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Abstract
In addition to being determined by its chemical composition and processing conditions, the performance of a ma-
terial is also affected by the variables of its service space, including temperature, pressure, and frequency. A rapid
means to estimate the performance of a material in its service space is urgently required to accelerate the screening
of materials with targeted performance. In the present study, a materials informatics approach is proposed to rapidly
predict performance within a service space based on existing data. We utilize an active learning loop, which employs
an ensemble machine learning method to predict the performance, followed by a Bayesian experimental design to
minimize the number of experiments for refinement and validation. This approach is demonstrated by predicting the
damping properties of a ZE62magnesium alloy in a service space defined by frequency, strain amplitude, and temper-
ature based on the available data for other magnesium alloys. Several utility functions that recommend a particular
experiment to refine the estimates of the service space are used and compared. In particular, the standard deviation
is found to reduce the prediction error most efficiently. After augmenting the database with nine new experimental
measurements, the uncertainties associated with the predicted damping capacities are largely reduced. Our method
allows us to forecast the properties in the service space of a given material by rapid refinement of the predictions via
experiment measurements.
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INTRODUCTION
High-throughput calculations and combinatorial experiments, together with data-driven approaches, are now
widely employed to search for newmaterials with targeted properties in an acceleratedmanner [1–5]. Such data-
driven methodologies, including statistical inference, machine learning, and deep learning, usually serve as
means to explore the vast, high-dimensional “material space” with unknown properties [6–9]. These algorithms
infer material properties from material descriptors or features, which essentially are functions of chemical
compositions and processing conditions [10–13].

In addition to the intrinsic properties of materials, a variety of environmental factors during the service process
affect the performance of a material [14]. The variables within the working environment form the so-called
“service space”. For example, the service space for ship steel may include temperature and flow velocity, which
in turn influence the corrosion rate, whereas, for a superalloy, the variables can include temperature, engine
speed, and pressure [15,16]. Only after acquiring the performance in the whole service space can a rational
selection of the material be made as the material space is too vast to explore exhaustively and the service
space can be complex. The emphasis of current materials informatics approaches has largely been on down
selecting or exploring the material space, with few studies having explored the service space systematically and
efficiently.

Machine learning offers an approach to address the complexity of both the materials and service spaces [17–19].
Predictive machine learning models map the materials descriptors to performance, and the experimental de-
sign selects optimal candidates for experiments to minimize the overall effort [20]. In experimental studies
in materials science, the size of the available data is typically small, which often degrades the prediction as
the uncertainties are then large [21]. Adaptive sampling provides an efficient means to explore the vast search
space and has been utilized to overcome the limitations of small training data sets and large model uncer-
tainties [20,22–25]. Incorporating efficient sampling methods to guide new measurements iteratively refines the
service space in the fewest number of measurements.

Here, we propose an active learning approach that employs an ensemble machine learning method to predict
the performance in the whole service space and then use Bayesian experimental design to recommend can-
didates for experiments. Our experimental design suggests an experiment as a function of one variable in
the service space. This is in contrast to fixing all the variables to given values, which is the usual approach
employed with functions such as Efficient Global Optimization [26,27].

We demonstrate our approach by predicting the damping capacity of magnesium alloys in their service space.
It is known that magnesium alloys exhibit good damping properties due to the easy motion of dislocations
and weak pinning effects on dislocations [28]. They have wide applications in structures ranging from aircraft
to electrical devices, which usually require noise/vibration reduction and shock absorption [29]. The alloying
elements, including Zr, Zn, Cu, Ca, and rare earth elements, form secondary phases, introduce point defects
and modify the grain size, which affect the damping properties of the alloy [30–32]. These possible variations
in chemistry lead to a vast material space for magnesium alloys. More importantly, the mobility of crystalline
defects, such as dislocations and twin boundaries, depends on environmental variables, such as frequency ( 𝑓 ),
strain amplitude (𝜀), and temperature (𝑇), resulting in different damping capacities [33–37]. These variables
form the service space for the damping capacity.

We use an ensemble learning model to estimate the damping capacity in the three-dimensional space of 𝑓 , 𝜀,
and𝑇 with different compositions. Themodel is then applied to the recently developedmagnesium alloy ZE62,
which shows promise with good mechanical and functional properties [38]. Six different utility functions are
used to recommend experiments to reduce the uncertainties of the predictions. It is found that maximizing the
standard deviation of the experiment is themost efficientmethod. Guided by the utility functions, we iteratively
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Table 1. Details of machine learning methods used in the present study

Model Packages Parameters

svr.rbf e1071 The kernel function is a radial-based kernel function. The parameter
gamma is equal to 1 and the cost is equal to 30

rf randomForest The number of trees is 500

poly stats The powers for dif.Esurf, dif.Emelt, and dif.Ymod are 2, 3, and 3,
respectively. The powers for strain, temperature, and frequency are 2, 3,
and 1, respectively

nnet nnet The size of the neural network is 50

gbm gbm The number of trees is 300 and the interaction depth is set as 5

mxgb xgboost The maximum depth of trees is 6 and the evaluation metric is the rooted
mean squared error

augment the data from nine new experimental measurements and find that the uncertainties associated with
the predicted damping capacities are largely reduced. Our approach provides a framework to predict the
service space of materials in the search space and allows the predictive algorithm to choose the experiment
from which it learns more efficiently with less training data.

MATERIALS AND METHODS
Experimental methods
Our ensemble learning model is applied to the recently developed as-cast Mg-6Zn-2RE (wt.%) alloy (ZE62).
Specifically, ZE62 was prepared from pure Mg (99.99%), pure Zn (99.99%), and rare earth elements (Gd, Nd,
Ce, and Y) in a resistance furnace. The 20.00 × 3.50 × 1.00 mm3 samples for damping measurements were
obtained by spark-cutting. The damping capacity as a function of frequency, strain amplitude, and temperature
was measured in a single cantilever model by a TA DMA 850 device.

Machine learning methods
We trained five supervisedmachine learningmodels on samples in the training set to map thematerial features
and variables in the service space to the property. Themodels included a support vector machine with a radial-
based kernel function, random forest, polynomial regression, neural network, gradient boosting decision tree,
and extreme gradient boosting. The latter two are tree-based ensemblemodels, whereas the others are standard
supervisedmodels. Thesemodels were implemented in the e1071, stats, randomForest, nnet, gbm and xgboost
packages within the RSTUDIO environment based on R-4.0.4. The details of the machine learning methods
are listed in Table 1.

RESULTS AND DISCUSSION
Design strategy
Figure 1 shows our design strategy, including prediction and optimization. It employs machine learning al-
gorithms to build surrogate models from existing data to predict outcomes within the service space of all
unexplored materials in the material space. The optimization part recommends a candidate experiment by
Bayesian optimization. The candidate experiment consists of several measurement values with only one vari-
able changing in the service space. The new data augment the training data.

A database with known material features (𝜓), environmental variables belonging to the service space (𝜑), and
damping capacity as the target property (𝑌 ), serves to build themachine learningmodel,𝑌 = 𝑓 (𝜓, 𝜑)+𝜀. All the
unexplored materials with material features (𝜓) known form the material space and each material in the space
possesses a service space with known variables 𝜑, such as temperature, frequency, and so on. The machine
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Figure 1. Flowchart of our design strategy including prediction and optimization.

learning model 𝑌 = 𝑓 (𝜓, 𝜑) + 𝜀 is directly applied to an unexplored new material (𝜓 is known) to obtain its
service space, as the variables 𝜑 are discretized within an allowed range. The output of the prediction can be the
service space of all possible materials. Since the prediction inevitably contains uncertainties, for a material of
interest, utility functions (or selectors) can be employed to select an experiment and then augment the database
with more accurate data to efficiently reduce the model uncertainties. An experiment here is a measure of
damping capacity as a function of one of the variables (frequency, strain amplitude, or temperature), i.e., the
damping curve. There are thousands of experiments that could be completed in the three-dimensional service
space, which we refer to as the “experimental space”. The focus here is to select the meaningful experiment that
can significantly reduce the uncertainties. Once the selected experiment is performed, the results are added to
the initial training data and the loop repeats.

Data and feature selection
We built a training dataset containing 769 data points with known damping capacity. The data are from 14
as-cast magnesium alloys. The distribution of different alloying elements in the training data is shown in the
radar chart in Figure 2A. The principal elements, Mg, Zr, and Zn, are the most common. It is noteworthy
that although our test alloy, ZE62, contains Nd, which is absent from the training data, our model can make
predictions of alloys containing Nd. The damping capacity was obtained for 40 experiments, in which it varies
with one of the variables, namely, frequency ( 𝑓 ), strain amplitude (𝜀), or temperature (𝑇). As shown in Fig-
ure 2B, all the samples in the training data were visualized in the plane of two principal components, which
were obtained by principal component analysis. The trend in the damping property of the 40 experiments
can be clearly identified in the plane. The damping values of the Mg alloys range from 0 to 0.1 in the training
dataset, as indicated by the color bar in Figure 2B.

Both the chemical compositions and environmental variables strongly affect the damping capacity of magne-
sium alloys. Two sets of independent variables are thus needed to serve as the inputs to the surrogate model,
namely, the material features (𝜓) and the service space variables (𝜑).

The compositions of different elements can potentially be used as material features, but this leads to a high-
dimensional feature space, as well as poor interpretation of the surrogate model. More importantly, the model
based on chemical composition usually has a poor capability to generalize, especially when there are new
elements in the unexplored search space. We thus establish a material features pool based on 12 physical
properties of elements, as listed in Table 2. The mole average of the physical properties is calculated via 𝜓𝑎𝑣𝑒 =∑𝑛
𝑖=1 𝑤𝑖𝑝𝑖 , where 𝑤𝑖 is the mole fraction of the 𝑖𝑡ℎ element and 𝑝𝑖 is the physical property of the 𝑖𝑡ℎ element.
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Figure 2. Visualization of training dataset for damping capacity of magnesium alloys used. (A). Distribution of different elements in training
data. (B). Distribution of samples in training data in the plane of two principal components (PC1 and PC2). The color indicates the damping
values.

Table 2. Physical properties of elements and material features 𝜓

Properties of elements Material features (𝝍)

Melting point (K)
ave.Tm
dif.Tm

Electronegativity (Martynov and Batsanov)
ave.elgMB
dif.elgMB

Cohesive energy (J/mol)
ave.Ecoh
dif.Ecoh

1st ionization energy (kJ/mol)
ave.1Eion
dif.1Eion

2nd ionization energy (kJ/mol)
ave.2Eion
dif.2Eion

Enthalpy of melting (kJ/mol)
ave.Emelt
dif.Emelt

Enthalpy of surface (Miedema) (kJ/mol)
ave.Esurf
dif.Esurf

Metallic radii (Å)
ave.Rmet
dif.Rmet

Valence electron number
ave.venum
dif.venum

Work function (eV)
ave.wf
dif.wf

Young’s modulus (GPa)
ave.Ymod
dif.Ymod

Atomic mass
ave.atmass
dif.atmass

The physical properties due to different elements in the alloy are calculated using 𝜓𝑑𝑖 𝑓 𝑓 =
√∑𝑛

𝑖=1 𝑤𝑖 (1 − 𝑝𝑖
𝜓𝑎𝑣𝑒

)2.
In total, there are 24 material features listed in Table 2.

As shown in Figure 3A, certain features are highly correlated, andwe filter out several using Pearson correlation
analysis. The correlation coefficients between feature pairs are calculated and lie in the interval [0, 1]. We
consider feature subsets with coefficients larger than 0.8 as highly correlated and remove others. We are left
with six features if we consider that the difference between elements can potentially play an important role in
modifying the properties of the principal elements. We use gradient tree boosting to calculate their influence
on the property. The ranking of the 6 features is shown in Figure 3B, and we select the top three material
features (𝜓), namely, dif.Esurf, dif.Ymod and dif.Emelt, as inputs to the surrogate model.
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Figure 3. Pearson correlation and relative influence of features. (A). Graphical representation of Pearson correlation matrix for the 24
material features. Blue and red indicate positive and negative correlations, respectively. The darker the tone and the larger the circle, the
more significant the corresponding correlation. (B). Relative influence of features according to gradient boosting, which indicates the impact
of features on the property. These features are preselected by Pearson filtering.

The service space variables (𝜑) include the frequency ( 𝑓 ), strain amplitude (𝜀), and temperature (𝑇). Generally,
damping values increase with increasing strain due to the larger driving force for defects to move [28]. However,
there is no general tendency for the damping capacity ofmagnesium alloyswith temperature or frequency [31,33].
Here, we discretize these factors and set up a three-dimensional service space with discretized variable values.
The temperature ranges from 273.15 to 373.15 K in steps of 5 K. The frequency varies from 1 to 20 Hz in steps
of 1 Hz. The strain amplitude changes from 10−5 to 10−3 logarithmically.

Machine learning models
We employ five differentmachine learningmodels to estimate the damping capacity, including a support vector
machine with a radial basis function kernel (svr.rbf), a random forest regression tree model (rf), a polynomial
regression model (poly), a neural network (nnet) and a gradient boosting model (gbm). The original dataset
is split into two parts, i.e., 80% for the training set and the remaining 20% for the testing set. The model
performance can be visualized by plotting the predicted damping capacity as a function of the measured val-
ues. Figure 4A-E show the performance of the 5 models, where the blue points represent the training set and
the purple points are the testing set. The testing data show varying degrees of deviation from the diagonal,
especially for the single supervised regression models.

Here, we also use the boosting method of ensemble learning, which uses decision trees as base learners and
then integrates the outcomes from these learners for a more accurate predictive model. The extreme gradi-
ent boosting algorithm (mxgb) is employed and its performance is shown in Figure 4F. The data points are
distributed about the diagonal line, suggesting that the model is reasonably good.

We further evaluate the performance of the models by estimating the training and test errors. All data in the
dataset are used to train the regression model and obtain the prediction for each sample. The training error
is calculated by comparing the prediction (𝑦̂𝑖) and the measured values (𝑦𝑖) of all samples (𝑛) in the dataset,
which is given by 𝑅𝑀𝑆𝐸.𝑡𝑟𝑎𝑖𝑛 =

√
1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2. As shown in Figure 5A, the ensemble learning model of

the mxgb outperforms the other models in terms of training error.

The cross-validation and the bootstrap method with replacement are employed to estimate the test error for
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Figure 4. Performance of machine learning models. The predicted damping capacity is plotted as a function of the measured values. The
blue dots represent the training set and the purple dots are for the testing set. (A). Support vector regression with radial basis function
kernel (svr.rbf). (B). Random forest regression tree model (rf). (C). Polynomial regression model (poly). (D). Neural network (nnet). (E).
Gradient boosting model (gbm). (F). Ensemble learning model of extreme gradient boosting (mxgb). The insets show the mean and
standard deviation of the predicted value obtained by the bootstrap resampling method.

these models. Bootstrap resampling is commonly used to evaluate the robustness of models. It is implemented
by sampling the data with replacement. In the present study, we sample 𝑛 = 769 observations from the initial
dataset containing 769 points of damping properties. We repeated the process 500 times and generated 500
resampled training sets to build 500 machine learning models. Each sample in the initial dataset thus gives
500 predicted values, which are used to determine the mean value (𝜇𝑖) and associated standard deviation (𝜀𝑖).
The insets in Figure 4 show the mean value (𝜇𝑖) as a function of measured value (𝑦𝑖) and the error bar gives
the standard deviation (𝜀𝑖). Again, the mxgb shows a tight distribution about the diagonal line. The mean
squared error from 𝜇𝑖 can be considered as an estimate of the training error and is given by 𝑅𝑀𝑆𝐸.𝑏𝑜𝑜𝑡𝑠 =√

1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝜇𝑖)2. We utilized leave-one-out cross-validation (LOOCV) to estimate the test error, which is

given by 𝑅𝑀𝑆𝐸.𝑐𝑣 =
√

1
𝑛

∑𝑛
𝑚=1 (𝑦𝑚 − 𝑦̂𝑚)2, where 𝑦̂𝑚 is the prediction of the 𝑚𝑡ℎ leave out sample. When

calculating the LOOCV error, we used all the training data. The 𝑅𝑀𝑆𝐸.𝑐𝑣 and 𝑅𝑀𝑆𝐸.𝑏𝑜𝑜𝑡𝑠 are shown in
Figure 5B and C, respectively. The mxgb possesses the lowest test error and outperforms the other machine
learning models.

We used the mxgb model to estimate the damping capacity of unexplored magnesium alloys in the service
space of frequency ( 𝑓 ), strain amplitude (𝜀), and temperature (𝑇). The recently developed ZE62 magnesium
alloy, which is absent in our training dataset, is utilized as a test alloy. The material features (𝜓) including
dif.Esurf, dif.Ymod, and dif.Emelt are calculated according to the chemical compositions of the ZE62 alloy and
the service space variables (𝜑) 𝑓 , 𝜀, and 𝑇 are discretized within the preset range. The damping capacity of
ZE62 in its service space is estimated and the results are shown in Figure 6. This can be used to decide whether
the ZE62 alloy is suitable for particular applications or to determine the range of environment variables for a
targeted damping value. However, as the data in the training set is insufficient, the estimates in Figure 6 are
not necessarily accurate. Therefore, we augment the training set with several measured values of unexplored
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Figure5. Performance of differentmodels in terms of training and test errors. (A). Training error of RMSE.train. (B). Test error of RMSE.boots.
(C). Test error of RMSE.cv. The ensemble learning model of the extreme gradient boosting (mxgb) outperforms the other models.

Figure 6. Estimated damping capacity of ZE62 alloy in its service space.

damping capacity in the service space to further reduce the uncertainties of the predictions.
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Efficient sampling in service space
The central question is which points in the service space in Figure 6 should be measured so that the uncertain-
ties are reduced the most? In practice, during one experiment, we measure the damping capacity easily as a
function of either frequency ( 𝑓 ), strain amplitude (𝜀), or temperature (𝑇) rather than a single point in the ser-
vice space. Therefore, the selection problem becomes one in which a particular experiment is recommended
to measure a damping capacity curve in the service space. The continuous improvement of the estimate can
be achieved via active learning, which recommends the most promising experiment with the largest utility
function value in each iteration. The damping capacity curve then augments the data set for the next itera-
tion. In the following, we compare the efficiency of six different utility functions in reducing the uncertainties
associated with the estimates of damping capacity for ZE62. During each iteration, we measure the damping
capacity values.

The first two utility functions consider the uncertainty associated with the damping capacity. We use the
bootstrap resampling method to estimate the standard deviation (𝑠𝑑) associated with the estimated damping
capacity for each point (𝑥) in the service space. This is given by:

𝑠𝑑 =

√√√
1
𝐾

𝐾∑
𝑖=1

(𝑦𝑖 (𝑥) − 𝑦̄(𝑥))2 (1)

where 𝐾 is the number of bootstraps, 𝑦𝑖 (𝑥) is the predicted value based on each resampled dataset and 𝑦̄(𝑥)
is the mean value of the bootstrapped predictions. As each experiment contains several points in the service
space, we either utilize the maximum of their 𝑠𝑑 values or the mean of their 𝑠𝑑 values as the utility function of
the experiment. The former is abbreviated asmax.sd, while the latter is abbreviated asmean.sd. The experiment
with the highest sd values will be selected, measured, and then fed back to the dataset.

The next two utility functions consider the influence of how the points in the service space change the model,
i.e., the change compared to the current model after augmenting the data of selected candidates. We would
like to choose the experiment that can change the model most [39]. The model change (𝑀𝐶) for a point (𝑥) in
the service space can be calculated through:

𝑀𝐶 =
1
𝐾

𝐾∑
𝑖=1

∥( 𝑓 (𝑥) − 𝑦𝑖 (𝑥)) 𝜙𝑖 (𝑥)∥ (2)

where 𝐾 is the number of bootstraps, 𝑓 (𝑥) is the prediction of the ensemble model based on all the data,
𝑦𝑖 (𝑥) is the prediction from the model based on the 𝑖𝑡ℎ resampled subset and 𝜙𝑖 (𝑥) is a matrix containing the
predicted results of each single model using the resampled subset. Similar to the case of 𝑠𝑑, we either utilize
the maximum of the 𝑀𝐶 values of the points in an experiment or the mean of their 𝑀𝐶 values as the utility
function of the experiment. They are abbreviated as max.MC and mean.MC, respectively.

Distance is another consideration for the utility function, which evaluates how “far” the new data point (𝑥) is
from the known data (𝒛). The farther the data points are, the greater the difference is from the known data.
The distance is defined by the minimum Euclidean distance from point (𝑥) in the unexplored service space to
the training data, given by:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑖𝑛
∀𝑥∈𝑋

𝑑𝑖𝑠𝑡 (𝑥, 𝒛) (3)

For an experiment with several points (𝑥), we calculate the mean value of distance for the points, which defines
the utility functionmean.distance. The concept here is to find the curve that is “farthest” from the known space.

Query by committee is a common approach in active learning and defines a promising candidate as one with
the highest deviation amongst the predictions of different learners [40]. The difference between differentmodels
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is defined as the sum of deviation between the prediction and the mean value from the models:

𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 =
∑
𝛼

( 𝑦̂𝛼 (𝑥) − 𝑦̄(𝑥))2 (4)

where 𝛼 represents the different learners, 𝑦̂𝛼 (𝑥) is the prediction of each single learner and 𝑦̄(𝑥) is the mean
value of the predictions from different learners. We calculate the mean value of the difference for points from
the experiment to define the utility function ofmean.difference.

Therefore, in total, we propose six utility functions, namely,max.sd, mean.sd, max.MC,mean.MC,mean.distance
andmean.difference. The next experiment (𝑒∗) is recommended bymaximizing the value of the utility function
(U), i.e.:

𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑒∈𝑒𝑥𝑝𝑒𝑟 𝑠𝑝𝑎𝑐𝑒

U. (5)

For comparison, a “random” selection that mimics the trial-and-error strategy is also considered. It selects an
experiment randomly in the experiment space.

We perform seven experiments based on the seven selection criteria and augment the data, as shown in Figure 1.
To evaluate the uncertainty reduction after each iteration, we select three experiments randomly to measure
their damping capacities in advance. This is referred to as the “test data”. The mean absolute error (MAE)
and relative absolute error (RMAE) between the measured and predicted values of the points are utilized in
evaluating the performance of the model in each iteration. Figure 7 shows the results after nine iterations.
The MAE and RMAE are plotted in Figure 7A and B, respectively, as a function of iteration number. By
augmentingmore data, the errors in the utility functions decrease. However, the utility functionmax.sd has the
best convergence rate and reduces the uncertainties in only a few iterations. Moreover, max.MC and mean.sd
show a similar tendency to change the error. The mean.difference has the worst performance, which may be
caused by the inaccurate estimates from the base learners leading to large differences.

Figure 7C and D show the model performance before and after refinement by Bayesian optimization, respec-
tively. The refined model in Figure 7D is selected as the desired mxgb model after 9 iterations with sampling
utility functionmax.sd. The data sampled from the other six sampling utility functions are “unseen” by the best
performer and thus are also used to check the model performance. It can be seen that before the refinement,
almost all the data points deviated from the diagonal line of the figure. This is reasonable, since the ZE62 alloy
is fresh to the model and contains elements that are not present in the training data. After refinement, most
data points distribute around the diagonal line showing an improvement in the model performance. Thus, es-
timates of the performance in the service space can be rapidly refined in a few iterations, even for those points
where experimental data are lacking.

In summary, we propose a materials informatics approach to rapidly estimate the performance of an alloy
within its service space. It employs an ensemble machine learning method to initially predict the performance
in the service space and then, for refinement and validation, utilizes Bayesian experimental design tominimize
the number of experiments, all within an active learning framework. We use the approach to predict the damp-
ing properties of a ZE62 magnesium alloy in the service space of frequency, strain amplitude, and temperature.
Several utility functions are employed to recommend a particular experimental curve, and their efficiency in
reducing the uncertainties in estimation is compared. The max.sd utility, which chooses an experiment with
the highest standard deviation, is identified to reduce the prediction error of ZE62 the most. Although we only
demonstrate here our approach for a single case study of damping capacity in a magnesium alloy, we expect
the approach to be valid for other material systems.

http://dx.doi.org/10.20517/jmi.2022.06
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Figure 7. Error changes for different selectors with increasing iterations. (A). Mean absolute error of selected untested experiments. (B).
Relative mean absolute error of selected untested experiments. (C). Predicted value before refinement as a function of measured values.
(D). Predicted values after refinement by the utility function ofmax.sd vs the measured values. The performance of the model is improved.
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