
Ravi et al. J Smart Environ Green Comput 2022;2:126­42
DOI: 10.20517/jsegc.2022.02

Journal of Smart
Environments and Green

Computing

Original Article Open Access

Solar powered UAV charging strategy design by ma-
chine learning
Prakash Ravi, Miao Wang, Mark J. Scott

Department of Electrical and Computer Engineering, Miami University, Oxford, OH, USA.

Correspondence to: Prof. Miao Wang, Department of Electrical and Computer Engineering, Miami University, Oxford, OH, USA.
E-mail: wangm64@miamioh.edu

How to cite this article: Ravi P, Wang M, Scott MJ. Solar powered UAV charging strategy design by machine learning. J Smart
Environ Green Comput 2022;2:126-42. http://dx.doi.org/10.20517/jsegc.2022.02

Received: 9 Mar 2022 First Decision: 10 Jun 2022 Revised: 4 Jul 2022 Accepted: 22 Aug 2022 Published: 1 Sep 2022

Academic Editors: Witold Pedrycz,Giancarlo Succi Copy Editor: Haixia Wang Production Editor: Haixia Wang

Abstract
Aim: The rapid growth in the number of ground users over recent years has introduced the issues for a base station of
providing more reliable connectivity and guaranteeing the reasonable quality of service (QoS). Thanks to the unique
features of unmanned aerial vehicles (UAVs), such as flexibility in deployment, large coverage range and lower cost,
UAVs can help the base station to providewireless connectivity to the ground users, e.g., in rural and remote areas. As
the energy limitation is the main concern for UAVs, the motivation is to provide uninterrupted connection to ground
users in the next generation wireless networks using solar powered UAV-assisted air networks.

Methods: The research uses global horizontal irradiance (GHI) data from the National Renewable Energy Laboratory,
small cell power ratings for communication, and UAV parameters. In addition, the TensorFlow library and Python
programming language were also used to develop machine learning models and simulate the UAV flying time.

Results: In this paper, we develop a novel resource management system for UAVs, which consists of an energy har-
vesting deep learning model to predict the future power harvested from the solar panel and a consumption model
which determines user arrival rate. With energy consumption and harvesting predictions, the resource management
system adaptively switches the power consumed by a UAV for communication. In addition, based on the future
energy availability and user’s arrival rate, the resource management system communicates with other UAVs and en-
ables energy coordinating scheduling amongmultiple UAVs to support user communications. The experiment results
demonstrate that by using adaptive energy scheduling among UAVs, the flying time of the UAVs is improved by 40%
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during nighttime and by 37% when performing energy coordination among multiple UAVs.

Conclusion: In this work, the UAV based communications have been researched. To understand more about UAVs
and air segments, some literature review has been done based on previous works. Finally, alteration of the transmis-
sion power using several methodologies has been accomplished to increase the flying time of the UAV.

INTRODUCTION
In recent years, space air ground integrated networks (SAGIN) are emerging to provide wide area coverage
and high throughput to the users [1]. SAGINs consist of three primary layers, namely the space layer (e.g., the
satellites used to provide communication to rural and mountain regions), the air segment (e.g., unmanned
aerial vehicles (UAVs) used to extend the coverage for communication), and the ground network (e.g., to pro-
vide high data rate). By considering the air segment, the UAVs play an important role in providing broadband
wireless communication supplementing the terrestrial networks. In contrast to the base stations in the terres-
trial networks, the UAVs are less costly and easy to deploy to provide uninterrupted but prompt connection
to the users, especially during dangerous and disaster situations. Considering the air segment, the UAVs can
be customized to carry radio communication elements and deployed into the air. As they run on battery
power, the energy from the battery is quickly consumed, requiring the UAVs to be manually recharged, and
the battery-powered UAVs are made to connect with the ground system, which monitors the battery levels
and automatically makes the UAVs recharge by landing at the docking stations [2]. The periodic recharging
due to the limitation of the battery size of UAVs reduces their flying time. To increase the UAVs flying time
for supporting ground communications, the solar powered UAVs are introduced with deploying solar panels
and harvesting the solar energy from the sun.

The solar powered UAVs for perpetual flight have been developed in [3], e.g., solar powered UAV has 66 solar
cells on the wings. TheUAV is designed to propel itself using a single motor to achieve a flying time of 28 hours
without any payload on it. The payloads are the radio communication equipment or small base stations (called
small cells), which provide mobile and internet services to a localized range. With carrying payloads in the
UAVs, the energy is consumed by bothUAVand communication equipment, which tends to decrease the flying
time compared to [3]. Energy consumption by the UAVs can significantly reduce the staying time and affects
the communication with users. In order to improve the flying time and to support the users, the solar powered
UAVs should possess a way to monitor the energy in their batteries and to know how optimally they can utilize
the harvested power for communication. In [4], a statistic model has been developed for the harvested energy
from renewable resources. Based on the developed model, the probability of energy outage in the UAV, the
probability of charging timewhile UAV in air and the probability of signal-to-noise ratio disruption to the users
can be determined. However, the above work only estimates the energy outage but does not provide any time
series forecasting of solar power and lacks an optimization function to improve the flying time. The statistical
and averaging models are quite intuitive to formulate the system using mathematical equations, which helps
in extracting the relationship between variables to predict the outcomes. However, the pattern of the dataset is
not well captured and apart from solar data, other values like temperature and weather data are not considered.
On the other hand, deep learning algorithms can easily identify the pattern in provided dataset by iterating
over the dataset several times, and the model can also be trained using weather data, which helps in predicting
the future solar power values.

Instead of calculating the charging time using a statistical model, this work uses the solar power dataset and
deep learning algorithm to predict the future harvested solar power. We develop an energy optimization algo-
rithm to adaptively switch the power utilization based on the prediction of the amount of power in UAVs by
machine learning. We support the future power requirement using the user arrival rate and develop the energy
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scheduling strategy using multiple UAVs to support the users. To this end, the paper answers the questions of
(1) how the system adaptively utilizes the power from batteries based on the number of users in a given range;
(2) based on future power requirements, how the energy scheduling using multiple UAV works; and (3) how
these two elements help the UAV to stay in the air for a longer duration.

The remainder of the paper is organized as follows. Section II gives a glance at related works. Section III
proposes the system model. The problem formulation and proposed algorithm is discussed in Section IV.
Section V demonstrates the simulation and testing results, followed by a conclusion in Section VI.

RELATED WORKS
Many exploration works have been done to support the correspondence for ground users in remote and natu-
ral calamity regions. In [5], the author expresses that SAGINs are broadly proposed these days, particularly the
air networks in SAGINs play a significant role in providing communication support to the ground users. It is
because the static terrestrial base stations cannot provide great support to users due to their limited coverage.
A larger disaster can make the base station over-burden, and in [6], the author expresses that it is important
to construct an emergency network utilizing UAVs to give a high data rate and reliable connectivity to the
ground users. A simulation-based SAGINs in [7] discusses controllers that are carried out to enhance the com-
munication elements and to serve effective QoS to the ground users. The previous references have no insights
into how the energy is optimized to make the UAVs fly for longer lengths. However, in [8], a mathematical-
based approach discusses how the energy efficiency of the air network is expanded utilizing non-linear convex
approximation. Aside from the network optimization and convex approximation methods, a compelling tech-
nique ought to decide how actually the energy can be utilized from the UAV to satisfy the ground users. To
solve this problem, the author in [9] and [10] developed a small-scale UAV with solar panels implanted on the
wings to harvest the solar power and accomplished a multi-day flying time.

Meanwhile, research works have been completed in sizing and testing of the solar powered UAVs; in [11] the
altitude and the payloads of UAVs are considered as parameters, and their consequences on the UAVs are
studied. The outcomes from studies helped with deciding the size, payload and altitude at which the aircraft
to fly to collect more solar power and use it for flying. The enhanced design and testing of solar powered UAV
in [12] uncovers its maximum endurance and the effectiveness of the solar panel mounted on it.

In [13], the energy coverage performance of the different network systems is analyzed by finding the line of sight
probabilities and the impact of the 3D antenna. The simulation has been carried out by implementing different
antenna patterns and varying the UAVs’ heights. The analysis shows how the energy performance has been
improved by changing the antenna pattern, user count, and UAV height. However, the work did not show the
increase in flying time based on different heights and ground user count. Also, in [14], the author used a deep
Q network to optimize the UAVs’ capacity to support the ground users. Although they used solar powered
UAVs, they have not included a scheduling mechanism to support future users in the desired UAV range.

Machine learning-based solar powered UAVs are used to increase the flying time of the UAVs; in [15] solar
powered UAVs are developed with reinforcement learning agents, so they can change their position adaptively
by deciding the solar energy density and other environmental circumstances. The reinforcement learning only
helps to place the UAV in the higher solar power regions, and it does not have any feedback mechanism to
estimate the flying time and future solar power values. The solar UAV in [16] acts as a bridge between the
ground users and the local base station. The users’ data is captured and the harvested solar power is utilized
to transmit the captured data to the static base station. This method assumes the ground users data count, not
an estimate of it. In [17], power distribution and trajectory planning problems are addressed utilizing machine
learning in a multi-UAV-based correspondence framework. The system has IoT nodes at different distances;
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Figure 1. System model of UAV network to support the ground users.

therefore, the trajectory of the UAVs is optimized to collect data from the nodes and send it to the server.
Some research works in [18] and [19] solved trajectory optimization and resource allocation problems utilizing
the convex approximation method, which accomplishes a high throughput in providing communication to
the users. In these works, the solar powered UAVs are not used and the main focus is on collecting data from
different locations. Nevertheless, in our contribution, the solar powered UAVs are used to improve the flying
time and also provide communication support to ground users in fixed locations.

SYSTEM MODEL
The proposed system model is displayed in Figure 1. The total framework is partitioned into the UAVs and
the cloud layer. The cloud layer lives in the UAV network server, which gathers data about solar harvesting
power, energy, the arrival rate of ground users in the region, and the location coordinates of the UAVs. Based
on this information, the cloud’s optimization algorithm conveys the transmission power value and the location
coordinates to the UAVs (where it ought to position itself).

By receiving the cloud’s parameter values, the UAVs help the ground users. In this work, 𝑛 represents the
number of UAVs and 𝑟 represents the radius of the coverage area. To harvest solar power, the UAVs carry a
little solar power. The UAV conveys power and the power is used for flying and user communication support.

Time is divided into 𝑡 periods with equal duration (e.g., 60 minutes). Utilizing Poisson distribution’s [20] arrival
rate (𝜆(𝑡)), the number of the ground users can be estimated. With (𝜆(𝑡)), the average number of users are
determined utilizing Equation (1).

𝐸 (𝑁𝑡) = 𝜆𝑡 (1)

𝐷𝑖 𝑗 (𝑡) =
√
(𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡))2 + (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)2) (2)
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Figure 2. block diagram of the cloud system.

where 𝐷𝑖 𝑗 (𝑡), is distance between two UAVs at time span 𝑡. The points 𝑥𝑖 (𝑡) and 𝑦𝑖 (𝑡) are the coordinates of
𝑖𝑡ℎ UAV and 𝑥 𝑗 (𝑡) and 𝑦 𝑗 (𝑡) are the coordinates of 𝑗𝑡ℎ UAV. The framework goes till 𝑛, the maximum number
of UAVs in the air to track down the distance between them.

A cloud part in the framework, as displayed in Equation (1), concentrates data about appearance of the ground
users utilizing the number of dynamic associations inside the small cell range. The cloud decides the distance
between the UAVs by Equation (2). The collected solar power and the battery energy of each UAV in the net-
work are gathered by the cloud. Utilizing the gathered information, the cloud runs an optimization algorithm
to organize UAVs in the network and support the ground users successfully.

Figure 2 shows the functioningmodel of the cloud framework. The system is separated into three unique parts,
information collection, prediction, and energy optimization unit. In the information collection part, the first
block cloud is used for collecting reaped solar-based power values from theUAVs, the subsequent block is used
for collecting the data about the number of ground users in the vicinity, and the last one is used for gathering
the data about UAVs energy consumption.

A long short-term deep learning model is used for predicting the forthcoming solar power, and the Poisson
process is used for determining the average arrival rate of the ground users. Towards the end, two actions are
performed when the unit obtains the data. First and foremost, the power value to each UAV is sent based on
the user’s demands to change the input power from a UAV to a small cell. Secondly, based on the determined
distance, predicted users, and future solar power values of UAVs, the optimization unit in the cloud performs
energy scheduling by sending the specific location coordinates and the communication unit’s power value to
the UAVs in the network.

UAV system
For the solar powered UAVs, the simple energy input/output model is used. As described in [3], this work
considers the electrical energy 𝐸𝐵𝑇 , the height of the UAV, and neglects the kinetic energy. The energy flow
and margin of the solar powered UAV are figured out by forward integrating the electrical energy 𝐸𝐵𝑇 .

𝐸𝐵𝑇 = 𝑃𝑜𝑢𝑡 − 𝑃𝑠𝑜𝑙𝑎𝑟 (3)
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The total electrical power output 𝑃𝑜𝑢𝑡 has three important parts, as shown in Equation (4). The 𝑃𝑎𝑣 and 𝑃𝑝𝑟𝑜𝑝

are the avionic power and payload power, 𝑃𝑝𝑙 is the payload power.

𝑃𝑜𝑢𝑡 = 𝑃𝑎𝑣 + 𝑃𝑝𝑟𝑜𝑝 + 𝑃𝑝𝑙 (4)

The payload power 𝑃𝑝𝑙 is the communication unit’s power, and avionic power is the fixed power. In compari-
son, propulsion power is the primary consumption that brings the required thrust to counteract the drag. So
from Equation (5), the propulsion power is described as lift power by the efficiency of the total propulsion
system.

𝑃𝑝𝑟𝑜𝑝 = 𝑃𝑙𝑖 𝑓 𝑡/𝜂𝑝𝑟𝑜𝑝 (5)

The motor controller, gearbox, motor, and propeller efficiencies are comprised to get the 𝜂𝑝𝑟𝑜𝑝 . Utilizing the
assumption that the UAV runs at the velocity requiring the least aerodynamic lift power, 𝑃𝑙𝑖 𝑓 𝑡 is stated as

𝑃𝑙𝑖 𝑓 𝑡 =
©­«𝐶𝑑

𝐶
3
2
𝑙

ª®¬
√

2(𝑚𝑡𝑜𝑡𝑎𝑙 ∗ 𝑔)3

𝜌(ℎ)𝐴𝑤𝑖𝑛𝑔
. (6)

The 𝑚𝑡𝑜𝑡𝑎𝑙 is the total mass of the airplane, where propulsion, structure, battery, and solar panel mass are sized
based on [12]. The communication unit’s mass and avionics mass are user-defined. The airplane drag and lift
coefficients are utilized from aerofoil simulation [21]. Then, 𝑔 is gravity, 𝜌(ℎ), and 𝐴𝑤𝑖𝑛𝑔 are air density and area
of the wing.

Lastly, the incoming solar power 𝑃𝑠𝑜𝑙𝑎𝑟 is defined in Equation (7), where the GHI is the global horizontal
irradiance from NREL dataset [22], 𝑎𝑟𝑒𝑎(𝑚2) is the area of the solar panel. The 𝜂 and 𝑍 are panel efficiency
and change in efficiency based on the temperature. Upon the derived power components, the problem is
formulated to improve the flying time of the UAV.

𝑃𝑠𝑜𝑙𝑎𝑟 = 𝐺𝐻𝐼 ∗ 𝑎𝑟𝑒𝑎(𝑚2) ∗ 𝜂 ∗ 𝑍 (7)

Deep learning algorithm
As we need to predict the future harvested solar power values for energy optimization, a suitable Machine
Learning (ML) algorithm must be modeled. Before modeling it, we studied several deep learning algorithms
that could solve most of the time series forecasting problems. However, before going into deep learning, we
tried some approaches like autoregression and moving average algorithms, although they were able to forecast
the future solar power. Still, they could not be able to follow the pattern of the dataset, and also, the tempera-
ture, humidity, and weather data were not able to be embedded into it. Thereby, they developed a significant
estimation error.

To involve the weather data and predict the solar power pattern, we moved to deep learning-based approaches.
We used an algorithm called Recurrent Neural Networks (RNN). However, the vanishing gradient problem
in RNN made the time series forecasting prone to training errors. The root cause of RNN is that it loses
its memory over a period and makes the prediction only based on the previous input value rather than the
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sequence of inputs. Based on the RNN’s feedback and results, we selected a memory-based deep learning
algorithm called Long Short-Term Memory (LSTM) Neural Network. The LSTM Neural Network consists of
several gates called input, forget, and output gates to accomplish the time series prediction. It replaces each
hidden unit of RNN with a memory unit and adds a memory cell. As the gates control the memory units, it
retains the previous information over a long period and helps solve the time series forecasting problems.

Poisson process
The distribution of users in the coverage region is estimated using the reference [23]. Then the power required
for the communication unit is determined utilizing the arrival rate of the users 𝜆 each hour in the range of
UAV. The average number of ground users at a particular time is found by having the arrival rate.

𝑃(𝑛) = 𝑒−𝜆 ∗ 𝜆
(8)

𝑛

𝑛!

The probability of users count is found using Equation (8), where 𝑛 is the number of users at an interval 𝑡.

Summary
The energy optimization algorithm block receives the estimated user’s count, predicted solar power data, solar
harvesting power, and the UAV energy consumption values. Finally, Utilizing these data points, the block
outputs the required transmission power for the small cell. The block also computes the UAV flying time and
battery energy. Likewise, utilizing future solar power value and user count, it communicates with other UAVs
to perform energy scheduling to help the users in future periods. The algorithm’s function and the UAV energy
calculations are discussed in the problem formulation.

PROBLEM FORMULATION
In this section, we show the problem formulation for LSTMdeep learningmodel, adaptive power consumption
mechanism, and energy scheduling mechanism using multiple UAVs. Based on the number of users and
predicted solar power, the UAV can adaptively change its communication unit’s power and also performsmulti-
UAV-based communication.

LSTM modeling
The LSTM Neural Network model has layers similar to recurrent neural networks, but it has an additional
memory cell unit which propagates through all the layers by carrying out some information about the previous
input sequence. From the reference [24], the Memory cell unit has several gates which make the LSTM more
powerful than RNNs. These gates are explained below.

Figure 3 shows the block diagram of LSTM Neural Network,which begins with the input layer where 𝑋 𝑖<𝑡> is
the input sequence from UAV 𝑖 passed into the hidden layer of LSTM neural network. The gate functions are
used to compute the values which determine whether the model needs to remember the input value or not. Γ𝑖𝑓
is the forget gate of the 𝑖 th UAV in the network, which is computed by using the non-linear𝜎 sigmoid function
using𝑊 𝑖

𝑓 weighted parameters of previous activation function value 𝑋 𝑖<𝑡> and the current input value 𝑋 𝑖<𝑡>

plus the bias-term 𝑏𝑖𝑓 . Therefore, the superscript 𝑖 represents the 𝑖𝑡ℎ value of the UAV.

The Γ𝑖𝑢 update and Γ𝑖𝑜 output gates are computed using the sigmoid function with their own weighted param-
eters and bias terms as shown in Equation (9) and Equation (10).

Γ𝑖𝑢 = 𝜎(𝑊 𝑖
𝑢 [𝑎𝑖<𝑡−1>, 𝑥𝑖<𝑡>] + 𝑏𝑖𝑢), (9)
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Figure 3. Block diagram of LSTM neural network.

Γ𝑖𝑜 = 𝜎(𝑊 𝑖
𝑜 [𝑎𝑖<𝑡−1>, 𝑥𝑖<𝑡>] + 𝑏𝑖𝑜). (10)

A toddler memory unit is introduced and its value is calculated using 𝑡𝑎𝑛ℎ activation function. Then the
system determines the memory cell unit value by combining the forget gate value, output gate value, and
toddler memory unit value. Finally, as shown in Equation (11) and Equation (12), the current activation value
𝑎𝑖<𝑡> is calculated using output gate and tanh of memory cell unit. Upon this prediction 𝑌 𝑖<𝑡> is computed
using the SoftMax multinomial classification function.

𝑎𝑖<𝑡> = Γ𝑖𝑜 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑖<𝑡>), (11)

𝑌 𝑖<𝑡> = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑎𝑖<𝑡>). (12)

Energy consumption and optimization model
For energy optimization, our proposed algorithm fetches the available energy in the battery 𝐸 𝑖

𝐵𝑇 (𝑡), where 𝑖
represents the 𝑖𝑡ℎ number of UAV. Then the algorithm calculates the required power to operate the UAV. The
power required for the motor is,

𝑃𝑖
𝑚𝑜𝑡𝑜𝑟 (𝑡) = 𝑉 𝑖 ∗ 𝐼𝑖 ∗ 𝑝 𝑓 𝑖 (13)

where 𝑃𝑖
𝑚𝑜𝑡𝑜𝑟 (𝑡) is the power required by the motor; 𝑖 is the UAV ID; 𝑉 𝑖 and 𝐼𝑖 are the voltage and current

required for the motors, and pf is the power factor of the respective motor. We consider that all the UAVs use
the same current, voltage and power factor values for calculation.

The power at the Electronic Speed Controller (ESC) can be determined using 𝑃𝑖
𝑒𝑠𝑐 = 𝑃𝑖

𝑚𝑜𝑡𝑜𝑟/𝜂𝑖𝑒𝑠𝑐 , the 𝜂𝑖𝑒𝑠𝑐 is
the efficiency of the ESC and 𝑃𝑖

𝑒𝑠𝑐 is the power at ESC. By using this value, power at power management board
𝑃𝑖
𝑝𝑚𝑏 can be found using the below equation,

𝑃𝑖
𝑝𝑚𝑏 (𝑡) = 𝑃𝑖

𝑒𝑠𝑐 (𝑡)/𝜂𝑖𝑝𝑚𝑏 (14)
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where 𝜂𝑖𝑝𝑚𝑏 is the efficiency of the power management board. The transmission power value of the communi-
cation unit 𝑃𝑖

𝑐𝑜𝑚𝑚 (𝑡) is determined by the average number of users 𝑃(𝑛). Then the total power consumed by
the UAV 𝑃𝑖

𝑡𝑜𝑡𝑎𝑙 (𝑡) is calculated using,

𝑃𝑖
𝑡𝑜𝑡𝑎𝑙 (𝑡) = 𝑃𝑖

𝑝𝑚𝑏 (𝑡) + 𝑃𝑖
𝑐𝑜𝑚𝑚 (𝑡) (15)

Furthermore, the net power consumed from the battery can be found by taking the difference between the
amounts of power drawn from the battery and the amount of solar power 𝑃𝑠𝑜𝑙𝑎𝑟 (𝑡) entering the battery,

𝑃𝑖
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑡) = 𝑃𝑖

𝑡𝑜𝑡𝑎𝑙 (𝑡) − 𝑃𝑖
𝑠𝑜𝑙𝑎𝑟 (𝑡) (16)

The flying time of the UAV is calculated for every time slot, and it is found using Equation (17),

𝐹𝑇 𝑖 (𝑡) = 𝐸 𝑖
𝐵𝑇 (𝑡)/𝑃𝑖

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑡) (17)

Themain aim of this approach is to maximize the flying time of the UAVs by altering the communication unit’s
transmission power based on the number of ground users. From the optimization function in Equation (18),
the power for communication unit 𝑃𝑖

𝑐𝑜𝑚𝑚 is altered based on the ground users arrival rate. It also considers
other parameters like solar power 𝑃𝑖

𝑠𝑜𝑙𝑎𝑟 input and power from the power management board 𝑃𝑖𝑝𝑚𝑏 to find the
total power consumed from the battery 𝑃𝑖

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 .

max
𝐹𝑇

𝑘∑
𝑡=1

𝑛∑
𝑖=1

(𝐸 𝑖
𝐵𝑇 (𝑡) ÷ ((𝑃𝑖

𝑝𝑚𝑏 (𝑡) + 𝑃𝑖
𝑐𝑜𝑚𝑚 (𝑡)) − 𝑃𝑖

𝑠𝑜𝑙𝑎𝑟 (𝑡))

s.t. 1 <= 𝑃𝑖
𝑐𝑜𝑚𝑚 (𝑡) <= 6

𝑃(𝑛) <= 62

(18)

The inequality constraints of the optimization function are the transmission power of the communication unit,
which is limited between 1-6 Watts, and the arrival rate for a particular region is less than or equal to 62 users.
Based on the arrival rate of ground users, the optimization variable 𝑃𝑖

𝑐𝑜𝑚𝑚 is altered between the given range,
and at a point, it reduces the overall power consumption from the battery 𝑃𝑖

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 . Thereby the optimization
function increases the flying time of the UAV.

Energy scheduling
As the future solar power is predicted using the LSTM model, the scheduling strategy is followed by future
solar power 𝑃𝑖

𝑠𝑜𝑙𝑎𝑟 (𝑡 + 1) and the average number of users for the next time period. Using estimated users
count, the power value for the future is found and the new 𝑃𝑡𝑜𝑡𝑎𝑙 (𝑡 + 1) is calculated.

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑡 + 1) = 𝑃𝑡𝑜𝑡𝑎𝑙 (𝑡 + 1) − 𝑃𝑠𝑜𝑙𝑎𝑟 (𝑡 + 1) (19)

𝐸𝐵𝑇 ( 𝑓 𝑢𝑡𝑢𝑟𝑒) = 𝐸𝐵𝑇 (𝑡) − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑡 + 1) (20)

At last, the energy 𝐸𝐵𝑇 ( 𝑓 𝑢𝑡𝑢𝑟𝑒) is determined utilizing Equation (20). If the number of users is going to be higher
than the small cell range and the energy for the following period is less to support the entire time length, then,
at that point, the current transmission power of a communication unit is altered, and the cloud communicates
with other UAVs in the network and gets help from significant UAVs with sufficient energy.
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SIMULATION AND RESULTS
As our requirement is to predict solar energy for the next time period, we first need to create a power dataset
with the specific solar panel which is mounted over the UAV. The global horizontal irradiation data for 16
years from National renewable energy resources have been extracted for our location, and a specific formula
has been devised to simulate the power produced from a single cell monocrystalline solar panel.

𝑍 = (100 − ((25 − 𝑇) ∗ 0.32))/100 (21)

𝑃𝑠𝑜𝑙𝑎𝑟 = 𝐺𝐻𝐼 ∗ 𝑝𝑎𝑛𝑒𝑙𝑎𝑟𝑒𝑎(𝑚2) ∗ 𝜂 ∗ 𝑍 (22)

Change in efficiency Z is calculated using the T value which is the extracted temperature value of the specific
Global Horizontal Irradiance (GHI) zone; change in temperature per degree decreases the panel efficiency by
0.32 percent. Then the solar power 𝑃𝑠𝑜𝑙𝑎𝑟 is computed using GHI, Panel size, the efficiency of the panel 𝜂 ,
and the calculated Z value. The power value is calculated every half an hour, so we get 48 data points per day.
These data are written into a CSV file and used as a dataset for time series solar power prediction.

Training the LSTM
TheLSTMmodel, which is discussed in the problem formulation, is built using Keras library, and the processed
data is split into training and test data sets. The training set data has 80 percent of the original data, which is
converted to a sequence of data arrays of window size 48.

The prepared sequence data is fed into a point-by-point LSTM prediction model, which predicts only a single
point ahead of each time sequence. Themodel has 48 input units followed by three hidden layers with a dropout
rate of 0.05 and ends with a dense layer (output unit) to predict the value Y from the sequence of inputs. The
gradient descent is performed using Adam optimizer and the performance of the system is calculated using
Root Mean Square (RMS) approximation. Once the LSTM unit is constructed, Training data is fed into the
model by setting the epoch rate and batch size. Eventually, the RMS value is monitored, and finally, the trained
model is tested against the test data set to evaluate the performance of the model.

Performance analysis
The LSTM model is initially trained with a batch size of 48 at an epoch rate of 5. Then gradually, the epoch
rate is increased for various values like 10, 15, 20 and 25. Respective Root Mean Square Error is calculated
for various epoch rates. Then the trained model is tested against the test data set, and the predicted values are
plotted in a graph for different epoch values.

Figure 4 shows the output of RMS Error with respect to various epoch rates. With the increase in the epoch
rates, i.e., from 5 to 25, the RMS Error values also decreased from 0.0370 to 0.0346, and beyond this epoch
rate, the error became constant.

Figure 5 shows the gradient convergence value 𝜃 for different epoch values. For each epoch value, the gradient
tries to reach the global minimum. When the training is carried out with the epoch rate of 25, the gradient 𝜃
got converged to 0.0350, which is the minimum value for this model because, beyond this point, the gradient
starts to increase and makes the model become prone to errors.

After the training, the LSTM model, which is trained at a 25 epoch rate, is saved, and the model’s accuracy is
tested with the test dataset. The Figure 6 shows the predicted result of the model, which is tested against the
test dataset. The test dataset has the total power harvested by all the cells, i.e., 88 cells. The prediction shows
that each UAV can harvest to a maximum of 101 W and a minimum of 0 W.
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Figure 4. Cost per epoch rate.

Figure 5. LSTM training epochrate Vs. RMSE.

Table 1. Simulation parameters

Parameters for simulation

Parameters of UAV Value
Battery energy 704Wh
Motor power 59W in day and 41W in night
No of solar cells 88
Power of a solar cell 1.2W(at peak per cell)

Implementation of algorithm and results
From the LSTM model, the solar values are predicted for a day and are stored in a list. The list consists of 48
values, and each represents the power output from the solar panel for every half an hour. The UAV parameters
are utilized from reference [3], which has a battery energy of 704Wh and has 88 sun C60 solar cells in it. The
power consumed by the UAV, the number of cells and the peak power harvested from each cell are shown in
Table 1. The UAV has a high flying time based on the harvested solar power. So, using these parameters, a
simulation model is built to determine the flying time and energy consumption from the battery bank. The
transmission power value of the communication unit is set to 6 W for the ideal case and varied from 1-6 W
for the adaptive case.
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Figure 6. LSTM prediction result.

Based on the graph [23], the actual user count is found for each hour. Then using the Poisson process, the
probability of user count is predicted. With the help of user count, the transmission power is determined. In
the first stage, the whole system is made to consume the ideal power value, i.e., 6Watts for the communication
by using the small cell [25], and the algorithm is simulated to determine the air time of the UAV, including the
small cell power.

The simulation equation for determining the time and energy consumed by the UAV as follows,

𝑃𝑖
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑡) =

𝑘∑
𝑡=1

𝑃𝑖
𝑡𝑜𝑡𝑎𝑙 (𝑡) − 𝑃𝑖

𝑠𝑜𝑙𝑎𝑟 (𝑡) (23)

𝐹𝑇 (𝑡) =
𝑘∑
𝑡=1

𝐸 𝑖
𝐵𝑇 (𝑡 − 1)/𝑃𝑖

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (24)

𝐸𝐵𝑇 (𝑟𝑒𝑚) (𝑡) =
𝑘∑
𝑡=1

𝐸 𝑖
𝐵𝑇 (𝑡 − 1) − 𝑃𝑖

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (25)

The Equation (23), Equation (24), and Equation (25) are simulated over a period of 𝑘 . For this case, 𝑘 is
24, which determines 24 hours. 𝐹𝑇 (𝑡) is defined as the flying time of the single UAV and 𝐸𝐵𝑇 (𝑟𝑒𝑚)(𝑡) is the
energy remaining in the battery. The simulated results show that the total airtime for the UAV with the ideal
communication power is 21 hours (12.00AM-9.00PM). On the other hand, if the system knows the number of
users that are going to be present in the UAV range, simultaneously, the energy optimization unit in the UAV
can adaptively change the transmission power, and that increases the UAV flying time. The term 𝜆(𝑡), which
has the arrival rate values for the whole day, is calculated using those values average number of users, by which
the transmission power is adaptively switched. The algorithm is simulated using these values and switching
the transmission power for various time slots; from Figure 7 it is shown that the UAV flying time has been
increased from 21 hours to 22 hours 17 minutes. By adaptive switching, we can achieve 1 hour 17 minutes
of extra flying time. Figure 7 shows the energy consumption of UAVs both in ideal and adaptive states. The
enlarged region in Figure 8 shows that 77WHr of energy is remaining in the UAVwhich did adaptive switching
compared to the ideal one. So the outcome is that during the nighttime (5PM to 6AM), the flying time has
increased from 3 hours to 4 hours 17 minutes, which gives 39% increase compared to the ideal UAV.
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Figure 7. Flying time of ideal power vs. adaptive power.

Figure 8. Energy consumption ideal power vs. adaptive power UAV.

Energy scheduling is another important aspect where the system optimizes the power consumption using the
future solar power and user arrival rate. If a case arrives that the users in the single small cell range are going
to increase for the next time slot, fortunately, the UAV system predicts the future harvested solar power value
and transmission power. Using the determined values, the system calculates the amount of energy that will be
utilized for the next time period and their respective flying time. If the system is not sufficient to cover the entire
users in its range and does not have enough energy to sustain for the next time period, it immediately sends a
request to the nearest UAV to support its range for the next time period. Typically, the requested UAV would
be getting a response from the nearest UAV for support; if in case the request has not been addressed, the UAV
would be going into energy-saving mode until it stops supporting the users in its range. For example, if the
number of users in aUAV range is going to increase from 60 to 120, then that UAV gets support from another to
support the high users range by sharing the required transmission power. Thus, intercommunication between
the UAV happens, and finally, the total energy is split by two UAVs to provide a wireless connection to the
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Figure 9. Flying time of ideal vs. Multi UAV.

users. By doing this, the actual airtime of the UAV increases to an extent and the resources are also properly
utilized.

For simulation purposes, only two UAVs are considered for multiple UAV cases. Therefore, at a point in time,
the energy in the ideal single UAV drops to zero, but the multiple UAV topology still has 70WHr energy to
support the users.

Figure 9 shows the difference in flight time due to the high number of users for a single ideal UAV and the
multiple UAV topology. Figure 10 shows the energy that has been consumed by the ideal single UAV and
multiple UAVs. The single UAV system can withstand only 21 hours, but the adaptive scheduled multiple
UAVs can fly in air for up to 22 hours 11 minutes; the scheduling system has made the UAV fly for another 71
minutes in the air.

Figure 11 and Figure 12 indicates the energy in the batteries, peak solar power harvested by the UAVs and
the maximum number of users in the range of the UAVs. The simulation results show that the adaptive and
multiple UAVs have a significant increase of 40% and 37% in the flying time compared to the single ideal UAV
configuration.

CONCLUSION
In this paper, we have modeled the system to support communication for the users in the SAGINs. We have
focusedmore on the energy and resourcemanagement of theUAVs, which are used to provide communication
in rural and network-constrained areas. The modeled system is placed on the solar powered UAV, which
utilizes the harvested solar power from the Sunpower C60 panels. In order to optimally utilize the energy
from the battery and to increase the flying time, first, the future solar power values are predicted using the
LSTM model and the arrival rates of the users are calculated using the Poisson process. Then, these data
are fed into a novel algorithm, which makes the system draw power for the communication adaptively and
schedules the work by getting support from other UAVs to share the power during the larger user arrival rate.
Battery, motor, and other parameters are evaluated. The algorithm is simulated to determine the flying time
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Figure 10. Energy consumption ideal powe vs. Multi UAV.

Figure 11. Flying time and energy analysis for adaptive UAV strategy.

for various topologies, and finally, we achieved an increase of 40% in the flying time.
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Figure 12. Flying time and energy analysis for multi UAV strategy.

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2022.

REFERENCES
1. Liu J, Shi Y, Fadlullah ZM, Kato N. Space­air­ground integrated network: a survey. IEEE Commun Surv Tutorials 2018;20:2714–41. DOI
2. Ghazzai H,Menouar H, Kadri A,MassoudY. Future UAV­based ITS: a comprehensive scheduling framework. IEEEAccess 2019;7:75678–

95. DOI
3. Oettershagen P, Melzer A, Mantel T, Rudin K, Stastny T, et al. Perpetual flight with a small solar­powered UAV: flight results, performance

analysis and model validation. 2016 IEEE Aerospace Conference 2016:1–8. DOI
4. Sekander S, Tabassum H, Hossain E. Statistical performance modeling of solar and wind­powered UAV communications. IEEE Trans on

Mobile Comput 2021;20:2686­700. DOI
5. Kato N, Fadlullah Z, Tang F, et al. Optimizing space­air­ground integrated networks by artificial intelligence. IEEE Wireless Commun

2019;26:140­47. DOI
6. Wang Y, Xu Y, Zhang Y, Zhang P. Hybrid satellite­aerial­terrestrial networks in emergency scenarios: a survey.China Commun 2017;14:1–

13. DOI
7. Cheng N, Quan W, Shi W, et al. A comprehensive simulation platform for space­air­ground integrated network. IEEE Wireless Commun

http://dx.doi.org/10.20517/jsegc.2022.02
http://dx.doi.org/10.1109/comst.2018.2841996
http://dx.doi.org/10.1109/access.2019.2921269
http://dx.doi.org/10.1109/AERO.2016.7500855
http://dx.doi.org/10.1109/tmc.2020.2983955
http://dx.doi.org/10.1109/mwc.2018.1800365
http://dx.doi.org/10.1109/cc.2017.8010971


Ravi et al. J Smart Environ Green Comput 2022;2:126­42 I http://dx.doi.org/10.20517/jsegc.2022.02 Page 142

2020;27:178–85. DOI
8. Li Z, Wang Y, Liu M, et al. Energy efficient resource allocation for UAV­assisted space­air­ground Internet of remote things networks.

IEEE Access 2019;7:145348–62. DOI
9. Liu Q, Li M, Yang J, et al. Joint power and time allocation in energy harvesting of UAV operating system. Computer Communications

2020;150:811–7. DOI
10. Morton S, D’Sa R, Papanikolopoulos N. Solar powered UAV: design and experiments. 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 2015:2460–66. DOI
11. Jashnani S, Nada T, Ishfaq M, Khamker A, Shaholia P. Sizing and preliminary hardware testing of solar powered UAV. Egypt J Remote

Sens Space Sci 2013;16:189–98. DOI
12. Oettershagen P, Melzer A, Mantel T, Rudin K, Lotz R, et al. A solar­powered hand­launchable UAV for low­altitude multi­day continuous

flight. 2015 IEEE international conference on robotics and automation (ICRA) 2015:3986–93. DOI
13. Turgut E, Cenk Gursoy M, Guvenc I. Energy harvesting in unmanned aerial vehicle networks with 3D antenna radiation patterns. IEEE

Transactions on Green Commun Netw 2020;4:1149­64. DOI
14. Cong J, Li B, Guo X, Zhang R. Energy management strategy based on deep Q­network in the solar­powered UAV communications system.

2021 IEEE International Conference on Communications Workshops (ICC Workshops) 2021:1­6. DOI
15. Zhang J, Lou M, Xiang L, Hu L. Power cognition: enabling intelligent energy harvesting and resource allocation for solar­powered UAVs.

Future Gener Comput Syst 2020;110:658–64. DOI
16. Thanh PD, Hoan TNK, Giang HTH, Koo I. Cache­enabled data rate maximization for solar­powered UAV communication systems. Elec­

tronics 2020;9:1961. DOI
17. Manzoor A, Kim K, Pandey SR, et al. Ruin theory for energy­efficient resource allocation in uav­assisted cellular networks. IEEE Trans

Commun 2021;69:3943–56. DOI
18. Sun Y, Xu D, Ng DWK, Dai L, Schober R. Optimal 3D­trajectory design and resource allocation for solar­powered UAV communication

systems. IEEE Trans Commun 2019;67:4281–98. DOI
19. Sun Y, Ng DWK, Xu D, Dai L, Schober R. Resource allocation for solar powered UAV communication systems. 2018 IEEE 19th Inter­

national Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018:1–5. DOI
20. Last G, Penrose M. Lectures on the poisson process. Cambridge University Press; 2017;7.
21. DrelaM, Youngren H. Xfoil 6.9 user primer. Department of aeronautics and astronautics, massachusetts institute of technology, cambridge,

MA 2001;1.
22. National Renewable Energy laboratory. Available from: https://www.nrel.gov/ [Last accessed on 25 Aug 2022]
23. Heuser R. The data says: mobile traffic by day and time; 2015. Available from: https://www.seoclarity.net/blog/mobile­seo­by­day­and­

time­11890/ [Last accessed on 25 Aug 2022]
24. Cui S. Solar energy prediction and task scheduling for wireless sensor nodes based on long short term memory. J Phys : Conf Ser 2018

1074:012100. DOI
25. GSMA small cell deployment booklet. Available from: https://www.gsma.com/publicpolicy/wp­content/uploads/2016/12/GSMA_Small_

Cell_Deployment_Booklet.pdf [Last accessed on 25 Aug 2022]

http://dx.doi.org/10.20517/jsegc.2022.02
http://dx.doi.org/10.1109/mwc.001.1900072
http://dx.doi.org/10.1109/access.2019.2945478
http://dx.doi.org/10.1016/j.comcom.2019.12.009
http://dx.doi.org/10.1109/IROS.2015.7353711
http://dx.doi.org/10.1016/j.ejrs.2013.05.002
http://dx.doi.org/10.1109/ICRA.2015.7139756
http://dx.doi.org/10.1109/tgcn.2020.3007588
http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473509
http://dx.doi.org/10.1016/j.future.2019.05.068
http://dx.doi.org/10.3390/electronics9111961
http://dx.doi.org/10.1109/tcomm.2021.3064968
http://dx.doi.org/10.1109/tcomm.2019.2900630
http://dx.doi.org/10.1109/SPAWC.2018.8445944
https://www.nrel.gov/
https://www.seoclarity.net/blog/mobile-seo-by-day-and-time-11890/
https://www.seoclarity.net/blog/mobile-seo-by-day-and-time-11890/
http://dx.doi.org/10.1088/1742-6596/1074/1/012100
https://www.gsma.com/publicpolicy/wp-content/uploads/2016/12/GSMA_Small_Cell_Deployment_Booklet.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2016/12/GSMA_Small_Cell_Deployment_Booklet.pdf

	Introduction
	Related Works
	System Model
	UAV system
	Deep learning algorithm
	Poisson process
	Summary

	Problem Formulation
	LSTM modeling
	Energy consumption and optimization model
	Energy scheduling

	Simulation and Results
	Training the LSTM
	Performance analysis
	Implementation of algorithm and results

	Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


