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Abstract
Malignant mesothelioma (MM) is an aggressive cancer that affects the pleural and peritoneal mesothelial lining of 
the lungs and abdomen. Survival rates for patients with MM remain extremely low and effective treatments are 
limited. MM tumors harbor both genotypic and phenotypic features that indicate MM tumor cells are under 
increased oxidative stress, similar to other aggressive cancers. This increased oxidative stress in MM cells supports 
aggressive growth while providing a therapeutic vulnerability exploitable by redox-modulating compounds. MM 
tumor cells also exhibit altered mitochondrial structure and function that contribute to the disease through 
perturbations in metabolism and reactive oxygen species (ROS) production and metabolism. Targeting the altered 
redox status in cancer through increasing cellular ROS levels directly or inhibiting cellular antioxidant pathways and 
disrupting ROS scavenging mechanisms has become an exciting area for therapeutic intervention. This review 
discusses ROS sources and signaling, mitochondrial structure and function and targeting mitochondria ROS as a 
therapeutic approach for the treatment of MM.
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INTRODUCTIONS
Malignant mesothelioma (MM) is an aggressive form of cancer that primarily affects the pleural and 
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peritoneal mesothelial lining of the lungs and abdomen. Although asbestos exposure is a major risk factor 
for the development of MM, little is known about the etiology of the disease[1]. Similar to the majority of 
other solid tumors, MM is strongly linked to altered metabolism, changes in mitochondrial dynamics and 
an imbalance in the production and clearance of reactive oxygen species (ROS). Because of this, ROS 
production and metabolism have become an exciting target for cancer treatments[2] including MM[3]. 
Numerous approaches currently used in the clinic to treat MM, including cisplatin, have also been shown to 
modulate ROS levels[4]. Recently, thiostrepton (TS), an inhibitor of mitochondrial peroxiredoxin 3 that 
induces elevated ROS levels and cell death[5,6], entered phase 1/2 clinical trials (NCT05278975), providing a 
new and exciting redox-dependent therapy for the treatment of MM. This review will discuss the role of 
ROS in cancer development and the unique mitochondrial dynamics and redox status in MM that may be 
an effective target for anticancer therapies.

CANCER AND ROS
Ros in cell signaling
The role of ROS in normal and cancer cells is far more than just damaging or a byproduct of oxidative 
metabolism. ROS contribute to cell signaling cascades through a process termed “redox-dependent 
signaling”[7]. ROS can directly or indirectly oxidize cysteine residues in proteins[8] through hydrogen 
peroxide (H2O2)-mediated oxidation of target proteins or through peroxiredoxin (Prx)-dependent redox 
relays[9]. ROS are produced by intracellular and extracellular sources, including asbestos, and dynamically 
regulate numerous cell signaling pathways[10]. Intracellular sources of ROS, such as NADPH oxidases and 
the mitochondrial electron transport chain, participate in redox-dependent signaling spatially and 
temporally[11,12] [Figure 1]. Control over the amount, timing and location of ROS contributes to specific 
redox signaling events, akin to cellular control over protein phosphorylation cascades[13]. One well-known 
redox signaling event is in the cell’s response to hypoxia, which is mediated by the stabilization of hypoxia-
inducible factors (HIFs). Under normal conditions, prolyl hydroxylase domain protein 2 (PHD2) prevents 
HIF stabilization by hydroxylating two of its proline residues, marking it for degradation[14]. PHD2 is 
deactivated at low oxygen levels, allowing HIF stabilization. A study performed by Chandel et al. found that 
the production of mROS was required for HIF stabilization under hypoxia, though the mechanism is still 
unclear[15,16]. In cancer cells, HIF stabilization stimulates angiogenesis, glycolysis, and cell survival, key 
hallmarks of tumorigenesis[2].

ROS IN TUMORIGENESIS AND TUMOR CELL RESPONCE TO ROS
The increased production of ROS in tumor cells is described as a “double-edged sword” in the process of 
tumorigenesis[17]. Increased ROS, often driven by oncogene activation[18], must be managed by cancer cells 
by upregulating various antioxidant networks, as excessive oxidative stress would normally induce 
senescence and/or apoptosis in cells[19] [Figure 1]. Conversely, ROS is also thought to promote cell 
proliferation by inducing DNA mutations and activating redox-dependent signaling pathways[17]. One 
specific way ROS may promote tumorigenesis is by activating the phosphoinositide 3-kinase (PI3K) 
pathway. This pathway is upregulated in cancer cells and promotes cell proliferation, survival, and 
mobility[20]. It is also known that ROS inhibits phosphatase and tensin homolog (PTEN) activity, which 
allows for constitutive expression of PI3K when inactivated[21,22] [Figure 1]. Increased ROS levels in human 
MM cells enhance the expression of the oncogenic transcription factor FOXM1 which supports cell cycle 
progression and escape from oxidative stress[23-25] [Figure 1]. ROS also have the ability to alter metabolism, 
an example of which is by oxidation of key cysteine residues in pyruvate kinase M2 (PKM2). The oxidation 
of Cys358 on PKM2 is thought to increase pentose phosphate pathway flux and cell proliferation in hypoxic 
conditions[26]. Inhibition of PKM2 has been associated with increased tumorigenesis[27,28].



Page 3 of Cote et al. J Cancer Metastasis Treat 2022;8:36 https://dx.doi.org/10.20517/2394-4722.2022.41 11

Figure 1. The redox landscape of MM tumors and methods of targeting ROS: ROS are primarily derived from asbestos fibers, NADPH 
Oxidases (NOXs) and mitochondria in MM tumor cells. ROS levels are balanced by the expression of ROS scavenging pathways, 
including the TR-TRX-PRX antioxidant axis, and increased GSH synthesis through Cystine (Cys-Cys) import via the SLC7A11 uniporter. 
FOXM1 and NRF2 are redox-responsive transcription factors that support ROS scavenging gene expression. BAP1 alters cellular redox 
status through downregulation of the SLC7A11 uniporter and disruption of mitochondrial bioenergetics. ROS inhibit PTEN phosphatase 
activity driving increased PI3K activity that supports tumor cell proliferation and survival. Cisplatin (CDDP) targets DNA, TRX and GSH 
which lead to increased ROS levels. Thiostrepton (TS) inhibits mitochondrial PRX3 which lead to increased mitochondrial ROS. High 
ROS levels are incompatible with cell survival.

Tumor cells must balance the increased levels of ROS associated with transformation and therefore acquire 
genetic and phenotypic features to survive under otherwise inhospitable redox conditions[29]. The 
transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered to be the predominant 
regulator of antioxidant enzyme expression. NRF2 is activated under conditions of oxidative stress through 
a mechanism involving the redox-dependent release of KEAP1, allowing NRF2 translocation to the nucleus 
and regulation of antioxidant genes through antioxidant response element (ARE) binding[30]. NRF2 is 
responsible for producing and regenerating glutathione (GSH), a major antioxidant cofactor in the cell[31]. 
NRF2 also has a role in the production of NADPH, which is used to regenerate many antioxidant 
enzymes[17,32] including the thioredoxin reductase (TR) - thioredoxin (TRX) - peroxiredoxin (PRX) 
antioxidant network[33] [Figure 1].

The forkhead box (FOX) family of proteins also plays a significant role in tumor cell escape from oxidative 
stress. The FOX family of proteins plays an important role in cell proliferation, cell metabolism, stress 
responses, and aging[17]. FOXO specifically seems to regulate the expression of superoxide dismutases 
(SODs), catalase and sestrin 3 under conditions of oxidative stress[34]. FOXM1 expression is increased in H-
RAS transformed cells and is required for balancing cellular ROS levels and escaping from oncogene-
induced senescence[25]. FOXM1 expression is upregulated in MM and plays an important role in MM cell 
survival (see below). p53, a prominent tumor suppressor gene, is also thought to have a regulatory role in 
antioxidant gene expression, though its expression has been thought to produce both pro- and antioxidant 
responses[35]. It is thought to promote the production of glutamate which is required for GSH synthesis[36]. 
p53 also promotes sestrin 1 and 2 expression[37]. Experiments with mutated forms of p53 that prevent its 
ability to induce apoptosis and cell cycle arrest showed that it still retained a tumor suppressive ability[38]. 
This suggests that its function appears to be partly due to its ability to suppress ROS production[39]. 
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Interestingly, p53, although mutated in many forms of cancer, is almost always a wild type in MM cell lines. 
Its function, however, is usually inhibited by other gene deletions frequently found in MM cells[40].

ROS IN MALIGNANT MESOTHELIOMA 
Human MM cell lines demonstrate elevated levels of antioxidant enzymes such as manganese superoxide 
dismutase (MnSOD)[41], peroxiredoxins (PRXs) and the mitochondrial thioredoxin reductase 2 (TrxR2) - 
thioredoxin 2 (Trx2) - peroxiredoxin 3 (Prx3) antioxidant network[42] compared to normal mesothelial cells. 
The upregulation of MnSOD is significant as it is the only antioxidant induced by asbestos exposure[43] and 
contributes to the high resistance to oxidant chemotherapeutic drugs displayed by MM cells[44]. MM cells 
also display increased expression of many PRXs[45], a family of H2O2 scavenging enzymes found in the 
cytoplasm (PRX1, PRX2), mitochondria (PRX3, PRX5) and endoplasmic reticulum (PRX4). Some members 
have notable functions, such as PRX2, which induces cell proliferation and protects cells from undergoing 
oxidative stress-induced apoptosis[46]. PRX3 protects tumor cells from apoptosis[47] and knockdown of PRX3 
in human MM cells leads to reduced proliferation and altered cell cycle progression[5,23]. The role of PRX3 in 
cancer is still being uncovered, but its importance in maintaining mitochondrial redox status is clear as 
PRX3 is estimated to metabolize ~90% of mitochondrial H2O2

[48]. Targeting PRX3 for the treatment of MM 
is a new avenue being explored in clinical trials (elaborated below).

Disruption of cellular redox status via depletion of glutathione (GSH) and iron-dependent lipid oxidation 
contributes to a type of programmed cell death termed ferroptosis[49]. Inactivation of NF2, LATS1, or 
LATS2, genes involved in signaling cascades that prevent ferroptosis, are recently identified mutations in 
MM cells that sensitize them to ferroptosis[50]. Approaches to targeting these mutations and taking 
advantage of this ferroptosis sensitivity, as well as looking into other possible pathways involved in 
ferroptosis, are an avenue for therapeutic intervention in MM. One proposed target is BAP1, the most 
commonly mutated gene in MM, which can inhibit ferroptosis when mutated[51,52]. Interestingly, fibroblasts 
harboring heterozygous BAP1 mutations show altered metabolite profiles and mitochondrial respiration, 
including reduced citric acid cycle metabolites and mitochondrial oxygen consumption[53]. It was concluded 
that BAP1 mutant fibroblasts are preferentially undergoing aerobic glycolysis (Warburg effect). Additional 
studies in a mesothelioma cell line (NCI-H226), which does not express BAP1, showed that reconstitution 
of BAP1 into these cell lines promoted ROS production, gene-expression changes indicative of increased 
cellular oxidative stress and increased sensitivity to exogenous H2O2

[54] [Figure 1]. These results provide a 
path forward for looking into BAP1 status in the context of redox-dependent therapies.

FOX protein family members, including FOXM1, are thought to mediate tumorigenesis and promote the 
survival of MM cells[24]. High FOXM1 expression is found in MM cells, and tumors and knockdown of 
FOXM1 with siRNA slows the growth of MM cells[55,56]. FOXM1 also regulates the expression of genes 
involved in cell survival and cell cycle progression. The two oncogenic isoforms of the protein, FOXM1B 
and FOXM1C, act as transcriptional activators and are both upregulated in MM cancer cells, suggesting that 
FOXM1 may be a viable target for cancer treatment[24,57]. The expression of FOXM1 is induced by the 
production of H2O2

[25,58]. FOXM1 counteracts oxidative stress by upregulating the expression of antioxidant 
enzymes such as SODs, catalase, and PRX3, which suppresses oncogene-induced senescence and supports 
tumor cell growth[25] [Figure 1]. PRX3 functions by metabolizing H2O2, which causes catalytic cysteine 
residues in PRX3 to form a disulfide bond. This bond is reduced by thioredoxin 2 (TRX2), regenerating 
PRX3 to its active conformation and able to metabolize another molecule of H2O2

[59]. TRX2 is subsequently 
regenerated by TR2 using NADPH as the reductant[60]. Notably, TR2 and TRX2 are also upregulated in 
cancer cells, and measuring the activity of TR2 is proposed to be a useful way to monitor the growth of MM 
cell lines[61]. The TR2-TRX2-PRX3 system has been identified as a pathway for therapeutic intervention in 
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preclinical MM cell and animals models, which will be discussed below.

DISRUPTION OF MITOCHONDRIAL DYNAMICS IN MALIGNANT MESOTHELIOMA
The mitochondria are thought of as a dynamic network that fuse (fusion) and divide (fission) in order to 
adapt to the metabolic needs of the cell[62]. The process of fission is mediated by the GTPases dynamin-
related protein1 (Drp1) and dynamin 2 (Dnm2)[63]. Similarly, mitochondrial fusion is mediated by 
mitofusins Mfn1 and Mfn2 that help perform the fusion of two mitochondrial membranes[64]. In cancerous 
cells, the mitochondrial network is often fragmented, and redox-dependent signaling is believed to be key to 
these shape changes[65,66]. One of these pathways is hypoxia-induced mitochondrial fission, which occurs 
when HIFs induce Drp1 expression. In addition to mitochondrial fragmentation, HIF expression is linked 
to increased metastatic activity. This suggests that HIFs are an important mediator for both mitochondrial 
fission and cancer cell proliferation[67,68]. Another important mediator is the p38 mitogen-activated protein 
kinase (MAPK), which stimulates stress response pathways upon receiving redox signals[69]. One direct way 
is to phosphorylate Drp1 directly to induce mitochondrial fission[70].

The transcription factor nuclear factor κB (NF-κB), which plays a role in inflammation and is upregulated in 
cancer, is also thought to alter mitochondrial dynamics. Elevated NF-κB levels in cigarette smoke-induced 
mitochondrial fragmentation were found to correlate with increased expression of Drp1 and decreased 
expression of Mfn2[71]. More recent research has also shown that the principal component of that pathway is 
the NF-κB inducing kinase (NIK). In addition to having pro-fission activity, NIK was also shown to 
promote mitochondrial migration towards the cell periphery, which was shown to correlate with increased 
tumor invasiveness[72,73]. NF-κB activity is upregulated following asbestos exposure[74], and sustained NF-κB 
activity has been observed in MM cells[75]. Downregulation of NF-κB with Onconase decreased MM 
proliferation and invasion[76]. Although mitochondrial defects were not reported in these studies, the cellular 
responses observed warrant evaluating strategies targeting NF-κB with disruption of mitochondrial 
dynamics.

MM cells also appear to demonstrate a difference in mitochondrial morphologies. A study performed by 
Lennon et al. evaluated the fission/fusion rate of various MM cells using fractal dimension and lacunarity 
measurements to characterize mitochondrial architectures[77]. They found that MM cell lines displayed a low 
fractal dimension and high lacunarity compared to control mesothelial cells. The low fractal dimension and 
high lacunarity both indicate a high rate of mitochondrial fission[77]. DRP1 is upregulated in many cancer 
types and supports tumor growth and metastasis[78]. Mitochondrial dynamics, including fission, appear to be 
linked to cell cycle at the G2/M phase, as it is an important checkpoint to ensure an even distribution of 
mitochondria. Drp1, therefore, plays an important role in mediating cell cycle progression[79]. Interestingly, 
we found that PRX3 expression in MM cells mediates Drp1 expression and provides evidence that this 
affects mitochondrial dynamics through activation of Drp1. This was demonstrated in an experiment where 
cells failed to progress through the G2/M phase when PRX3 expression was inhibited and DRP1 
phosphorylation at a key regulatory serine was coincidingly reduced[23]. Disabling the receptor tyrosine 
kinase MET with MGCD516 in MM cells led to a loss of DRP1 activity that accompanied reduced viability, 
migration, and invasion[80]. Combining MGCD516 with the proposed mitochondrial fission inhibitor Mdivi-
1 induced cell death to a greater extent than either drug used alone[80]. Given that DRP1 expression is 
upregulated in MM[81], the unique mitochondrial morphologies of MM cells[77] and the connection between 
mitochondrial redox status, DRP1 activity and cell cycle progression[23] targeting mitochondrial morphology 
in MM may be a viable therapeutic approach. Lennon et al. (2016) also studied the effects of mitochondrial 
inhibitors metformin and Mdivi-1[77]. Metformin, which inhibits complex I of the electron transport chain, 
appeared to be highly effective against MM cell lines with a low fractal dimension and a high lacunarity. 
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Mdivi-1, which inhibits Drp1, was most effective on cell lines with a high lacunarity. This study did not find 
any correlation with their mitochondrial metabolism measurements. Although the use of treatments like 
metformin is largely unproven, this suggests that mitochondrial dynamics may be a promising indicator of 
the effectiveness of cancer treatments[77]. These results suggest that mitochondrial dynamics are a useful 
target for MM treatment, as well as for other tumors characterized by high mitochondrial oxidant 
production.

STRATEGIES IN MODULATING MITOCHONDRIA AND REDOX SYSTEMS FOR 
THERAPEUTIC INTERVENTION
Several studies recognize the difficulty in treating cancer by downregulating ROS production for the same 
reasons that they are controversial in the role of cancer development. Suppressing ROS with general 
antioxidants, such as β-carotene and vitamin A, was found to enhance tumor growth[82,83]. Several other 
studies have criticized the commercial use of antioxidants as a means of cancer prevention. There have been 
few population-based studies supporting their use[17]. Inducing oxidative stress by selectively increasing 
cellular ROS or specifically targeting key antioxidant enzymes seems to be a more viable option [Table 1]. 
One approach is by directly increasing ROS levels within the cell. Many well-known cancer treatments, such 
as chemotherapy and radiation, already work by inducing oxidative stress[17]. However, caution must be 
exercised as inducing ROS in cells nonspecifically may induce chemoresistance[84,85]. Additional studies have 
shown that some ROS-inducing agents may be able to sensitize cancer cells to treatments like radiation 
therapy. One, in particular, is vitamin C (ascorbate) which acts as a pro-oxidant at higher doses[86] and has 
been shown to enhance sensitivity to radiation therapy in pancreatic cancer[87,88]. Other studies have shown 
that depletion of arginine, a critical amino acid in the biosynthesis of proteins, nitric oxide, and polyamine 
is an actionable approach for therapeutic intervention in argininosuccinate synthase I (ASSI) - negative 
tumors, including MM[89,90]. Depletion of arginine leads to mitochondrial dysfunction and increased ROS 
levels[91,92]. Pegargiminase (ADI-PEG 20; ADI) acts to degrade arginine and shows potent activity in ASS1 
deficient MM tumors[93]. Given the potent effects on mitochondrial activity, including increased oxygen 
consumption and ROS levels following arginine depletion, or treatment with ADI-PEG 20, it will be 
interesting to determine the redox-dependent activity of this approach in the therapeutic response 
observed[92,94].

A more specific approach to increasing ROS is by targeting antioxidant pathways. As many antioxidant 
systems are upregulated in cancer cells, they have been identified as important targets for treatment that 
selectively targets cancer. Thioredoxin (TRX) pathway inhibitors are an important target, as it is suggested 
that overexpression of TRX leads to chemoresistance to pro-oxidant therapies[59]. For example, cis-
diamminedichloroplatinum (II)[45] (CDDP, cisplatin) is one of the few chemotherapeutic agents approved 
for use in MM treatment[95], and its cytotoxicity is partly attributed to its effects on TRX activity. Studies 
showed that cisplatin cytotoxicity was strongly correlated with thioredoxin reductase (TR) inhibition. This 
study also showed that an increase in TR expression correlated with cisplatin resistance[96]. Although 
cisplatin activity is attributed to DNA damage, most of the intracellular platinum content reacts with GSH, 
forming a bis-(glutathione)-platinum (GS-Pt) complex[97], which, notably, also demonstrated inhibitory 
effects on TR[98].

Triphenylmethanes, like brilliant green and gentian violet (GV), appear to act by inhibiting the 
mitochondrial thioredoxin isoform(Trx2)[99]. GV was shown to have potent cytotoxic activity against MM 
cells in culture and a xenograft model of MM[5]. These studies corroborated initial studies that GV was a 
potent TRX2 inhibitor as loss of TRX2 expression correlated with cytotoxicity[99]. Additionally, treatment of 
cells with GV led to significant increases in disulfide-bonded dimers of PRX3, the molecular species reduced 
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Table 1. Targeting ROS in cancers including malignant mesothelioma

Source citation Topic PMID

Chen et al.[86] (2007) 
Alexander et al.[87] (2018) 
Mehdi et al.[88] (2021)

Vitamin C (ascorbate) (17502596) (30254147) 
(34639220)

Cunniff et al.[5] (2015) 
Nelson et al.[6] (2021) 
Newick et al.[55] (2012) 
Cunniff et al.[56] (2013)

Modulating PRX3 and/or FOXM1 (26011724) (33498547) (22761781) 
(23018647) 

Scalcon et al.[59] (2018) 
Zhang et al.[99] (2011)

Thioredoxin and thioredoxin reductase inhibitors (29596885) (21215310) 

Omenn et al.[82] (1996) 
Alpha-Tocopherol et al.[83] (1994)

Vitamin E and Beta Carotene (8602180) (8127329) 

Gorrini et al.[17] (2013) 
Jezek et al.[65] (2021)

Reviews (24287781) (33418995)

by TRX2 and a significant increase in mitochondrial ROS levels[55].

Studies from our group identified the increased expression of FOXM1 in MM tumors and MM cell lines[55]. 
This observation led to testing the proposed FOXM1 inhibitor, TS, in preclinical models of MM. TS shows 
potent anticancer activity in a variety of tumor cell lines[100] and has been proposed to exert its anticancer 
activity through inhibition of FOXM1[101], the proteasome[102,103] and PRX3 activity[5,6]. Our group has been 
investigating the molecular mechanism and anticancer activity of TS in preclinical cell and animal models of 
MM and have deduced that PRX3 is a primary molecular target of TS[5,6,23,55,56,61] [Figure 1]. MM cells are 
more sensitive to TS compared to normal primary and immortalized mesothelial cell lines, and TS has 
potent in vivo activity in xenografts of human MM cells engrafted to the peritoneal cavity of 
immunocompromised mice. These studies have collectively shown that TS covalently crosslinks the active 
site Cys 108 and Cys 229 residues, inducing a stable covalent adduct across the dimer-dimer interface. 
Crosslinking of PRX3 increases cellular and mitochondrial ROS levels that can be inhibited by pre-
treatment with the ROS scavenger N-acetylcysteine (NAC), indicating the redox dependency of TS 
cytotoxicity. The crosslinking of PRX3 by TS was detectable in tissue resected from mice harboring MM 
xenografts, providing evidence that the mechanism of PRX3 crosslinking by TS is preserved in vivo. Our 
recent work uncovered the specificity of TS for mitochondrial PRX3 versus the cytosolic peroxiredoxins 
PRX1 and PRX2. Structural transitions of PRX3, dependent on its oxidation status and the local pH 
environment of the mitochondrial matrix, support preferential adduction of PRX3 in MM cells. TS 
treatment of MM cells also leads to a loss in FOXM1 expression. The interplay between TS, PRX3, mROS 
and FOXM1 remains unclear as knockdown of PRX3 reduces FOXM1 levels and treatment of MM cells 
with mROS inducing agents (rotenone) leads to loss of FOXM1. Although more research is necessary to 
dissect this interplay, targeting PRX3 and FOXM1 with TS is an exciting therapeutic approach. TS is 
currently being tested in the MITOPE phase 1/2 clinical trial to evaluate activity in patients with malignant 
pleural effusion (MPE) arising from metastatic disease or M (NCT05278975).

CONCLUSIONS
ROS have a complicated role in the development of MM and many other cancers. Although a potent and 
cancer promoting signaling molecule, increased ROS and adaptations to oxidative stress in cancer cells, 
including MM, provide a redox vulnerability exploitable through redox-dependent therapies. Several 
preclinical and established cancer treatments exploit the increased ROS production observed in cancer by 
directly inducing oxidative stress or targeting complex cellular antioxidant networks. A secondary and 
complementary approach is targeting mitochondrial dynamics, as they are intertwined with many of the 
same redox processes. MM cell lines display both increased ROS production and altered mitochondrial 
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dynamics; therefore, further evaluating these strategies is warranted for the treatment of MM.
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