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ABSTRACT
Aim: This paper addresses the assessment of the composition of a general wound, in terms of all 
identifiable categories of tissue and pigmentation in an attempt to improve accuracy in assessing and 
monitoring wound health. Materials and Methods: A knowledgebase of clusters was built into the hue, 
saturation and intensity (HSI) color space and then used for assessing wound composition. Based on the 
observation that the clusters are fairly distinct, two different algorithms, that is, Mahalanobis distance (MD) 
based and the rotated coordinate system (RCS) method, were used for classification. These methods 
exploit the shape, spread, and orientation of each cluster. Results: The clusters in the HSI color space, 
built from about 9,000 (calibrated) pixels from 48 images of various wound beds, showed 8 fairly 
distinct regions. The inter‑cluster distances were consistent with the visual appearance. The efficacy 
of the MD and RCS based methods in 120 experiments taken from a set of 15 test images (in terms of 
average percent‑match) was found to be 91.55 and 93.71, respectively. Conclusion: Our investigations 
established eight categories of tissue and pigmentation in wound beds. These findings help to determine 
the stage of wound healing more accurately and comprehensively than typically permitted through use 
of the 4‑color model reported in the literature for addressing specific wound types.
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INTRODUCTION

Accurate assessment of wound health is essential in the 
reduction of morbidity and mortality, which in turn reduces 
the cost of health care. Factors characterizing the health of 
a wound include its composition in terms of tissue type, 
pigmentation (with a one‑to‑one correspondence to distinct 
colors), size (area, depth, and volume), shape, regularity 
and texture. Traditionally, wound composition has been 
assessed by visual inspection, which is subjective, tedious 

and limited in precision and consistency. A computerized 
system for assessment and documentation of the evolution 
of a wound is useful in providing a better understanding of 
wounds, the healing process, and validation of treatment 
protocols, and wound care products.

Color composition is the most important factor in 
determining the status of a wound, and its computerized 
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assessment has been an active area of research. 
Arnqvist et al.[1] addressed segmenting secondary healing 
ulcers based on the 3‑color (RYK) model: red (R) 
granulation, yellow (Y) necroses and black (K) necrotic 
eschar. Herbin et al.,[2] in their study on the effect of a 
new drug on wound kinetics, used color information 
(red and green) to distinguish a wound from normal 
skin in estimating the area of the wound, and proposed 
a color index to quantify healing on uniformly colored, 
artificially created blisters. However, natural wounds are 
generally more complex with highly variegated coloring.[3] 
The use of color information, rather than size, to assess 
healing and guide clinicians in their choice of wound care 
products, was stressed by Mekkes and Westerhof.[4] The 
approach taken by Mekkes and Westerhof[4] in their study 
of wound debridement based on video images, uses the 
RYK model. Jones and Plassmann[5] used the same model 
along with an “unclassified” category in their description 
of skin ulcers. Hansen et al.[6] applied the hue, saturation 
and intensity (HSI) model to classify wound severity in 
an animal model within 30 min following injury. Wounds 
were classified as mild, moderate or severe, based on 
differences in color. Berris and Sangwine[7] used the 
RGB model, in a study of pressure ulcers, to assess the 
content in terms of the three tissue types (BYR model). 
Hoppe et al.[8] highlighted the inadequacy of the RGB 
model, and used the HSI model to grade leg ulcers in 
terms of the quantity of slough. They also investigated 
the variability of color attributes (only red was considered) 
due to differences in lighting conditions and found hue 
to be the least variant. Oduncu et al.[9] also used the 
HSI model to assess the amount of slough in leg ulcers. 
Varedas et al.[10] developed a method very specific to 
pressure ulcers for classifying healthy and nonhealthy 
skin, with four tissue types for the latter, their method 
involves several preprocessing steps for the extraction of 
color and texture parameters. Wannous et al.[11] studied 
the variability arising from image capture from different 
sources under different conditions, they too considered 
only three tissue types.  Dorileo et al.[12] added white 
(W, representing hyperkeratosis) to the RYK model, for 
analyzing dermatological ulcers. In the same context, the 
use of texture parameters was proposed by Pereira et al.[13] 
to improve the performance of classification. The authors 
previously presented initial results showing the presence 
of eight tissue types and pigmentation, with a one‑to‑one 
correspondence to distinct colors.[14] Subsequently, 
Veredas et al.,[15] in their elaborate work on pressure 
ulcers based on four tissue‑types (with the skin 
regarded as the fifth), have emphasized the necessity for 
precise evaluation. Recently, Mukherjee et al.[16] presented 
results using a three‑color model with textures.

Thus, while the importance of color in representing 
wound composition is well‑recognized, only three to 
four categories and colors have been used to date 
in the analysis of specific types of wounds. However, 
wounds evolve over time, with specific types of tissue 
and pigmentation with eight identifiable colors which 
represent healing, necrosis and/or infection.[14] This theory 
is also supported by observations in a recent paper by 

Veredas et al.[15] Finally, other authors have indicated that 
an unaccounted color may appear in a wound bed and 
affect classification.[17]

The current study proposes that an eight‑color model 
would more comprehensively represent wound 
composition, evolution and changes due to infection. 
This would assist in the development of a comprehensive 
algorithm for all wounds, rather than a specific wound 
type (e.g. pressure ulcers). Thus, in the interest of 
improving the accuracy of assessment for general 
wounds, the authors discuss a knowledge base of clusters 
associated with the eight categories in an appropriate 
color space. The results of a classification algorithm which 
take into account the information about the shape, spread 
and orientation of each cluster, through its covariance 
matrix, are presented.[18] In addition, the results of the 
“rotated coordinate system (RCS)” method, which also 
makes use of cluster shapes, are delineated.[19]

MATERIALS AND METHODS

The procedure for computer assessment of wound 
composition based on colors of tissue and pigmentation  
involves (a) choosing an appropriate color model, 
(b) building the knowledge base in the chosen space, and 
(c) classification of regions in the given wound.

The color model
Although R, G and B are the considered the “primary colors” 
of light, the RGB model is more useful in the generation 
of color rather than analysis.[18] An alternative is the HSI 
model, wherein hue (H) describes pure color, saturation (S) 
is the “degree of dilution from purity” by white light, 
and I is the intensity (decoupled from color information). 
Color in RGB‑format can be converted to the HSI version 
by suitable transformations.[18] Since hue is quantified in 
terms of the angle from the “red”‑axis in the HSI space, 
it suffers discontinuity at 0 (located at the mid‑point of 
the interval representing the red hue). To circumvent this 
problem, the hue range was shifted, as was suggested in 
the previous study.[20]
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The choice of the origin at H = 250 is guided by the fact 
that minimal tissue was found in the range of 250 ± 60. 
We refer to this as the modified HSI space.

Procedure for assessing wound composition
The algorithm for determining the wound status in terms 
of tissue types and pigmentation consists of two phases, 
as described in the following.

Building the knowledge base
The eight categories of tissue and pigmentation of 
interest include: (1) healthy granulation tissue (HGT), 
(2) unhealthy granulation tissue (UGT), (3) whitish slough, 
(4) yellowish‑green pigmentation (G1), (5) bluish‑green 
pigmentation (G2), (6) fat (F), (7) brown necrotic tissue (BNT), 
and (8) black necrotic tissue or gangrene (Ga). A sample 
of each, pertaining to each of the eight categories, was 
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selected randomly from various wounds and is displayed 
in Figure 1 for the purpose of illustration.

The concept of identifying the tissue types based on 
pigmentation involves first building a reference base, that 
is, a labeled set of clusters in the HSI space, based on 
a large number of pixels per category from many wound 
images as judged by an experienced plastic surgeon. Prior 
to calculating the HSI parameters, the RGB components 
must be calibrated to account for variations due to 
“local” or “global” factors.[11] Local variations occur due 
to variations in the angle and the distance of the camera 
from the wound. Global variation arises due to factors 
like ambient light. All of the wound images were taken by 
the same camera under similar conditions. Ignoring local 
variations, the RGB components have been calibrated for 
global variations, as suggested by Wannous et al.[11] by 
exploiting the white patches available in the vicinity of 
the wound in some of the images. The corrected values 
were used to compute the values of H, S, and I. Each pixel 
within the wound is represented by a 3‑element vector 
(a point) in the HSI space. Points corresponding to a given 
tissue type or pigmentation, as decided by an expert 
based on its color, form a cluster.

Classification
Classification by distance‑based approaches is considered 
as the clusters were found to be fairly distinct.

The first approach is based on the Mahalanobis 
distance (MD).[21] This measure recognizes that some 
variables may suffer larger variance than the others 
due to differences in numerical values, variances and 
their inter‑relationships (if any). Indeed, MD takes into 
account the shape of each of the clusters, information 
about which  is embedded in the covariance matrix. The 
expression for MD between the observation vector x and 
a cluster “i” with mean µi and covariance matrix Ci, is 
given by:

2 -1
i i i i( , ) ( ) ( )d x = x C xµ µ µ− −  (2)

Note that the contours of constant density 
(three‑dimensional histogram) are hyperellipsoids of 
constant MD from µi.

[22]

Another method, the RCS method, is considered based on 
its philosophy, its success in machine vision applications,[19] 
and for the sake of comparison. It uses a metric derived 
by transforming the coordinates of the cluster space, 
such that the intra‑class samples are clustered closely, 
and inter‑class samples are separated. The transformation 
involves rotation and scaling of the axes, such that one 

axis lies along that of minimum variance and another 
along that of the maximum. The optimum rotated 
coordinate axes may be shown to lie in the directions 
of the orthogonal eigenvectors of Ci, and scaled by the 
inverse of the respective eigenvalues. The theoretical 
considerations outlined in the preceding result in the 
following distance metric between the observation‑vector 
x and a cluster “i” with mean µi:
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Where ek and γk are the kth eigenvectors and the 
eigenvalue of Ci. Note that γk happens to be the variance 
of the sample points in the direction of ek. Scaling 
the transformed axes by the inverse of the respective 
eigenvalues is, therefore, logical. The relation of this 
approach to statistical decision theory is seen when one 
notes that the minimum (Euclidean) distance classification 
in the new space amounts to maximum likelihood 
classification after fitting Gaussian density to the data.[19]

Classification of a color pixel specified by the vector x 
of HSI values is performed by assigning it to the cluster 
having the smallest value of d (x, µi)

RESULTS

The reference clusters were built by using 48 reference 
images of chronic wounds of various types, acquired 
under daylight, by a digital camera (Sony DSC P9) with 
flash. About 9,000 pixels (>1,000/category) were assigned 
to one of the eight categories. Samples of the eight types 
of tissue and pigmentation are displayed in Figure 1. The 
calibrated RGB values of each of the pixels were recorded 
against the category. The calibration factors were 
1.0162 (red), 1 (green) and 1.016 (blue). After rejecting 
the pixels (with I > 233) associated with reflections 
from flash, the values of H, S and I, associated with 
each pixel, were computed, and that of H was modified 
(as per Equation 1).

Views of the clusters in two different orientations are 
displayed in Figure 2. It is very important to observe the 
presence of eight clusters and that they are fairly distinct. 
HGT and UGT lie within a narrow hue (red) but spread 
only over saturation. Not surprisingly, they are close 
to each other. In fact, the appearance or disappearance 
of various colors over time allows one to assess the 
evolution of the wound toward a state of healing or 
otherwise. To assist in a quantitative understanding of the 
clusters, the values of inter‑cluster distance are displayed 
in Table 1. The inter‑cluster distance,[23] based on the MD 
measure, between clusters i and j, is given by:

−

− −
1
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where xi and xj are the means of the clusters i and j, 
respectively, and Cij is the pooled covariance matrix. The 
pooled covariance matrix was computed based on the data 
associated with both of the clusters i and j (considered as 
one group), rather than considering it to be a weighted 
average of the covariance matrices associated with the 

Figure 1: A sample each, of the eight categories of tissue 
types/pigmentation, selected randomly from various wound‑beds
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individual clusters, as suggested by Hertzog period.[24] The 
distances agree with the visual (geometric) separations. 
The distance between HGT and UGTs is the smallest. 
The cluster associated with UGT appears to consist of 
two lobes, though over a narrow range of hue, because 
the color associated with the unhealthy bed can vary 
slightly due to poor vascularity, infections, etc. Clinically, 
considering UGT to consist of two clusters is therefore 
unnecessary. Instead, this is addressed mathematically 
through an algorithm that exploits cluster shape.

To test the efficacy of the proposed algorithms, a set of 
15 test images were used to perform 120 experiments 
(15/category). Each experiment began with the selection 
of a relatively homogenous region of interest (ROI), 
selected randomly from the test images. A visual estimate 
of the composition (in terms of the percentage of the 
main tissue/pigmentation) was declared by one author 
who was blinded to the selection of the ROI. The ROI 
was subjected to estimation of its composition by the 
algorithms described in this paper. The performance of 
the algorithm in terms of accuracy of the estimates is 
defined by:

= − −∑
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where EVi and ECi are the fractional estimates (visual 
and computer‑assisted) of the tissue and pigmentation 
composition, and Nexp is the number of experiments 

(15 in this case). The values of %Match were computed 
using both methods and Table 2 lists the values obtained. 
The relatively poor performance with respect to UGT and 
Ga may be attributed to the absence of a tight cluster in 
the first case, and a large spread in the second. Indeed, 
both are difficult to judge visually; UGT is close to HGT 
in color, and Ga is very dark to allow easy identification 
of its hue. To understand the behavior quantitatively, the 
inter‑cluster MDs were calculated as listed in Table 1. One 
may observe that the distances between HGT and UGT, Ga 
and BNT, are relatively small.

DISCUSSION

In this paper, there was no attempt to refine the cluster 
structure in the HSI space, by breaking apparently 
disjointed clusters or joining those close to each other, 
as reported by Nayak et al.[14] Modifying the clusters is 
not meaningful, as some color spread is natural.[2] Such 
variations are captured in the cluster shapes and are 
incorporated in the algorithms proposed in this paper. 
Although we experimented with the inter‑quartile range, 
retaining central tendencies, and the improvement in the 
accuracy of classification was not significant.[20]

There are some limitations in the presented study. 
As reported, a modified HSI space was used, which 
involves a shift of the origin. This approach suggested by 
Hoppe et al.[8] ensures a continuous value for hue, which 
is used as a parameter. The choice of the origin and the 
minimal range of hues was based on empirical observations 
of data involving nearly 9,000 pixels. While there could 
be some change in the precise values attributed to the 
camera and ambience, color calibration can account for 
such variations. Indeed, variation associated with the 
range of hues is minimal in comparison with the other 
parameters.[8] However, it would be interesting to find an 
approach to determine the values of the parameters to 
facilitate a shift of the origin. Further, simulated images 
and varying ambience could be used to test the efficacy 
of the values derived by such a method.

To validate the algorithms, randomly selected and 
blinded ROIs were used to mitigate bias. Nevertheless, 
the approach presented has limitations; specifically, it 

Table 1: Values of inter-cluster MD in the HSI space
HGT UGT WS G1 G2 F BNT Ga

HGT 0 2.69 3.73 3.7 3.95 3.43 3.54 3.88
UGT 2.69 0 3.26 3.71 3.95 3.03 3.67 3.94
WS 3.73 3.26 0 3.61 3.95 3.09 3.92 4.15
G1 3.7 3.71 3.61 0 3.3 3.69 3.84 3.93
G2 3.95 3.95 3.95 3.3 0 3.94 3.94 3.86
F 3.43 3.03 3.09 3.69 3.94 0 3.7 3.93
BNT 3.54 3.67 3.92 3.84 3.94 3.7 0 3.01
Ga 3.88 3.94 4.15 3.93 3.86 3.93 3.01 0

HIS: Hue, saturation, and intensity, MD: Mahalanobis distance,  
HGT: Healthy granulation tissue, UGT: Unhealthy granulation tissue, 
WS: Whitish slough, G1: Yellowish green pigmentation, G2: Bluish green 
pigmentation, F: Fat, BNT: Brown necrotic tissue, Ga: Gangrene

Figure 2: (a) A view of the three‑dimensional clusters in the hue, saturation, and intensity space, showing various tissue‑categories; (b) another view 
of the clusters in the hue, saturation, and intensity space from a different orientation. These two views show all the tissue categories, and that the 
clusters are fairly distinct

ba
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would be useful to take a consensus of multiple operators 
for segmenting clusters for training, and use different 
operators for selecting ROIs for a more robust validation 
of the algorithms.

In conclusion, this paper establishes eight categories of 
color due to tissue types and pigmentation, more than 
those based on the commonly used 4‑color model. The 
results were based on a knowledge base built using 
the one‑to‑one correspondence between tissue types  
pigmentation, and color. The (modified) HSI model 
was used because it better represents the physician’s 
perception of color, in addition, to resolving the 
information into eight useful categories. The resulting 
eight categories provide a better representation and 
assessment of wound health and minimize error in 
judgment due to misclassification of unidentified tissue 
types and pigmentation. Segmentation of wounds would 
be very useful for monitoring and objective recording of 
various phases of wound healing and the response to 
treatment protocols.
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