Supplementary Materials

High-silica KFI zeolite: highly efficient synthesis and catalysis in methanol amination reaction

Rui Wu^{1,#}, Jinfeng Han^{1,#}, Jing Li², Lin Li³, Shuang Liu¹, Peng Tian^{4,*}, Wenfu Yan^{1,*}

¹State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China. ²College of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132012, Jilin, China.

³College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China.

⁴National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China.

[#]Authors contributed equally.

*Correspondence to: Prof. Wenfu Yan, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China. E-mail: yanw@jlu.edu.cn; Prof. Peng Tian, National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China. E-mail: tianpeng@dicp.ac.cn

Content

Supplementary Figure 1. Experimental XRD patterns of solid samples extracted from the products crystallized from the initial mixtures of KFI-5.4 zeolite when the crystallization temperatures are (A) 140 °C and (B) 120 °C......5 Supplementary Figure 2. SEM images of solid samples extracted from the products crystallized from the initial mixtures of KFI-5.4 zeolite at 150 °C for (A) 0 day, (B) 5 day, (C) 2 days, (D) 3 days, (E) 4 days, and (F) 5 days......5 Supplementary Figure 3. Simulated XRD pattern of KFI and the experimental ones of the products crystallized from the initial mixtures with $SiO_2/Al_2O_3 = 19.6$, 20.6, 22.0, and 23.4, when the H_2O/Al_2O_3 ratio is 632 and the OH⁻/Al₂O₃ ratio is 4.32...... 6 Supplementary Figure 4. Simulated XRD pattern of KFI and the experimental ones of the products crystallized from the initial mixtures with $H_2O/Al_2O_3 = 211, 421, 632$, 841, and 1,054, when the SiO₂/Al₂O₃ ratio is 22.0 and the OH⁻/Al₂O₃ ratio is 4.32....6Supplementary Figure 5. Simulated XRD patterns of KFI and ERI and the experimental ones of the products crystallized from the initial mixtures with $OH^{-}/Al_{2}O_{3} = 2.88, 3.60, 4.32, 5.04, and 5.76, when the SiO_{2}/Al_{2}O_{3}$ ratio is 22.0 and Supplementary Figure 6. Experimental XRD pattern of the product obtained from **Supplementary Figure 7.** UV-Vis spectra deconvolution of (K⁺)CCH diluted with Supplementary Figure 8. UV-Vis adsorption spectra of 18-crown-6 aqueous Supplementary Figure 9. UV-Vis adsorption spectra of KOH aqueous solutions with Supplementary Figure 10. Experimental XRD patterns of pure 18-crown-6 and (K⁺)CCH powder got from vacuum freeze-drying......9

Supplementary Figure 11. Mass spectrum of (K ⁺)CCH 10
Supplementary Figure 12. Experimental XRD pattern of the product when
equivalent chemicals of H ₂ O, KOH, and 18-crown-6 replacing the as-prepared
(K ⁺)CCH were added to the initial mixture
Supplementary Figure 13. Photographs for the mixtures of 18-crown-6 aqueous
solution (5.7 mol/L) with (A) LiOH, (B) KNO ₃ , and (C) KCl, respectively11
Supplementary Figure 14. UV-Vis spectra deconvolution of (Na ⁺)CCH diluted with
different fraction of DI water11
Supplementary Figure 15. UV-Vis spectra deconvolution of (Cs ⁺)CCH diluted with
different fraction of DI water11
Supplementary Figure 16. UV-Vis adsorption spectra of NH ₃ ·H ₂ O and 18-crown-6
(aq) mixture diluted with different fraction of DI water12
Supplementary Figure 17. N_2 adsorption (•) and desorption (\circ) isotherms of
H-KFI-5.4 zeolite synthesized at the crystallization temperature of 150 °C and time of
5 d
Supplementary Figure 18. (A) MeOH conversion and (B) MMA plus DMA yield
over H-KFI-5.4 zeolite at 400 °C, 4.3 h ⁻¹ WHSV _{MeOH} , 1.0 NH ₃ /MeOH 13
Supplementary Figure 19. (A) MMA, (B) DMA, and (C) TMA selectivity over
H-KFI-5.4, Na(3%)-KFI-5.4, Na(22%)-KFI-5.4, and Na(60%)-KFI-5.4 catalysts in
the MAs synthesis at 350 °C, 0.813 $h^{\text{-1}}$ WHSV_{MeOH}, 2.0 NH ₃ /MeOH 13
Supplementary Table 1. Composition details of (K ⁺)CCH
References

Synthesis of low-silica KFI zeolite (KFI-3.8) seed

Materials and chemicals for the synthesis of low-silica **KFI** zeolite (KFI-3.8): Phosphoric acid (Beijing Chemical Works, 85 wt.% H₃PO₄), pseudoboehmite (Sasol, 72.7% Al₂O₃), fumed silica (Xuzhou Tiancheng Chlor_alkali Co., Ltd), and morpholine (Tianjin Fuchen Chemical Reagents Factory, C₄H₉NO \geq 98.5%) were used to synthesize SAPO-34 seed that was used to synthesize low-silica KFI-3.8 zeolite. Fumed silica (Xuzhou Tiancheng Chlor_alkali Co., Ltd), sodium aluminate (Sinopharm Chemical Reagent Co., Ltd, Al₂O₃ \geq 41.0%), and potassium hydroxide (Beijing Chemical Works; KOH \geq 85%) were used to synthesize the low-silica KFI-3.8 zeolite in the presence of SAPO-34 seed. All chemicals were used without further purification.

The low-silica **KFI** zeolite (KFI-3.8) was synthesized with SAPO-34 seed substantially according to our previous work^[1]. Firstly, SAPO-34 was synthesized according to "verified synthesis of zeolitic materials third revised edition" released by the Synthesis Commission of the International Zeolite Association (IZA)^[2]. In detail, a mixture was obtained by mixing 11.53 g phosphoric acid, 6.9 g pseudoboehmite, and 21.0 g deionized (DI) water. Another mixture was obtained by mixing 3.07 g fumed silica, 8.72 g morpholine, and 11.25 g DI water, and added to the former mixture with 18.0 DI water. After stirring for few hours at the room temperature, the mixture was transferred into a stainless-steel autoclave, incubated for 24 h at 38 °C, and heated for 24 h at 200 °C. Finally, after the autoclave was cooled to room temperature, the solid sample of SAPO-34 seed was filtered, washed with distilled water, and dried at 80 °C overnight.

For the KFI-3.8 synthesis, 0.39 g potassium hydroxide and 0.075 g sodium aluminate were first dissolved in 8.0 g DI water. 0.5 g fumed silica was then added and stirred for few hours until a homogeneous mixture was obtained. 0.05 g SAPO-34 seed was added to the mixture, and subsequently transferred into a 10 mL stainless-steel autoclave and crystallized at 100 °C for 5 days. The solid product KFI-3.8 zeolite was filtered, washed with DI water, and dried at 80 °C overnight.

Supplementary Figure 1. Experimental XRD patterns of solid samples extracted from the products crystallized from the initial mixtures of KFI-5.4 zeolite when the crystallization temperatures are (A) 140 °C and (B) 120 °C.

Supplementary Figure 2. SEM images of solid samples extracted from the products crystallized from the initial mixtures of KFI-5.4 zeolite at 150 °C for (A) 0 day, (B) 1 day, (C) 2 days, (D) 3 days, (E) 4 days, and (F) 5 days.

Supplementary Figure 3. Simulated XRD pattern of **KFI** and the experimental ones of the products crystallized from the initial mixtures with $SiO_2/Al_2O_3 = 19.6$, 20.6, 22.0, and 23.4, when the H₂O/Al₂O₃ ratio is 632 and the OH⁻/Al₂O₃ ratio is 4.32.

Supplementary Figure 4. Simulated XRD pattern of **KFI** and the experimental ones of the products crystallized from the initial mixtures with $H_2O/Al_2O_3 = 211, 421, 632, 841$, and 1,054, when the SiO₂/Al₂O₃ ratio is 22.0 and the OH⁻/Al₂O₃ ratio is 4.32.

Supplementary Figure 5. Simulated XRD patterns of KFI and ERI and the experimental ones of the products crystallized from the initial mixtures with $OH^{-}/Al_2O_3 = 2.88$, 3.60, 4.32, 5.04, and 5.76, when the SiO₂/Al₂O₃ ratio is 22.0 and the H₂O/Al₂O₃ ratio is 632. "•" represents the impurity phase of ERI.

Supplementary Figure 6. Experimental XRD pattern of the product obtained from the initial mixture without a seed.

Supplementary Figure 7. UV-Vis spectra deconvolution of $(K^+)CCH$ diluted with different fraction of DI water.

Supplementary Figure 8. UV-Vis adsorption spectra of 18-crown-6 aqueous solutions with different concentrations.

Supplementary Figure 9. UV-Vis adsorption spectra of KOH aqueous solutions with different concentrations.

Supplementary Figure 10. Experimental XRD patterns of pure 18-crown-6 and (K⁺)CCH powder got from vacuum freeze-drying.

Supplementary Figure 11. Mass spectrum of (K⁺)CCH.

Supplementary Figure 12. Experimental XRD pattern of the product when equivalent chemicals of H_2O , KOH, and 18-crown-6 replacing the as-prepared (K⁺)CCH were added to the initial mixture.

Supplementary Figure 13. Photographs for the mixtures of 18-crown-6 aqueous solution (5.7 mol/L) with (A) LiOH, (B) KNO₃, and (C) KCl, respectively.

Supplementary Figure 14. UV-Vis spectra deconvolution of (Na⁺)CCH diluted with different fraction of DI water.

Supplementary Figure 15. UV-Vis spectra deconvolution of (Cs⁺)CCH diluted with different fraction of DI water.

Supplementary Figure 16. UV-Vis adsorption spectra of NH₃·H₂O and 18-crown-6 (aq) mixture diluted with different fraction of DI water.

Supplementary Figure 17. N_2 adsorption (\bullet) and desorption (\bigcirc) isotherms of H-KFI-5.4 zeolite synthesized at the crystallization temperature of 150 °C and time of 5 days.

Supplementary Figure 18. (A) MeOH conversion and (B) MMA plus DMA yield over H-KFI-5.4 zeolite at 400 °C, 4.3 h⁻¹ WHSV_{MeOH}, 1.0 NH₃/MeOH.

Supplementary Figure 19. (A) MMA, (B) DMA, and (C) TMA selectivity over H-KFI-5.4, Na(3%)-KFI-5.4, Na(22%)-KFI-5.4, and Na(60%)-KFI-5.4 catalysts in the MAs synthesis at 350 °C, 0.813 h⁻¹ WHSV_{MeOH}, 2.0 NH₃/MeOH.

Sample	\mathbf{K}^{+}	Weight percentage	Weight percentage of	Chemical composition
	(g/L) ^a	of H ₂ O (%) ^b	18-crown-6 (%) ^c	
(K ⁺)CCH	78.54	23.21	71.46	[(KOH) _{1.0} ·(18-crown-6) _{2.85} ·(H ₂ O) _{13.57}]

Supplementary Table 1. Composition details of (K⁺)CCH.

^aThe concentration of K⁺ determined by ICP; ^bWeight percentage of H₂O (%) = (weight of the (K⁺)CCH - weight of the (K⁺)CCH after vacuum freeze-drying) / weight of the (K⁺)CCH × 100%; ^cWeight percentage of 18-crown-6 (%) = (weight of the (K⁺)CCH - weight of the H₂O - weight of the KOH) / weight of the (K⁺)CCH × 100%.

References

 Wu R, Han JF, Wang YZ, et al. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. *Inorg Chem Front* 2022;9:5766-73.[DOI: 10.1039/d2qi01544g]

 Mintova S. Verified syntheses of zeolitic materials third revised edition. Available from: <u>http://www.iza-online.org/synthesis/VS_3rdEd.pdf</u>. [Last accessed on 17 Apr 2024]