrum of pristine Nb₄W₇O₃₁ sample (OCV).

Figure S9. a) Comparison of Nyquist plots of Nb₄W₇O₃₁/Li half cell after 0, 1, 10, 50, 100, and 500 cycles. Equivalent circuits for the Nyquist plots b) before first 10 cycles

and c) after 50 cycles. d) Nyquist plot of Nb₄W₇O₃₁/Li half cell after 0 cycles (OCV).

e) Relationships between Z' and $\omega^{-1/2}$ in low frequency region.

Figure S9a shows the Nyquist plots of the Nb₄W₇O₃₁/Li half cell after 0, 1, 10, 50, 100, and 500 cycles at 1C. The equivalent circuit of the plots after 0, 1, and 10 cycles are shown in **Figure S9b**, whereas the plots after 50, 100, and 500 cycles are fitted by the equivalent circuit in **Figure S9c**. R_s relates to the electrolyte resistance of the cell. R_{ct} and Z_w are the charge-transfer and Warburg resistances offered during Li⁺ diffusion, respectively. R_f and constant phase elements (CPE or CPE1, CPE2) represent the resistance offered by the electrode surface passive layer and electrode roughness, respectively. As can be seen from **Figure S9a**, the charge-transfer resistance in the high frequency region gradually decreases with the increase of the cycle number, indicating the continuous activation of the Nb₄W₇O₃₁ material during the long-term cycling, which can be ascribed to the higher electronic conductivity of the lithiated phase. In addition, after 10 cycles, the semicircle within the high–middle frequency region gradually forms on the particle surface of Nb₄W₇O₃₁ and then keeps stable during the long-term cycling.

Moreover, the Nyquist plot in **Figure S9d** at the low-frequency region can be used to calculate the Li^+ ion diffusion coefficient (D_{Li}) using **Equation (S1)** and (**S2**):^[S3]

$$Z_{\text{real}} = R_{\text{ct}} + R_{\text{f}} + \sigma \omega^{-1/2} \tag{S1}$$

$$D_{\rm Li} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_{\rm Li}{}^2 \sigma^2}$$
(S2)

where *R* is the gas constant, *T* is the absolute temperature, *A* is the surface area of the electrode, *n* is the transferred electrons number, *F* is the Faraday's constant, and C_{Li} is the concentration of Li⁺ ions in solid. It can be deduced that these values are fixed in the Nb₄W₇O₃₁ electrodes, and D_{Li} is directly related to σ . σ is the Warburg factor, which

can be obtained by using the linear relationship between Z_{real} and $\omega^{-1/2}$. As shown in **Figure S9e**, σ of the Nb₄W₇O₃₁ electrode is calculated to be 18.75 and the calculated apparent D_{Li} of the Nb₄W₇O₃₁ electrode is 1.72×10^{-11} cm² s⁻¹.

Table S1. Lattice constants of Nb₄W₇O₃₁ with Structure A, Structure B, and Structure C obtained by Rietveld refinements, and their comparisons with those of previously-reported niobate anode compounds. The interlayer spacing (usually equal to the *b* or *c* value) is highlighted in red.

sample	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	α, γ (°)	β(°)	reference
Nb4W7O31-	24 557776	24 557776	3 051166	2382 886	00	90	this work
Structure A	24.337770	24.337770	5.751100	2302.000	70	70	
Nb4W7O31-							
Structure B	24.488878	24.488878	3.952089	2370.088	90	90	this work
Nh4W7O21-							
TUD4 VV 7031-	24.510170	24.510170	3.952558	2374.493	90	90	this work
Structure C							
VNb9O24.9	15.690	15.690	3.817	939.654	90	90	[S4]
W3Nb14O44	21.02	21.02	3.824	1689.598	90	90	[S5]
NhaWaQa	12 2029	26 6051	2 015	1749.014	00	00	[96]
IND18 VV 16 U 93	12.2038	30.0031	5.915	1/40.914	90	90	[30]
Cu2Nb34O87	15.59868	3.83115	20.64336	1135.059	90	113.063	[S7]
CrNb11O29	15.6085	3.8335	20.6481	1136.69	90	113.07	[S8]
FeNb11O29	28.6862	3.82465	20.6120	2261.43	90	90	[S9]

TiNb24O62	29.79212	3.81751	21.09986	2390.526	90	95.018	[S10]
TiNb2O7	20.36708	3.79885	11.89108	794.945	90	127.227	[S11]
Cr0.5Nb24.5O62	29.91514	3.82628	21.15166	2412.092	90	94.944	[S12]
W5Nb16O55	29.657	3.8225	23.106	550.8	90	126.50	[S13]
WNb12O33	22.2474	3.8201	17.7290	unrevealed	90	unrevealed	[S14]
MoNb12O33	22.27931	3.82094	17.72972	1261.021	90	123.3	[S15]
ZrNb24O62	29.87123	3.82209	21.16379	2406.798	90	95.078	[S16]
AlNb11O29	15.55789	3.81126	20.53599	1118.354	90	113.303	[S17]
GaNb11O29	28.63126	3.80931	20.57555	2244.078	90	90	[S18]
Mg2Nb34O87	15.60459	3.83071	20.64403	1135.119	90	113.096	[S19]
HfNb24O62	29.92508	3.82525	21.21133	2418.588	90	95.068	[S20]
Al0.5Nb24.5O62	29.9005	3.8228	21.1950	2413.2	90	95.079	[S21]
PNb9O25	15.615	15.615	3.829	934	90	90	[S22]
Ti2Nb10O29	15.52368	3.81104	20.54768	1118.512	90	113.058	[S23]
Ti2Nb14O39	15.56009	3.82467	20.58537	1125.826	90	113.000	[S24]
AgNb ₁₃ O ₃₃	22.3999	3.8337	15.3699	1319.882	90	90	[\$25]

GeNb18O47	15.7	15.7	3.817	940.85	90	unreaveled	[S26]
BaNb3.6O10	17.652	17.482	3.825	1180.46	90	90	[S27]

Table S2. Comparisons of electrochemical properties of Nb₄W₇O₃₁ with previously-

reported anode materials with intercalation characteristic.

material	rate capability	cyclic stability	reference
Nb4W7O31 porous microspheres	120 mAh g ⁻¹ at 10C	capacity retention of 95.2% over 1500 cycles at 10C	this work
GaNb11O29 micron- sized particles	121 mAh g ⁻¹ at 10C	capacity retention of 87.4% over 1000 cycles at 10C	[S18]
Ti _{0.98} Nb _{2.02} O7 micron- sized particles	120 mAh g ⁻¹ at 10C	capacity retention of 93.3% over 1000 cycles at 10C	[S28]
TiNb ₂ O ₇ hierarchical microspheres	100 mAh g^{-1} at 20C	capacity retention of 83.5% over 500 cycles at 10C	[\$29]
Ti2Nb10O29 hollow nanofibers	136 mAh g ⁻¹ at 20C	capacity retention of ~70% over 500 cycles at 10C	[S27]

Ti ₂ Nb ₁₀ O ₂₉ nanofibers	87 mAh g^{-1} at 30C	capacity retention of ~83% over 500 cycles at 10C	[\$30]
Cr _{0.2} Fe _{0.8} Nb ₁₁ O ₂₉ micron-sized particles	123 mAh g ⁻¹ at 10C	capacity retention of 86.9% over 500 cycles at 10C	[S31]
HfNb ₂₄ O ₆₂ micron- sized particles	78 mAh g ⁻¹ at 10C	capacity retention of 87.1% over 500 cycles at 10C	[\$20]
TiNb ₂ O ₇ nanoparticles	76 mAh g ⁻¹ at 10C	capacity retention of ~84% over 300 cycles at 10C	[832]
TiNb ₂ O ₇ ordered macroporous particles	84 mAh g^{-1} at 20C	capacity retention of ~82% over 1000 cycles at 10C	[833]
Li _{3.8} Cu _{0.3} Ti _{4.9} O ₁₂ micron-sized particles	78 mAh g $^{-1}$ at 10C	capacity retention of ~98% over 100 cycles at 10C	[834]
BaLi ₂ Ti ₆ O ₁₄ micron-sized particles	111.7 mAh g⁻¹ at 5C	capacity retention of ~81% over 200 cycles at 10C	[835]
W ₃ Nb ₁₄ O ₄₄ nanowires	130.6 mAh g^{-1} at 5C	capacity retention of ~64% over 1000 cycles at 10C	[\$5]

Li ₄ Ti ₅ O ₁₂ nanorods	135.9 mAh g^{-1} at 10C	capacity retention of 61.5% over 1500 cycles at 10C	[S 36]
Mo _{1.5} W _{1.5} Nb ₁₄ O ₄₄ micron-sized particles	198 mAh g ⁻¹ at 10C	capacity retention of 84.1% over 2000 cycles at 10C	[S37]
Nb ₁₂ W ₁₁ O ₆₃ micron- sized particles	100 mAh g ⁻¹ at 15C	capacity retention of 78.8% over 400 cycles at 0.4C	[S38]
NiNb ₂ O ₆ micron-sized particles	126 mAh g ⁻¹ at 10C	capacity retention of 92.0% over 2500 cycles at 10C	[S39]
Nb14W3O44 nano-blocks	160 mAh g ⁻¹ at 10C	capacity retention of 84.3% over 1000 cycles at 10C	[S40]
Partially reduced TiNb ₂₄ O ₆₂ nanofibers	190 mAh g ⁻¹ at 10C	capacity retention of 86.4% over 500 cycles at 10C	[S41]
TiNbO4 micron-sized particles	~80 mAh g ⁻¹ at 10C	capacity retention of ~90.0% over 500 cycles at 1C	[S42]
Reduced Mo _x Ti _{1-x} Nb ₂ O _{7+y} micron-sized particles	192 mAh g ⁻¹ at 12C	capacity retention of 73.0% over 500 cycles at 12C	[S43]

2D Nb ₂ O ₅ -C-rGO micron-sized sheets	~165 mAh g^{-1} at 10C	capacity retention of 78.0% over 1500 cycles at 5C	[S44]
H-Nb ₂ O ₅ with rich Wadsley planar defects micron-sized particles	~160 mAh g ⁻¹ at 10C	capacity retention of ~86.2% over 2000 cycles at 10C	[S45]
W ₃ Nb ₁₄ O ₄₄ nanowires	~131 mAh g ⁻¹ at ~3.5C	capacity retention of ~64% over 1000 cycles at ~3.5C	[85]
Nb ₁₈ W ₁₆ O ₉₃ nanowires	~158 mAh g ⁻¹ at ~3C	capacity retention of ~59% over 500 cycles at ~6C	[S6]
W ₃ Nb ₁₄ O ₄₄ micron- sized particles	135 mAh g ⁻¹ at 10C	capacity retention of ~94% over 4000 cycles at 10C	[S46]
WNb ₆₀ O ₁₅₃ nanowires	94 mAh g^{-1} at ~2C	capacity retention of ~75% over 200 cycles at 4C	[S47]
WNb ₁₂ O ₃₃ nanowires	146 mAh g ⁻¹ at 6C	capacity retention of ~86% over 700 cycles at 6C	[S14]
Nb ₁₆ W ₅ O ₉₃ micron- sized particles	148 mAh g ⁻¹ at 20C*	capacity retention of ~95% over 250 cycles at 10C, followed by 20C with ~95% capacity retention after 750 cycles*	[\$13]

Nb ₁₈ W ₁₆ O ₉₃ micron- sized particles	150 mAh g ⁻¹ at 20C*	capacity retention of ~96% over 250 cycles at 10C, followed by 20C with ~97% capacity retention after 750 cycles*	[S13]
---	---------------------------------	--	-------

* The current densities of 20C and 10C in Ref. [S13] are equal to that of 10C and 5C in this work.

Table S3. Comparisons of apparent Li^+ diffusion coefficient (D_{Li}) of Nb₄W₇O₃₁ with

previously-reported M–Nb (V/Ti)–O anode materials.

material	$D_{\rm Li} ({\rm cm}^2{ m s}^{-1})$	test technique	reference
Nb4W7O31 porous microspheres	6.07×10 ⁻¹¹	GITT	this work
Nb4W7O31 porous microspheres	1.72×10 ⁻¹¹	EIS	this work
NiNb ₂ O ₆ micron-sized particles	$1.36 imes 10^{-12}$	GITT	[S39]
Partially reduced TiNb ₂₄ O ₆₂ nanofibers	$8.25 imes 10^{-12}$	GITT	[S41]
TiNb ₂ O ₇ with predistorted Nb(Ti)O ₆ octahedrons nanofibers	1.18×10^{-12}	EIS	[S48]
PNb9O25@CNTs micron-sized particles	4.8×10^{-12}	GITT	[S49]

W ₃ Nb ₁₄ O ₄₄ nanowires	8.02×10 ⁻¹³	CV	[S5]
Cu2Nb34O87 micron-sized particles	3.5×10 ⁻¹³	GITT	[S7]
VNb9O25 nanoribbons	5.17×10 ⁻¹⁵	EIS	[\$50]
Al _{0.5} Nb _{24.5} O ₆₂ micron-sized particles	2.5×10 ⁻¹³	GITT	[S21]
MoNb ₁₂ O ₃₃ micron-sized particles	3.9×10 ⁻¹⁴	GITT	[S15]
W5Nb16O55 micron-sized particles	1.0×10 ⁻¹³	GITT	[S13]
GeNb ₁₈ O ₄₇ nanowires	1.574×10^{-14}	CV	[S26]
Nb ₁₈ W ₁₆ O ₉₃ nanowires	1.312×10 ⁻¹⁴	EIS	[86]
Nb ₁₂ W ₁₁ O ₆₃ micron-sized particles	5.10×10 ⁻¹⁵	EIS	[\$38]

Ru _{0.01} Ti _{0.99} Nb ₂ O ₇ micron-sized particles	1.66×10 ⁻¹⁵	EIS	[S51]
TiNb ₂ O ₇ nanorods	3.24×10 ⁻¹⁴	CV	[852]
TiCr _{0.5} Nb _{10.5} O ₂₉ nanoparticles	2.07×10 ⁻¹⁴	CV	[\$53]
Cr _{0.5} Nb _{24.5} O ₆₂ micron-sized particles	4.57×10 ⁻¹⁴	EIS	[S12]
Li _{3.08} Cr _{0.02} Si _{0.09} V _{0.9} O ₄ nanowires	1.21×10 ⁻¹²	GITT	[\$54]
HfNb ₂₄ O ₆₂ micron-sized particles	1.6~1.7×10 ⁻¹²	GITT	[S20]
Fe _{0.4} Ti _{1.6} Nb ₁₀ O _{28.8} micron-sized particles	~3.12×10 ⁻¹²	CV	[\$55]
WNb ₆₀ O ₁₅₃ nanowires	4.28×10 ⁻¹⁴	EIS	[S47]
TiNb ₆ O ₁₇ micron-sized particles	4.28×10^{-14}	CV	[S56]

5%Cu ²⁺ -doped TiNb ₂ O ₇ mesoporous microspheres with surface coating of N-doped carbon	3.12×10 ⁻¹⁵	EIS	[S57]
Li ₄ Ti ₅ O ₁₂ thin films	3.27×10 ⁻¹⁶	GITT	[S58]
Nb ₂ O ₅ nanorods	3.66×10 ⁻¹⁷	CV	[S59]
Mo _{1.5} W _{1.5} Nb ₁₄ O ₄₄ micron-sized particles	2.01×10 ⁻¹⁷	GITT	[S37]
TiO ₂ /C composite nanospheres	2.2×10 ⁻¹⁵	CV	[S60]

Table Se	. Variations in	n lattice consta	nts of Nb4W7O	31 during first	discharge at 0.3C

point	<i>a</i> (<i>b</i>)	С	V
1	24.28509	3.92006	2311.91703
2	24.31973	3.91252	2314.05840
3	24.40631	3.88164	2312.17116
4	24.41456	3.87992	2312.70682
5	24.54980	3.85223	2321.70913
6	24.67844	3.85059	2345.10788
7	24.69493	3.85723	2352.29131
8	24.72709	3.86282	2361.83810
9	24.73534	3.87591	2371.42399

10	24.74358	3.87666	2373.46771
11	24.71060	3.87090	2363.62180
12	24.67844	3.87735	2361.40598
13	24.66194	3.88831	2364.91565
14	24.66194	3.89318	2367.87462
15	24.67844	3.90234	2376.62064
16	24.68668	3.91042	2383.13504
17	24.69493	3.90872	2383.68927
18	24.71060	3.92053	2393.92864
19	24.71060	3.92580	2397.14585
20	24.74358	3.93158	2407.08965
21	24.76750	3.93152	2411.70729
22	24.77574	3.93753	2417.00571
23	24.79223	3.94183	2422.86710
24	24.81697	3.94934	2432.32924
25	24.83347	3.95188	2437.12898
26	24.86563	3.95466	2445.16637
27	24.88212	3.96426	2454.35177
28	24.90686	3.97178	2463.90039
29	24.92335	3.97892	2471.60200
30	24.96458	3.97554	2477.67760
31	24.99014	3.98041	2485.79639
32	25.00664	3.98472	2491.77084
33	25.03962	3.98062	2495.78218

34	25.06436	3.98320	2502.33507
35	25.10641	3.98218	2510.09397
36	25.13198	3.99266	2521.83068
37	25.15672	4.00052	2531.76961
38	25.19053	4.00683	2542.58650
39	25.22434	4.00505	2548.28446
40	25.24990	4.01309	2558.57294
41	25.27546	4.01831	2567.09127
42	25.28371	4.02433	2572.61956
42	25.30103	4.02882	2579.01475

Table S5. Comparisons of volume expansion of Nb₄W₇O₃₁ (lithiation) with graphite and previously-reported M–Nb–O anode compounds with shear ReO₃ crystal structures. The interlayer spacing (usually equal to the *b* or *c* value) is highlighted in red.

material	volume expansion (%)	a change (%)	b change (%)	c change (%)	reference
Nb4W7O31	11.2	4.1	4.1	2.7	this work
graphite	13.2	little	little	10.2	[S61]
Mo ₃ Nb ₁₄ O ₄₄	10.6	little	little	9.9	[S62]
Al _{0.5} Nb _{24.5} O ₆₂	8.5	-1.1	10.1	-1.9	[S21]
FeNb ₁₁ O ₂₉	6.92	-1.1	6.8	0.4	[S 9]

TiNb ₂ O ₇	7.22	little	7.89	little	[S11]
MoNb ₁₂ O ₃₃	7.80	little	10.0	little	[S15]
TiNb ₂₄ O ₆₂	17.5	5.1	9.0	2.9	[S63]
VNb9O25	8.91	-1.2	-1.2	11.5	[S64]
Cu2Nb34O87	8.32	little	8.34	little	[S7]
Zn ₂ Nb ₃₄ O ₈₇ (orthorhombic)	8.50	little	9.28	little	[S65]
Zn ₂ Nb ₃₄ O ₈₇ (monoclinic)	8.02	little	8.58	little	[S65]

References

- [S1] B.H. Toby, EXPGUI, A graphical user interface for GSAS. J. Appl. Crystallogr. 34 (2001) 210–213. [DOI:10.1107/S0021889801002242]
- [S2] A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 1994.
- [S3] T.F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye, R. Zhu, High rate cycling performance of lanthanum-modified Li₄Ti₅O₁₂ anode materials for lithium-ion batteries, J. Power Sources. 214 (2012) 220–226.
 [DOI: 10.1016/j.jpowsour.2012.04.101]
- [S4] G. Li, X. Wang, X. Ma, Tetragonal VNb₉O_{24.9}-based nanorods: a novel form of lithium battery anode with superior cyclability. J. Mater. Chem. A 1 (2013) 12409–12412. [DOI: 10.1039/c3ta12471a]
- [S5] L. Yan, J. Shu, C. Li, X. Cheng, H. Zhu, H. Yu, C. Zhang, Y. Zheng, Y. Xie, Z. Guo, W₃Nb₁₄O₄₄ nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 16 (2019) 535–544. [DOI: 10.1016/j.ensm.2018.09.008]
- [S6] W. Ye, H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, N. Long, M. Shui, J. Shu, Highly efficient lithium container based on non-Wadsley-Roth structure Nb₁₈W₁₆O₉₃ nanowires for electrochemical energy storage. Electrochim. Acta 292 (2018) 331–338. [DOI: 10.1016/j.electacta.2018.09.169]

- [S7] L. Yang, X. Zhu, X. Li, X. Zhao, K. Pei, W. You, X. Li, Y. Chen, C. Lin, R. Che, Conductive copper niobate: superior Li⁺-storage capability and novel Li⁺-transport mechanism. Adv. Energy Mater. 9 (2019) 1902174. [DOI: 10.1002/aenm.201902174]
- [S8] Q. Fu, X. Liu, J. Hou, Y. Pu, C. Lin, L. Yang, X. Zhu, L. Hu, S. Lin, L. Luo, Y. Chen, Highly conductive CrNb₁₁O₂₉ nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J. Power Sources 397 (2018) 231–239. [DOI: 10.1016/j.jpowsour.2018.07.020]
- [S9] X. Lou, Z. Xu, Z. Luo, C. Lin, C. Yang, H. Zhao, P. Zheng, J. Li, N. Wang, Y. Chen, H. Wu, Exploration of Cr_{0.2}Fe_{0.8}Nb₁₁O₂₉ as an advanced anode material for lithium-ion batteries of electric vehicles. Electrochim. Acta 245 (2017) 482–488. [DOI: 10.1016/j.electacta.2017.05.168]
- [S10] C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen, J. Li, H. Wu, Porous TiNb₂₄O₆₂ microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 8 (2016) 18792–18799. [DOI: 10.1039/c6nr04992c]
- [S11] C. Yang, C. Lin, S. Lin, Y. Chen, J. Li, Cu_{0.02}Ti_{0.94}Nb_{2.04}O₇: an advanced anode material for lithium-ion batteries of electric vehicles. J. Power Sources 328 (2016) 336– 344. [DOI: 10.1016/j.jpowsour.2016.08.027]
- [S12] C. Yang, S. Yu, C. Lin, F. Lv, S. Wu, Y. Yang, W. Wang, Z. Zhu, J. Li, N. Wang, S. Guo, Cr_{0.5}Nb_{24.5}O₆₂ nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano 11 (2017) 4217–4224. [DOI: 10.1021/acsnano.7b01163]
- [S13] K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559 (2018) 556–563. [DOI: 10.1038/s41586-018-0347-0]
- [S14] L. Yan, H. Lan, H. Yu, S. Qian, X. Cheng, N. Long, R. Zhang, M. Shui, J. Shu, Electrospun WNb₁₂O₃₃ nanowires: superior lithium storage capability and their working mechanism. J. Mater. Chem. A 5 (2017) 8972–8980. [DOI: 10.1039/c7ta01784g]
- [S15] X. Zhu, J. Xu, Y. Luo, Q. Fu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, MoNb₁₂O₃₃ as a new anode material for high-capacity, safe, rapid and durable Li⁺ storage: structural characteristics, electrochemical properties and working mechanisms. J. Mater. Chem. A 7 (2019) 6522–6532. [DOI: 10.1039/c9ta00309f]
- [S16] C. Yang, Y. Zhang, F. Lv, C. Lin, Y. Liu, K. Wang, J. Feng, X. Wang, Y. Chen, J. Li, S. Guo, Porous ZrNb₂₄O₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J. Mater. Chem. A 5 (2017) 22297–22304. [DOI: 10.1039/c7ta07347j]
- [S17] X. Lou, R. Li, X. Zhu, L. Luo, Y. Chen, C. Lin, H. Li, X. Zhao, New anode material for lithium-ion batteries: aluminum niobate (AlNb₁₁O₂₉). ACS Appl. Mater. Interfaces 11 (2019) 6089–6096. [DOI: 10.1021/acsami.8b20246]
- [S18] X. Lou, Q. Fu, J. Xu, X. Liu, C. Lin, J. Han, Y. Luo, Y. Chen, X. Fan, J. Li, GaNb₁₁O₂₉ nanowebs as high-performance anode materials for lithium-ion batteries. ACS Appl. Nano Mater. 1 (2018) 183–190. [DOI: 10.1021/acsanm.7b00091]

- [S19] X. Zhu, Q. Fu, L. Tang, C. Lin, J. Xu, G. Liang, R. Li, L. Luo, Y. Chen, Mg₂Nb₃₄O₈₇ porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl. Mater. Interfaces 10 (2018) 23711–23720. [DOI: 10.1021/acsami.8b03997]
- [S20] Q. Fu, H. Cao, G. Liang, L. Luo, Y. Chen, V. Murugadoss, S. Wu, T. Ding, C. Lin, Z. Guo, A highly Li⁺-conductive HfNb₂₄O₆₂ anode material for superior Li⁺ storage. Chem. Commun. 56 (2020) 619–622. [DOI: 10.1039/c9cc07447c]
- [S21] Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo, Y. Chen, C. Lin, X. Zhao, Design, synthesis and lithium-ion storage capability of Al_{0.5}Nb_{24.5}O₆₂. J. Mater. Chem. A 7 (2019) 19862– 19871. [DOI: 10.1039/c9ta04644e]
- [S22] S. Patoux, M. Dolle, G. Rousse, C. Masquelier, A reversible lithium intercalation process in a ReO₃-Type structure PNb₉O₂₅. J. Electrochem. Soc. 149 (2002) A391. [DOI 10.1149/1.1455647]
- [S23] Q. Fu, J. Hou, R. Lu, C. Lin, Y. Ma, J. Li, Y. Chen, Electrospun Ti₂Nb₁₀O₂₉ hollow nanofibers as high-performance anode materials for lithium-ion batteries. Mater. Lett. 214 (2018) 60–63. [DOI: 10.1016/j.matlet.2017.11.076]
- [S24] C. Lin, S. Deng, D.J. Kautz, Z. Xu, T. Liu, J. Li, N. Wang, F. Lin, Intercalating Ti₂Nb₁₄O₃₉ anode materials for fast-charging, high-capacity and safe lithium-ion batteries. Small 13 (2017) 1702903. [DOI: 10.1002/smll.201702903]
- [S25] Z. Chen, X. Cheng, W. Ye, R. Zheng, H. Zhu, H. Yu, N. Long, M. Shui, J. Shu, AgNb₁₃O₃₃: a new anode material with high energy storage performance. Chem. Eng. J. 366 (2019) 246–253. [DOI: 10.1016/j.cej.2019.02.091]
- [S26] F. Ran, X. Cheng, H. Yu, R. Zheng, T. Liu, X. Li, N. Ren, M. Shui, J. Shu, Nanostructured GeNb₁₈O₄₇ as novel anode host with superior lithium storage performance. Electrochim. Acta 282 (2018) 634–641. [DOI: 10.1016/j.electacta.2018.06.109]
- [S27] X. Cheng, S. Qian, H. Yua, H. Zhua, Y. Xie, R. Zheng, T. Liu, M. Shui, J. Shu, BaNb_{3.6}O₁₀ nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Mater. 16 (2019) 400–410. [DOI: 10.1016/j.ensm.2018.06.018]
- [S28] J. Gao, X. Cheng, S. Lou, Y. Ma, P. Zuo, C. Du, Y. Gao, G. Yin, Self-doping Ti_{1-x}Nb_{2+x}O₇ anode material for lithium-ion battery and its electrochemical performance. J. Alloy. Compd. 728 (2017) 534–540. [DOI: 10.1016/j.jallcom.2017.09.045]
- [S29] H. Li, L. Shen, G. Pang, S. Fang, H. Luo, K. Yang, X. Zhang, TiNb₂O₇ nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale 7 (2015) 619–624. [DOI: 10.1039/c4nr04847d]
- [S30] D. Pham-Cong, J. Kim, V. Tran, S. Kim, S. Jeong, J. Choi, C. Cho, Electrochemical behavior of interconnected Ti₂Nb₁₀O₂₉ nanoparticles for high-power Li-ion battery anodes. Electrochim. Acta 236 (2017) 451–459. [DOI: 10.1016/j.electacta.2017.03.203]
- [S31] X. Lou, Z. Xu, Z. Luo, C. Lin, C. Yang, H. Zhao, P. Zheng, J. Li, N. Wang, Y. Chen, H. Wu, Exploration of Cr_{0.2}Fe_{0.8}Nb₁₁O₂₉ as an advanced anode material for lithium-ion batteries of electric vehicles. Electrochim. Acta 245 (2017) 482–488.

[DOI: 10.1016/j.electacta.2017.05.168]

- [S32] L. Fei, Y. Xu, X. Wu, Y. Li, P. Xie, S. Deng, S. Smirnov, H. Luo, SBA-15 Confined synthesis of TiNb₂O₇ nanoparticles for lithium-ion batteries. Nanoscale 5 (2013) 11102– 11107. [DOI: 10.1039/c3nr03594h]
- [S33] S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, Y. Ma, C. Du, G. Yin, X. Sun, Superior performance of ordered macroporous TiNb₂O₇ anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34 (2017) 15–25. [DOI: 10.1016/j.nanoen.2017.01.058]
- [S34] C. Lin, B. Ding, Y. Xin, F. Cheng, M. Lai, L. Lu, H. Zhou, Advanced electrochemical performance of Li₄Ti₅O₁₂-based materials for lithium-ion battery: synergistic effect of doping and compositing. J. Power Sources 248 (2014) 1034–1041. [DOI: 10.1016/j.jpowsour.2013.09.120]
- [S35] X. Lin, S. Qian, H. Yu, L. Yan, P. Li, Y. Wu, N. Long, M. Shui, J. Shu, Advanced BaLi₂Ti₆O₁₄ anode fabricated via lithium site substitution by magnesium. ACS Sustain. Chem. Eng. 9 (2016) 4859–4867. [DOI: 10.1021/acssuschemeng.6b01137]
- [S36] L. Xi, H. Wang, S. Yang, R. Ma, Z. Lu, C. Cao, K. Leung, J. Deng, A. Rogach, C. Chung, Single-crystalline Li₄Ti₅O₁₂ nanorods and their application in high-rate capability Li₄Ti₅O₁₂/LiMn₂O₄ full cells. J. Power Sources 242 (2013) 222–229. [DOI: 10.1016/j.jpowsour.2013.04.020]
- [S37] R. Tao, T. Zhang, S. Tan, C. Jafta, C. Li, Liang, X. Sun, T. Wang, J. Fan, Z. Lu, C. Bridges, X. Suo, C. Do-Thanh, S. Dai, Insight into the fast-rechargeability of a novel Mo_{1.5}W_{1.5}Nb₁₄O₄₄ anode material for high-performance lithium-ion batteries. Adv. Energy Mater. 12 (2022) 2200519. [DOI: 10.1002/aenm.202200519]
- [S38] SX. Ma, L. Cheng, L. Li, X. Cao, Y. Ye, Y. Wei, Y. Wu, M. Sha, Z. Zi, J. Dai, Influence of cut-off voltage on the lithium storage performance of Nb₁₂W₁₁O₆₃ anode. Electrochimica Acta 332 (2020) 135380. [DOI: 10.1016/j.electacta.2019.135380]
- [S39] R. Xia, K. Zhao, Y. Kuo, L. Zhang, D. M. Cunha, Y. Wang, S. Huang, J. Zheng, B. Boukamp, P. Kaghazchi, C. Sun, J. E. ten Elshof, M. Huijben, Nickel niobate anodes for high rate lithium-ion batteries. Adv. Energy Mater. 12 (2021) 2102972. [DOI: 10.1002/aenm.202102972]
- [S40] C. Guo, Z. Liu, K. Han, L. Zhang, X. Ding, X. Wang, L. Mai, Nano-sized niobium tungsten oxide anode for advanced fast-charge lithium-ion batteries. Small 18 (2022) 2107365. [DOI:10.1002/smll.202107365]
- [S41] T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin, M. Liu, Partially reduced titanium niobium oxide: A high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9 (2021) 2105119. [DOI:10.1002/advs.202105119]
- [S42] J. Lee, H. Kwak, S. Bak, J. Lee, T. Hong, A. Abbas, H. Bang, New class of titanium niobium oxide for a Li-ion host: TiNbO₄ with purely single-phase lithium intercalation. Chem. Mater. 4 (2022) 854–863. [DOI:10.1021/acs.chemmater.1c03960]
- [S43] L. Zhao, S. Wang, Y. Dong, W. Quan, F. Han, Y. Huang, Y. Li, X. Liu, M. Liu, Z. Zhang, J. Zhang, Z. Tang, J. Li, Coarse-grained reduced Mo_xTi_{1-x}Nb₂O_{7+y} anodes for

high-rate lithium-ion batteries. Energy Storage Mater. 34 (2021) 574–581. [DOI:10.1016/j.ensm.2020.10.016]

- [S44] P. Jing, K. Liu, L. Soule, J. Wang, T. Li, B. Zhao, M. Liu, Engineering the architecture and oxygen deficiency of T-Nb₂O₅-carbon-graphene composite for high-rate lithiumion batteries. Nano Energy 89 (2021) 106398. [DOI:10.1016/j.nanoen.2021.106398]
- [S45] T. Li, G. Nam, K. Liu, J. Wang, B. Zhao, Y. Ding, L. Soule, M. Avdeev, Z. Liu, W. Zhang, T. Yuan, P. Jing, M. Kim, Y. Song, M. Liu, A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries. Energy Environ. Sci. 15 (2022) 254–264. [DOI:10.1039/d1ee02664j]
- [S46] Y. Yang, H. Zhu, J. Xiao, H. Geng, Y. Zhang, J. Zhao, G. Li, X. Wang, C. Li, Q. Liu, Achieving ultrahigh-rate and high-safety Li⁺ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv. Mater. 12 (2020) 1905295. [DOI: 10.1002/adma.201905295]
- [S47] Q. Tian, W. Ye, X. Yu, H. Cheng, N. Zhu, M. Long, M. Shui, J. Shu, WNb₆₀O₁₅₃: A novel energy storage material with high rate capability. Ceram. Int. 2 (2019) 1893–1899. [DOI:10.1016/j.ceramint.2018.10.081]
- [S48] W. Wu, M. Liu, Y. Pei, W. Li, W. Lin, Q. Huang, M. Wang, H. Yang, L. Deng, L. Yao, Z. Zheng, Unprecedented superhigh-sate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy Mater. 12 (2022) 2201130. [DOI:10.1002/aenm.202201130]
- [S49] M. Wang, Z. Yao, Q. Li, Y. Hu, X. Yin, A. Chen, X. Liu, J. Jiang, Y. Zhao, Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes. J. Energy Chem. 69 (2022) 601–611. [DOI:10.1016/j.jechem.2022.02.014]
- [S50] Qian, H. Yu, L. Yan, H. Zhu, X. Cheng, Y. Xie, N. Long, M. Shui, J. Shu, High-rate long-life pored nanoribbon VNb₉O₂₅ built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9 (2017) 30608–30616. [DOI: 10.1021/acsami.7b07460]
- [S51] C. Lin, S. Yu, S. Wu, S. Lin, Z. Zhu, J. Li, L. Lu, Ru_{0.01}Ti_{0.99}Nb₂O₇ as an intercalationtype anode material with a large capacity and high-rate performance for lithium-ion batteries. J. Mater. Chem. A 3 (2015) 8627–8635. [DOI: 10.1039/c5ta01073j]
- [S52] L. Hu, C. Lin, C. Wang, C. Yang, J. Li, Y. Chen, S. Lin, TiNb₂O₇ nanorods as a novel anode material for secondary lithium-ion batteries. Funct. Mater. Lett. 9 (2016) 1642004. [DOI: 10.1142/s1793604716420042]
- [S53] L. Hu, R. Lu, L. Tang, R. Xia, C. Lin, Z. Luo, Y. Chen, J. Li, TiCr_{0.5}Nb_{10.5}O₂₉/CNTs nanocomposite as an advanced anode material for high-performance Li⁺-ion storage. J. Alloys Compd. 732 (2018) 116–123. [DOI: 10.1016/j.jallcom.2017.10.145]
- [S54] G. Liang, L. Yang, Q. Han, G. Chen, X. Liu, Y. Chen, L. Luo, Y. Li, C. Lin, R. Che, Conductive Li_{3.08}Cr_{0.02}Si_{0.09}V_{0.9}O₄ anode material: novel "zero-strain" characteristic and superior electrochemical Li⁺-storage. Adv. Energy Mater. 10 (2020) 1904267. [DOI: 10.1002/aenm.201904267]
- [S55] J. Zheng, R. Xia, C. Sun, N. Yaqoob, Q. Qiu, L. Zhong, Y. Li, P. Kaghazchi, K. Zhao, J. ten Elshof, M. Huijben, Fast and durable lithium storage enabled by tuning entropy in

Wadsley-Roth phase titanium niobium oxides. Small 19 (2023) 2301967 [DOI:10.1002/smll.202301967]

- [S56] C. Lin, G. Wang, S. Lin, J. Li, L. Lu, TiNb₆O₁₇: a new electrode material for lithiumion batteries. Chem. Commun. 51 (2015) 8970–8973. [DOI: 10.1039/c5cc01494h]
- [S57] C. Yang, D. Ma, J. Yang, M. Manawan, T. Zhao, Y. Feng, J. Li, Z. Liu, Y. Zhang, R. Von Dreele, B. Toby, C. Albarrán, J. Pan, Crystallographic insight of reduced lattice volume expansion in mesoporous Cu²⁺-doped TiNb₂O₇ microspheres during Li⁺ insertion. Adv. Funct. Mater. 33 (2023) 2212854. [DOI:10.1002/adfm.202212854]
- [S58] F. Wunde, F. Berkemeier, G. Schmitz, Lithium diffusion in sputter-deposited Li₄Ti₅O₁₂ thin films. J. Power Sources 215 (2012) 109–115. [DOI: 10.1016/j.jpowsour.2012.04.102]
- [S59] C. Shi, K. Xiang, Y. Zhu, W. Zhou, X. Chen, H. Chen, Box-implanted Nb₂O₅ nanorods as superior anode materials in lithium ion batteries. Ceram. Int. 43 (2017) 12388–12395. [DOI: 10.1016/j.ceramint.2017.06.105]
- [S60] W. Wang, J. Park, V. Nguyen, E. Jin, H. Gu, Hierarchical mesoporous rutile TiO₂/C composite nanospheres as lithium-ion battery anode materials. Ceram. Int. 42 (2016) 598–606. [DOI: 10.1016/j.ceramint.2015.08.153]
- [S61] S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, Volume changes of graphite anodes revisited: a combined *operando* X-ray diffraction and *in situ* pressure analysis study. J. Phys. Chem. C 122 (2018) 8829–8835. [DOI: 10.1021/acs.jpcc.8b01873]
- [S62] R. Li, G. Liang, X. Zhu, Q. Fu, Y. Chen, L. Luo, C. Lin, Mo₃Nb₁₄O₄₄: a new Li⁺ container for high-performance electrochemical energy storage. Energy Environ. Mater. 4 (2021) 65–71. [DOI:10.1002/eem2.12098]
- [S63] H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, J. Zhang, M. Shui, Y. Xie, J. Shu, Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb₂₄O₆₂ nanowires as high-performance lithium container. Nano Energy 54 (2018) 227–237. [DOI: 10.1016/j.nanoen.2018.10.025]
- [S64] S. Qian, H. Yu, L. Yan, H. Zhu, X. Cheng, Y. Xie, N. Long, M. Shui, J. Shu, Highrate long-life pored nanoribbon VNb₉O₂₅ built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9 (2017) 30608–30616. [DOI: 10.1021/acsami.7b07460]
- [S65] X. Zhu, H. Cao, R. Li, Q. Fu, G. Liang, Y. Chen, L. Luo, C. Lin, X. Zhao, Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. J. Mater. Chem. A 7 (2019) 25537–25547. [DOI: 10.1039/c9ta07818e]