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Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular 
and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the 
unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized 
as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor 
prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor 
microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of 
CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by 
CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic 
mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, 
hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune 
surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving 
overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are 
resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome 
therapy failure.
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INTRODUCTION
Head and neck malignancies are now the seventh most common type of cancer worldwide[1]. More than
90% of head and neck tumors are derived from mucosa epithelium and are diagnosed as squamous cell
carcinoma (HNSCC). Although sharing identical histological subtypes, HNSCC can be divided into at least
two genetic subclasses based on the absence or participation of human papillomavirus (HPV) in
carcinogenesis[2]. The oral cavity represents the main subsite for HPV-negative tumors and the oropharynx
for HPV-positive ones[3]. Moreover, these subgroups also differ in clinical profile, tumor behavior, survival
rates, and prognoses[4].

The mainstay treatment for HNSCC consists of surgery with adjuvant or neoadjuvant chemotherapy and
radiotherapy. More recently, immunotherapy with checkpoint inhibitors has been indicated for recurrent
and metastatic HNSCC with promising results, although only a subset of patients with HNSCC has shown a
response to this therapy[5]. TNM stage of the disease and anatomic subsites influence therapeutic options for
HNSCC. While radical surgeries are the first choice for locally advanced oral cancer, the main treatment for
oropharyngeal tumors is chemoradiotherapy, regardless of HPV status. Nowadays, transoral surgeries
(robotics and laser microsurgery) have also been performed in the oropharynx region[6].

Despite the advances in current therapy, the prognosis of HNSCC remains poor. More than half of patients
die from the disease or complications within a short period, varying from a few months to five years[7]. The
primary cause of mortality is related to resistance to therapy which leads to local recurrence, cervical lymph
node metastasis, and occasionally, distant organ metastasis[6]. Tumor heterogeneity and cancer stem cells
(CSCs) are known to enhance metastatic dissemination and therapeutic resistance, contributing to
lethality[8].

CSCs represent a small but critical subpopulation of cells in the tumor capable of self-renewal and
multilineage differentiation and regenerating a tumor when serially transplanted into mice models[9]. Since
tumors can regrow from a single CSC, cancer treatment success may be attributed to the complete
eradication of CSCs populations[8].

Besides, CSCs also demonstrate cellular plasticity; they can reversibly switch between different stem cell
phenotypes and between a stem and non-stem cell state[10]. CSCs activity is modulated by different signals
and cellular interactions provided by the tumor microenvironment, allowing CSCs to achieve highly
invasive and aggressive behavior or resist conventional therapies. Thus, activating the Epithelial-to-
Mesenchymal Transition (EMT) program by the CSCs represents a valuable strategy to promote invasion,
metastasis, and treatment resistance[10-12].

CSCs may originate from adult stem cells or progenitor cells in which the accumulation of mutations over
time leads to the activation of transcriptional gene signatures and signaling pathways related to the
maintenance of stem cell phenotype and malignant transformation[13-15]. Moreover, differentiated cells can
also acquire stemness traits due to genetic instability throughout their division process and dedifferentiate,
acquiring stem cell properties[16,17]. It is essential to highlight that malignant cells can dedifferentiate and
acquire stem cell characteristics under challenging situations, including exposure to chemotherapy and
radiotherapy[18].
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In HNSCC, Prince et al. first described the presence of a small fraction of CD44-positive cells capable of 
generating new tumors when inoculated in immunocompromised mice and re-establishing original tumor 
heterogeneity[19]. Moreover, this subpopulation expressed the Bmi1 gene, a stemness marker involved in 
tumorigenesis and self-renewal[19]. Since then, other common HNSCC CSC markers, such as CD44, 
ALDH1, CD133, c-Met, and Bmi-1, have been described[20-22]. ALDH1 is considered a highly specific CSC 
marker, mainly when evaluated with CD44[20]. Moreover, based on CD44 and EpCAM expression levels, 
CSCs in oral squamous cell carcinoma (OSCC) seem to switch between two distinct phenotypes. First, 
CD44high/EpCAMhigh presents an epithelial morphology and colony formation capability, and second, 
CD44high/EpCAMlow has a mesenchymal morphology (EMT profile) with high invasive potential, metastasis 
and radioresistance ability[10,23]. More recently, LIN28A and LIN28B proteins, located in the cytoplasm and 
nucleus/nucleoli, respectively, were identified as reprogramming factors that can lead to the de-
differentiation of malignant oral squamous cancer cells into CSCs and contribute to their immune 
evasion[24].

For other types of cancers, distinct CSCs can be identified and isolated by fluorescence-activated cell sorting 
(FACS) using phenotypic surface markers alone or in combination. More than 40 surface markers are 
known to identify CSCs in solid tumors, and the majority are derived from embryonic or adult stem cells[25]. 
In general, high positivity of CD44, CD24, CD133, CD90, EpCAM, and Aldehyde Dehydrogenase 1 
(ALDH1), and elimination of Hoechst 3334 dye via ABC transporters are the most used markers[26]. The 
isolated CSCs can be propagated in vitro as spheroids or used in organoid cultures. Moreover, spheroid 
cultures are CSCs enriched, show self-renewal ability in vitro and in vivo, and generate tumors that resemble 
the original tumor heterogeneity and differentiation[27].

More recently, in addition to the conventional 2D cell culture, 3D culture models have been used to 
represent tumor microenvironment heterogeneities properly and reproduce patients’ tumor behavior. 
Engelmann L. et al. developed a 3D Organotypic Co-Culture (3D-OTCs) utilizing HNSCC fresh tissue 
(non-HPV driven and HPV-driven) placed on top of dermal equivalents (human fibroblasts cultured on a 
viscose fiber fabric) and analyzed samples’ behavior[28]. All non-HPV-driven 3D-OTCs were capable of 
proliferating cancer cells for up to 21 days and exhibited a heterogeneous, invasive, and expansive growth 
pattern[28]. In the same context, Miserocchi G. et al. developed a 3D culture using HPV-positive and HPV-
negative HNSCC cells in a collagen-based scaffold. They suggested that the 3D model might induce more 
mesenchymal phenotypes than 2D cultures[29]. Also, in this study, HPV-negative cells presented an 
upregulation of FLT1 and ABCA3 when seeded in scaffolds, overexpressed EMT-related genes, and 
increased migration ability compared to HPV-positive cells[29]. Based on these findings, collagen-based 
scaffolds seem to activate drug-resistance mechanisms reassuring the ability of 3D scaffolds to reproduce 
HNSCC tumor microenvironment impeded by other in vitro systems. Accordingly, regarding response to 
treatment analyses, 3D culture is promising in the future of HNSCC and CSC research.

Several associations between clinicopathological characteristics and CSCs have been appointed in HNSCC, 
including tumor size, regional and distant metastases, perineural invasion, radiation failure, and poor 
disease-free survival[30]. A previous study of our group explored CSCs markers in tongue tumors and found 
that the overexpression of CD44 was related to worst overall survival, and Nanog and Oct4 were associated 
with regional metastasis and death[31]. Ma et al. suggested that CD133+ cells could be responsible for 
aggressiveness and chemoresistance in oral tumors[32]. A meta-analysis study by Fan et al. showed that the 
CSCs markers, CD133, Nanog, and Oct4, could have a prognosis value in HNSCC patients[33]. In light of 
recent events in CSCs markers, there is now some discovery about non-coding RNAs (ncRNAs) used as 
biomarkers of cancer development and tumor stage determination[34].
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MicroRNAs are a type of sncRNA that regulate biological processes. Each miRNA can control target genes
and accentuate their potential influence on almost every genetic pathway. Hsieh PL et al. demonstrated that
ncRNA molecules associated with CSCs are responsible for acquiring and maintaining cancer stemness[35].
Let-7 genes family act as a tumor suppressor. Lin28B-let-7 pathway positively regulates the expression of
stemness factors Oct4 and Sox2; it causes a switch of non-CSCs to CSCs with tumor starting and self-
renewal characteristics in oral CSC[36].

MicroRNA-200 family is another group of genes related to CSC; expression levels of miR-200c were
downregulated in ALDH1+/CD44+ HNSCC with BMI1 overexpression. Also, an expression of let-7c or let-
7d in oral CSCs suppressed stemness and the radio/chemoresistance  hallmarks through suppression of IL-8
or EMT markers, respectively[37,38]. MicroRNA-494 acts as a tumor suppressor or oncogenic factor. An
increase of miR-494 can inhibit ALDH1 activity, CD133 positivity, and other stemness signatures in
ALDH1+CD44+ oral cancer cells. In the same way, activation of miR-494 inactivates Bmi-1 and ADAM10
expression in OSCC-CSCs[39]; also, miR-494-3p may enhance the radiosensitivity and induce a senescence
pathway in oral cancer cells[40].

In this scenario, it is essential to highlight that CSCs are not easily eliminated by conventional therapies,
meaning that after the effective depletion of the bulk of the tumor, residual CSCs populations may survive,
drive and sustain cancer recurrence, invasiveness, and therapy resistance[41]. Moreover, CSCs are considered
intrinsically resistant to chemo and radiotherapy. It is also possible that the CSCs and their close
descendants give rise to therapeutic-resistant malignant cells that accumulated mutations caused by
genotoxic therapies[42]. CSCs adopt different strategies to overcome the challenges imposed by treatment,
including the acquisition of dormancy, which is influenced by the CSC niche and immune surveillance,
increased drug efflux capacity, activation of DNA repair machinery and decreased activation of
apoptosis[43]. This review will focus on the mechanisms that lead to CSC resistance to radiotherapy and
chemotherapy in HNSCC.

RADIORESISTANCE AND CSC
In HNSCC patients, radiotherapy (RDT) is a common choice of treatment to achieve cancer control after 
surgery and/or current chemotherapy[6]. Usually, on weekdays patients receive a dose of 70 Gy that can be 
administered through standard fractionation (2 Gy, once a day) or via accelerated fractionation and 
hyperfractionation (twice a day)[44]. Fractionation guarantees that cancer cells will eventually be exposed to 
radiation in all cell cycle phases, favoring DNA damage and cell fate. Nevertheless, this process also activates 
important protein regulators of DNA damage response, such as ataxia-telangiectasia mutated (ATM) and 
ataxia-telangiectasia and Rad3-related protein (ATR), which will be decisive in treatment response[45].

Tumor response or failure to ionizing radiation is mainly associated with the classical 4 R’s of radiobiology: 
repair of sublethal DNA damage, reassortment of cells in the cell cycle, cell repopulation, and reoxygenation 
of hypoxic areas[46]. Efficient cell death by RDT depends on producing unrepairable damage involving DNA 
double-strand breaks (DSBs); however, most radiation-induced DNA damage is sublethal. DNA repair 
systems include base excision repair (BER), nucleotide excision repair (NER), homologous recombination 
(HR), non-homologous end joining (NHEJ), and mismatch repair (MMR) pathways[47]. In this context, 
CSCs seem to hold elevated levels of proteins responsible for NHEJ and HR and an increased DSB repair 
capacity[23].

If tumor recurrences occur within six months following radiation, tumors are considered radioresistant[48]. 
Mechanisms involved in radioresistance are not fully understood, but accumulated evidence indicates that 
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cancer stem cells (CSCs) are decisive in this process[46,49]. In general, therapeutic resistance refers to the 
ability of cancer cells to recover and repair DNA damage and regrow after tumor therapy[50], being higher in 
CSCs than non-CSC[51]. This ability is mainly related to the increased regulation of DNA repair genes, 
DNA-damage checkpoints, and anti-apoptotic proteins[52,53].

Furthermore, it has been recognized that a CSC subpopulation exhibiting a mesenchymal profile 
(CD44high/CD24low) presents an even higher level of DNA repair following RDT[23]. Besides, irradiation 
activates stemness pathways and induces CSC phenotypes in non-stem cancer cells. Up-regulation of CSCs 
genes, such as Sox2 and Oct3/4, may be observed after radiation, contributing to tumor radioresistance[53]. 
The plasticity of CSCs dramatically interferes with identifying and eliminating CSCs during cancer 
therapies[54].

Radiation promotes an arrest of CSCs in the G2/M phase, which allows active DNA repair. Moreover, after 
radiation, there is a noticeable discrepancy between the higher rates of self-renewal and proliferative abilities 
of CSCs compared to their lower apoptosis activation, favoring tumor growth[52]. In oral cancer cell lines, 
changes in CSCs content (ALDH+) are associated with an increase in the rates of sub-lethal damage repair 
(SLDR), which enables efficient cell repair and reduces tumor control capabilities[55]. Duration of the 
exposure to the fractionated dose-delivery of radiation seems to influence radioresistance mechanisms 
driven by SLDR, suggesting that reduced overall dose-delivery time on radiotherapy could favor CSCs 
control[55].

Besides the DNA repair process, activation of checkpoint responses after radiation damage also participates 
in the radioresistance of several tumors, including HNSCC. Cell cycle progression is delayed to allow DNA 
repair through activation of signaling pathways such as ataxia telangiectasia mutated (ATM)-checkpoint 
kinase 2 (Chk2) and ATM-Rad3-related (ATR)- checkpoint kinase (Chk1)[56]. CSCs appear to enhance 
response to DNA damage activating Chk2 in invasive oral cancer[23]. Inhibition of Chk1 was suggested as a 
therapeutic target in HNSCC that contributes to the failure of DNA replication and intensification of DNA 
damage[57].

Induction of apoptosis represents one of the primary mechanisms by which cancer cells are eliminated in 
cancer therapies[58]. Reduced cleaved caspase proteins showed the apoptotic resistance of CSCs in oral 
cancer after irradiation[23]. Resistance mechanisms evolving upregulation of anti-apoptotic proteins such as 
Bcl-2 and inhibitor of apoptosis (IAP) are commonly found in tumor cells, especially in CSCs[59]. Radiation 
can activate X-linked IAP (XIAP), another IAP family member that inhibits apoptosis mediated by 
mitochondrial and caspase-3 pathways[60]. Besides apoptosis regulation, Bcl-2 family members also 
participate in cell migration, invasion, and metastasis[61]. In this focus, an inhibitor of Bcl-2 combined with 
Cetuximab and radiation showed excellent results in eliminating CSCs in HNSCC cell lines[62].

Another widely studied mechanism of CSCs contributing to radioresistance and poor prognosis in HNSCC 
is related to hypoxia, i.e., low oxygen levels caused by insufficient blood supply to tumor tissues[63,64]. A 
hypoxic tumor environment can interfere directly with the potential of radiation to damage DNA cells and 
indirectly regulate the expression of genes related to aggressiveness and response to treatment. Additionally, 
hypoxia is essential in protecting the CSCs niche from radiation effects and in acquiring and maintaining 
CSC-like phenotype[65].

In HNSCC, hypoxia-inducible factor-1a (HIF-1α), a transcriptional regulator of oxygen homeostasis, is 
enhanced in CSCs subpopulations in response to radiation[66]. Furthermore, hypoxia upregulates CSCs 
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genes such as Sox2 and Nanog, consequently contributing to the survival of tumor cells after radiation[67]. 
Linge et al. showed a correlation between high tumor recurrence after postoperative radiochemotherapy in 
locally advanced HNSCC patients, increased expression of CSCs markers, and high hypoxia-induced gene 
signature expression[68]. Strategies for hypoxic modifications such as hyperbaric oxygenation or 
nitroimidazoles significantly reduced locoregional recurrence after radiation in HNSCC[69].

In the same context, reactive oxygen species (ROS) and redox-regulatory mechanisms can regulate DNA 
damage and resistance to irradiation. Accumulation of ROS and DNA damage of cancer cells is associated 
with the effectiveness of radiotherapy[70]. Unlike non-CSCs, CSCs present a high antioxidant capacity that 
coordinates the activity of free-radical scavengers and protects cells from induced-radiation death[70,71]. This 
low ROS state presented by CSCs is also related to the quiescent state of HNSCC stem cells and enhanced 
tumorigenic potentials in vitro and in vivo[72]. Interestingly, GDF15 (growth differentiation factor 15), a 
member of the TGF-β superfamily, participates in ROS suppression in HNSCC, contributing to 
radioresistance and acquisition of the CSC phenotype[73]. Boivin et al. showed that redox-modulating by 
inhibiting GSH antioxidant system previous to radiation is an accurate strategy to eliminate highly 
tumourigenic CSCs[74].

Considering the better prognosis of HNSCC HPV-positive patients, it seems that HPV may influence 
several molecular mechanisms involved in CSC’s radiosensitivity[75,76]. Rieckmann et al. demonstrated a 
limited capacity of DSB repair in HPV/p16-positive cancer cells[77]. HPV-positive tumors are believed to 
present less radioresistant CSCs subpopulations due to their reduced repopulation ability during radiation 
therapy[78]. Reid et al. explored irradiation behavioral responses of CSCs with CD44+ ALDH+ phenotype in 6 
HPV positive and negative HNSCC cell lines[79]. Their principal findings showed that HPV status did not 
influence the inherent proportions of CSCs, which were changed in both groups in response to radiation. 
HPV-negative samples showed a significant increase in CSCs densities, probably reflecting their remarkable 
repopulating ability after treatment[79]. Other studies demonstrated that HPV-negative cell lines seem more 
capable of dedifferentiating from non-CSCs to CSCs in response to radiation than HPV-positive cell 
lines[80]. In addition, low levels of functional TP53 expressed by HPV-positive cells may contribute to 
inducing apoptosis following radiotherapy[81].

In an attempt to address this issue, the literature has found that cisplatin-sensitization has helped overcome 
resistance to radiation in many patients. In a recent study, Routila et al. appointed Oct4 as a good marker 
for identifying radioresistance and cisplatin-sensitive tumors, which could help distinguish patients who 
should receive cisplatin-sensitization from those who would not benefit from this therapy[82]. In summary, 
Oct4 positivity reduced cancer cell apoptosis, favoring cell viability after irradiation. At the same time, Oct4 
can contribute to cisplatin mechanisms inhibiting DNA repair activation[82]. In radioresistance, Oct4 driving 
activates the oncogene Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A), which promotes malignant 
cell growth and proliferation[50].

Despite technological developments, RDT still promotes long-term toxicities compromising the quality of 
life and is often associated with potential tumor resistance[6,83]. CSCs act as key players in regulating different 
mechanisms of DNA damage repair and other regulators of cell death after irradiation, such as hypoxia, 
apoptosis, and ROS [Figure 1]. At this point, we believe that RDT is insufficient to eliminate CSCs in 
HNSCC, explaining the high recurrence rates of these tumors. Thus, further investigation is required to 
comprehend and overcome CSC’s radioresistance and improve treatment success and overall survival in 
cancer patients.
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Figure 1. Mechanisms related to CSCs radioresistance in HNSCC. Radiation can activate stemness pathways such as Sox-2 and Oct3/4 
and induce CSC phenotype in non-stem cancer cells. Radiation promotes an arrest of CSCs in the G2/M phase and activates Chk2 and 
Chk1, which delays cell cycle progression and allows DNA repair. Overexpression of CSC marker ALDH1 leads to increased rates of sub-
lethal damage repair (SLDR), enabling efficient cell repair and reducing tumor control capabilities. CSCs upregulate anti-apoptotic 
proteins such as Bcl-2 and X-linked inhibitors of apoptosis (XIAP). Hypoxia upregulates CSCs genes (Sox2 and Nanog) and is essential 
in protecting the CSCs niche from radiation effects. GDF15 (growth differentiation factor 15) participates in ROS suppression in HNSCC, 
contributing to radioresistance and acquisition of the CSC phenotype.

CHEMOTHERAPY RESISTANCE AND CSC
HNSCC in stage I or II (early tumors) is curable with higher survival rates after surgery or radiotherapy 
alone. In contrast, over 60% of stage III or IV HNSCC (locoregionally advanced) require advanced 



Page 123                                        Siqueira et al. Cancer Drug Resist 2023;6:116-37 https://dx.doi.org/10.20517/cdr.2022.107

therapeutic options such as surgery followed by radiotherapy with or without chemotherapy[7]. Currently, 
the standard chemotherapy regimens for stage III or IV, as well as recurrent and metastatic HNSCC, are 
based on cisplatin, 5-fluorouracil (5-FU), and docetaxel/paclitaxel[84-86].

Chemotherapeutic drugs exert different biological effects on tumor cells, relying on specific mechanisms of 
action. Cisplatin is a platinum-based alkylating agent that creates inter- or intra-strand cross-links or 
transfers alkyl groups to the guanine residues of DNA, generating mispairing formation in DNA bases and 
avoiding strand separation during DNA synthesis[87]. On the other hand, 5-FU is a pyrimidine antagonist 
antimetabolite that interferes with essential biosynthetic pathways, disturbs the DNA/RNA synthesis, or 
causes the formation of DNA strand breaks through inhibition of particular enzymes or incorporation of 
false structural analogs of pyrimidine/purine into DNA[88]. Docetaxel is a topoisomerase II inhibitor that 
impairs DNA replication and causes DNA strand breaks. Paclitaxel is a taxane that modifies the 
function/formation of spindle microtubules by inhibition of nuclear division (mitotic arrest in metaphase), 
leading to cell death[87]. In this context, it is essential to highlight that most chemotherapeutics’ success relies 
on the drugs’ ability to decrease tumor size or induce short-term remission. This measure of success is 
intuitive, and many medications evaluated by these criteria are used in effective chemotherapeutic 
regimens[89].

Although the chemotherapeutic scenario seems broad, mortality from HNSCC continues to rise 
worldwide[90]. As reviewed by Bukowski et al., part of this problem may be a reflection of drug resistance, 
which leads to a reduction of the therapeutic efficacy and is related to over 90% mortality of cancer 
patients[91]. Multi-drug resistance (MDR) of cancer cells during chemotherapy can be associated with a 
variety of mechanisms, including enhanced efflux of drugs, drug activation or inactivation, genetic factors 
(gene mutations, amplifications, and epigenetic alterations), growth factors, increased DNA repair capacity, 
inactivation of apoptosis machinery, increased autophagy, and elevated metabolism of xenobiotics, or even 
any combination of these mechanisms[91-93]. In addition, establishing a tumor microenvironment (TME) 
promotes tumor progression and chemoresistance through a collection of soluble proteins and insoluble 
vesicles secreted by tumor cells. This cell-to-cell communication among various cell types required to form 
the TME, such as mesenchymal stromal cells, immune cells, and vascular endothelial cells, influences the 
function of cells in the TME, shapes the premetastatic niche, and is an essential contributor to the 
development of chemoresistance[94].

Tumor heterogeneity is a significant complicating factor in cancer treatment and is also strictly associated 
with chemotherapy resistance, impacting poor prognosis for HNSCC patients[95]. Specifically, the presence 
of the CSCs has been associated with resistance to chemotherapeutic agents such as cisplatin, bortezomib, 
etoposide, 5-FU, and doxorubicin[92,96]. Most importantly, many studies have demonstrated that treatment 
with these drugs enhances the CSCs fraction in different solid tumors and favors EMT traits, leading to 
treatment resistance and cancer progression[97,98]. In addition, the acquisition of resistance to a specific drug 
generally tends to multiply resistance to unrelated compounds in CSCs and malignant cells, which under 
treatment pressure, can acquire a stem-like phenotype and become therapeutic resistant[18].

CSCs were identified as crucial players in the acquisition of drug resistance and unresponsiveness to current 
chemotherapies against cancer by activating different cellular signaling pathways and mechanisms 
[Figure 2]. The main reasons found in the literature rely on intrinsic properties of CSCs, such as the (1) 
inherent quiescent state that enables them to evade the actions of drugs that target rapidly proliferating cells; 
(2) high levels of drug efflux pumps and detoxifying enzymes; (3) increased DNA self-repair capacity; (4) 
specific expression of anti-apoptotic and prosurvival proteins; (5) acquisition of the EMT-phenotype; (6) 
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Figure 2. Mechanisms related to CSCs’ chemoresistance in HNSCC. Overexpression of Bmi1, Sox2, Sox8, Oct4, Slug, Snail, Nanog, and 
TSPAN1 genes leads to the acquisition of drug resistance and stemness, EMT, and metastasis. CSCs activate signaling pathways such as 
the NOTCH1, FGF2, and Wnt/β-catenin to promote chemoresistance and stemness. Increased expression of ABC transporters, mainly 
ABCG2, the activation of EMT, cell cycle deregulation, increased autophagy, and activation of epigenetic mechanisms, such as up-
regulation of miR-10, are involved with CSC’s chemoresistance in HNSCC.

oxidative modulation; (7) epigenetic modifications and (6) activation of the specific signaling 
pathways[90,99-103]. In addition, the role of the TME in sustaining the CSCs niche is also gaining substantial 
importance in promoting resistance to chemotherapy as an extrinsic factor[101]. The TME shapes the 
morphology and functional features of CSCs, mainly influencing (1) cellular plasticity; (2) hypoxia; (3) 
metabolic reprogramming; (4) activation of specific signaling pathways; and (5) cell-to-cell interactions[100].
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Several in vitro studies found that stemness-related genes are overexpressed in HNSCC cell lines resistant 
mainly to Cisplatin, 5-FU, doxorubicin, and docetaxel. Sox2, Oct4, CD44, Bmi1, ALDH1, and Nanog were 
the genes most frequently associated with the CSC phenotype. Also, EMT markers (Slug, ZEB1, Twist, Snail)
, as well as drug efflux transporters (ABCG2, ABCC1/ABCC2/ABCC3/ABCC4/ABCC5, ABCB1), epigenetic 
alterations (HDAC1/HDAC2, SIRT1, KAT6A,/KAT6B), and specific signaling pathways such as Wnt/β-
catenin and NOTCH1. These mechanisms endow CSCs to survive against standard cancer therapies and 
promote tumorigenesis, recurrence, and metastasis after chemotherapy Table 1[99,104-107].

Interestingly, when considering the CSC phenotype and plasticity in chemoresistant HNSCC tumor 
samples and cell lines, members of the regulator of embryonic stem cell Sox and Oct4 are highlighted over 
the classical CD44, Bmi1, and even ALDH1 CSCs biomarkers. Sox2 was associated with clinicopathological 
parameters of worse outcomes in HNSCC patients and a mediator of therapy resistance in vitro. 
Functionally, Sox2 induced the expression of the anti-apoptotic protein Bcl-2 and enhanced resistance to 
apoptosis-inducing agents, including cisplatin[108]. Accordingly, Lee et al. found that Sox2 overexpression 
was correlated with tumor recurrence and poor prognosis in HNSCC, contributing significantly to the 
acquisition of stem cell traits in vitro[109]. Ectopic expression of Sox2 in HNSCC cells induced stemness by 
positive regulation of Oct4 and Nanog and co-expression of CD44. In addition, endogenous levels of Sox2 
were significantly higher in ALDH1 high cells. At the same time, the downregulation of Sox2 was followed 
by Oct4 and Nanog down-regulation, decrease in stemness, invasion, EMT mediators, in vivo 
tumorigenicity, and frequency of CD44+ cells. Moreover, Sox2 enhances the chemoresistance of CSCs to 
cisplatin, possibly by inhibiting ABCG2 expression and resistance to oxidative stress in CD44+ CD271+ CSCs 
in HNSCC[109].

Xie et al. found that Sox8 expression was positively associated with chemotherapeutic resistance, higher 
lymph node metastasis, advanced tumor stage, and shorter overall survival in HNSCC patients[110]. Also, the 
expression of Sox8 in cisplatin-resistant HNSCC cell lines is responsible for orchestrating the acquisition of 
the CSC phenotype via ABCG2, Sox2, Oct4, and Bmi1 expression but also resistance to therapy and 
activation of EMT and Wnt/β-catenin pathway, favoring tumor invasion and progression. These findings 
indicate that Sox8 could be used as a biomarker and a possible target to eradicate the CSCs and increase 
tumor response to standard therapies toward HNSCC[110].

Several in vitro studies investigating the relevance of CSCs on chemoresistance initially characterize the 
CSCs subpopulation based on the expression levels of CD44 and ALDH1. Nör et al. showed that treatment 
with low doses of cisplatin promotes Bmi1 and Oct44 expression and increases the CSCs fraction identified 
as CD44high ALDHhigh, indicating that these cells are intrinsically resistant to treatment and can expand after 
therapy[111]. The study by Chen et al. elegantly confirmed that Bmi1+ CSCs are enriched in vivo after 
treatment with cisplatin, being able to reconstitute the tumor heterogeneity and are the main responsible for 
recurrence[112]. Kulsum et al. found that HNSCC cell lines resistant to cisplatin and 5-FU showed 
enrichment of CD44+ ALDH1+ subpopulation, stemness, expression of ABCG2, Sox2, Nanog, Oct4, and 
NOTCH1 genes, and G0/G1 or S phase arrest[113]. One of the mechanisms by which the CD44high/ALDH1high 
cells become resistant may be the upregulation of the DOT1L and monomethyl l-H3K79 that lead to miR-
10 activation, resulting in cytoskeleton remodeling via RhoC and upregulation of prosurvival molecules 
such as cIAP-2 and XIAP[114]. Another mechanism associated with cisplatin resistance of CD44high/ALDH1high 
is the secretion of FGF2. Most importantly, cisplatin combined with FGFR2 inhibition decreased the 
percentage of CD44high/ALDH1high, and no CSCs enrichment was noticed after cisplatin exposure, indicating 
that blocking FGFR is an attractive target to eliminate the CSCs in HNSCC[115].
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Table 1. The main mechanisms involved in chemotherapy resistance of cancer stem cells in HNSCC

Author
Type 
of 
study

Drug and concentration Cell line CSC isolation Associated genes Main findings

Oliveira 
et al.[96]

In vitro Cisplatin (9-92 µM) CAL-27 CisR and SCC-9CRR ALDH1+ CD44+ HDAC1,HDAC2, SIRT1, KAT6A, 
KAT6B, ZEB1, Bmi1

● The mRNA levels of HDAC1, HDAC2, SIRT1, KAT6A, and KAT6B 
were up-regulated in cisplatin-resistant cell lines, indicating 
activation of epigenetic mechanisms for chemoresistance 
acquisition 
● Activation of EMT program via association of epigenetic 
regulators and ZEB1 is involved with resistance to cisplatin 
● CSC subpopulation increased in cell lines with increasing levels of 
cisplatin resistance, which was also associated with high expression 
of Bmi1

Lee et al.[109] In vitro, 
in vivo

Cisplatin (5- 50 µM) SNU1041 and FaDu ALDH1high CD44+ Oct4, Sox2 
Nanog, Twist, Snail, Slug

● SOX2 overexpression is associated with recurrence and 
contributes significantly to acquiring stem cell traits in HNSCC cell 
lines 
● SOX2 expression is high in ALDH1high CD44+cells, and its down-
regulation was followed by Oct4 and Nanog down-regulation, 
decrease in stemness, invasion, EMT, and frequency of CD44+ cells 
● SOX2 contributes to the resistance of CSCs to cisplatin, and its 
inhibition decreases CSCs viability, possibly by the inhibition of 
ABCG2.   
● Downregulation of ABCG2 in CSCs overexpressing SOX2 restored 
drug sensitivity after cisplatin treatment

Xie et al.[110] In vitro, 
in vivo

Cisplatin (1-10 µM) SCC9-res cells 
CAL27-res

CD44+ CD24- Oct4, Sox2, Bmi1, SOX8, ABCG2 ● Cisplatin-resistant HNSCC cell lines acquire CSCs properties, 
characterized by increased Oct4, Sox2, Bmi1, and ABCG2 expression, 
self-renewal potential, EMT activation, and tumorigenesis in vivo, 
which was mediated by SOX8 upregulation 
● SOX8 knockdown decreases the expression of CSCs associated 
genes as well as ABCG2 and inhibits sphere formation, CD44+ 
CD24- fraction, migration, and invasion in cisplatin-resistant cell 
lines 
● EMT was successfully reversed after SOX8 knockdown and 
inhibited metastasis 
● Moreover, SOX8 knockdown repressed tumor metastasis mainly 
due to inhibition of the Wnt/ β-catenin signaling pathway through 
the transcriptional regulation of FZD7

Nör et al.[111] In vitro, 
in vivo

Cisplatin (different 
concentrations)

UM-SCC-1, UM-SCC-22A, and 
UM-SCC-22B

ALDHhigh CD44high Bmi1, Oct4 ● Exposure to 2μM cisplatin for 24h showed no impact on cell 
survival in malignant cells. However, when sorted ALDHhighCD44high 
cells were exposed, cisplatin doubled the CSCs fraction 
● Low concentrations of cisplatin-induced the expression of Bmi1 
and Oct4 genes, CD44, and orosphere formation in unsorted and 
sorted CSCs, indicating that this therapy contributes to the 
acquisition and maintenance of stemness

Bmi1+ EpCAM+ 
(primary mouse 

● Bmi1 identifies a population of CSCs responsible for HNSCC 
initiation, progression, and metastasis using an elegant in vivo model 

Chen et al.[112] In vivo Cisplatin (1mg/Kg body 
weight)

SCC1, SCC1R, SCC9, SCC22B, 
SCC23, SCC23R, HN13

-
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HNSCC) 
ALDHhigh CD44+ 
EpCAM+ (Primary 
human HNSCC)

of genetic lineage tracing 
Bmi1+ CSCs are located in lymph nodes and in the invasive front of 
HNSCC, mediating invasive behavior and metastasis 
● Bmi1+ CSCs are enriched after in vivo treatment with cisplatin and 
were able to reconstitute the tumor heterogeneity after therapy, 
indicating that these cells are one of the major causes of recurrence 
● Targeting Bmi1+ CSCs with Bmi1 or AP-1 inhibitors and the tumor 
bulk with cisplatin resulted in improved therapeutic outcomes, 
reduced tumor size, and the incidence of lymph node metastasis in 
vivo

Kulsum 
et al.[113]

In vitro, 
in vivo

Cisplatin (2-32 µM), 
Docetaxel (2-15nM) and 5-
FU (5-100µM)

Hep-2, Hep-2 CisR, Cal-27, 
Cal-27 CisR, Cal-27 5FUR, Cal-
27 Dox

CD44+, CD133+, 
ALDH1A1+

Oct4, Sox2, Nanog, CD44, 
NOTCH1, CD133, ALDH1A1, 
ABCG2

● Cell lines resistant to cisplatin and 5-FU showed enrichment of 
CD44+, CD133+ and ALDH1A1+ CSCs, increased expression of 
ABCG2, Sox2, Nanog, Oct4, and NOTCH1 genes, and cell cycle 
dysregulation, characterized by G0/G1 or S phase arrest 
● Increased spheroid formation and migration were also observed in 
resistant cell lines 
● Oct4, Sox2, and Nanog expression represent driving forces behind 
the induction of drug-induced chemoresistance in HNSCC 
● Depletion of ALDH1A1 with small molecule inhibitor (NCT-501) in 
resistant cell lines inhibited tumor burden in vivo and increased the 
efficacy of cisplatin in patient-derived ex vivo explant

Bourguignon 
et al.[114]

In vitro Cisplatin (different 
concentrations)

HSC-3 ALDHhigh CD44high Oct4, Sox2, Nanog ● HA (matrix hyaluronan) promotes aggressiveness in highly 
tumorigenic ALDHhigh CD44high tumor cells 
● Up-regulation of DOT1L and monomethyl l-H3K79 lead to miR-10 
production in HA-treated CSCs 
● miR-10 increases the cytoskeleton regulator RhoC in CSCs and 
DOTL1 signaling inhibition via DOT1L siRNA or anti-miR-10b 
inhibitor decreases RhoC, tumor cell migration/invasion, expression 
of survival proteins (cIAP-2 and XIAP) and contributes to increasing 
chemosensitivity 
● Inhibition of cIAP-2 or XIAP expression enhances cisplatin-
induced chemosensitivity in  ALDHhigh CD44high CSCs 
● Taken together, DOTL1 and miR-10 are important targets for 
future therapies to decrease stemness, induce CSCs death and 
increase its susceptibility to standard chemotherapy

McDermott 
et al.[115]

In vitro, 
in vivo

Cisplatin (2 μM) UM-SCC-1 and UM-SCC-22B ALDHhigh CD44high - ● FGF2 and EREG mRNA were increased in cisplatin-treated 
ALDHhigh CD44high 
● TNFα, IFNγ, IL-6, and NF-κB signaling pathways were associated 
with cisplatin resistance in ALDHhigh CD44high cells 
● FGFR1-4 inhibition, together with cisplatin treatment, promoted a 
50% reduction in ALDHhigh CD44high 
● After FGFR2 knockdown, cisplatin no longer increased the 
ALDHhigh CD44high CSC in HNSCC cell lines 
● Therapeutic inhibition of FGFR might contribute to eliminating 
ALDHhigh CD44high cisplatin-resistant CSCs

● CD44+ CD271+ cells showed increased resistance to oxidative 
stress in HNSCC (which is a cytotoxic effect of cisplatin) and higher 
expression of Bmi1, Oct4, Sox2, SMO, and GLI1 genes after exposure 

Elkashty 
et al.[117]

In vitro, 
in vivo

Cisplatin (0.817 µg/mL) 
5-FU (3.644 µg/mL)

SCC12 and SCC38 CD44+CD271+ Oct4, Sox2



Siqueira et al. Cancer Drug Resist 2023;6:116-37 https://dx.doi.org/10.20517/cdr.2022.107                                                                                                                                        Page 128

to cisplatin and 5-FU

Yu et al.[119] In vitro, 
in vivo

Cisplatin (6.25-100 µM), 
5-FU (6.25-100 µM) and 
doxorubicin (1.25-20 µM)

OECM1-SP 
SCC25-SP

Side Population (SP) CD133, ABCG2, ALDH1A1 ● CD133 was significantly up-regulated in SP cells, which also 
demonstrated high chemoresistance and expression of ABCG2 
● Depletion of CD133 was associated with decreased SP frequency 
and attenuated in vivo tumor formation 
● Targeting CD133 together with cisplatin treatment abrogated the 
proliferation of SP cells in HNSCC, indicating that CD133 is a 
promising therapeutic target to overcome drug resistance in CSCs

Moon 
et al.[120]

In vitro, 
in vivo

Cisplatin (5-100 µM) YD8, SNU1041, KU-SCC1 and 
KU-SCC3

CD44+ Slug ● CD44+ cells showed high expression of Slug and were 
significantly resistant to cisplatin, which was also associated with 
an elevated expression of ABC transporters

Koo et al.[122] In vitro, 
in vivo

Cisplatin (5-50 µM) HNSCC cell lines (FaDu, 
SNU1041, SNU1076, YD15, 
SCC25, and HN6) and three 
HNSCC CSCs cell lines (K3, 
K4, and K5)

Oct4 overexpression SOX2 
Nanog

● Oct4 overexpressing cells in differentiated HNSCC cell lines can 
drive the acquisition of stem-like phenotype 
● Oct4 overexpressing cells were more resistant to cisplatin, which 
was associated with increased expression of ABCC6, indicating that 
Oct4 is involved in drug resistance

Ota et al.[126] In vitro, 
in vivo

Cisplatin (1µM) SAS and HSC-4 Snail overexpression Oct4, Sox2, Nanog, Bmi1, ABCG2 ● Snail overexpression led to increased expression levels of CD44 
and ALDH1 as well as in the expression of Bmi1, Nanog, Oct4, Sox2, 
and ABCG2 genes 
● EMT was induced in Snail overexpressing cells, which was also 
associated with increased stemness and enhancement of 
chemoresistance 
● in vivo, Snail overexpression induced an invasive phenotype in 
non-invasive SAS and HSC-4 cells

Garcia-Mayea 
et al.[135]

In vitro Cisplatin and 5-FU (IC50 
or higher concentrations)

HTB-43, CCL-138, and 
JHU029 and their respective 
cisplatin-resistant cell lines, 
SCC25

Growing cells in non-
adherent conditions for 
3 generations

Sox2, CD44, ALDH1A1, KLF4, 
ABCB1, Twist

● CSCs derived from spheres were more resistant to cisplatin and 
5-FU when compared with the parental cells 
● Cells with higher resistance to cisplatin showed a higher 
percentage of CSCs 
● CSCs demonstrated higher levels of LC3II/I, indicating that 
autophagy may be involved with CSCs resistance to cisplatin

Garcia-Mayea 
et al.[136]

In vitro, 
in vivo

Cisplatin (0-150 μM) 
Dasatinib (0-3 μM)

HTB-43, CCL-138 and JHU029 
and their respective cisplatin-
resistant cell lines

Growing cells in non-
adherent conditions for 
3 generations

TSPAN1 ● CSCs and cisplatin resistant HNSCC overexpress the TSPAN1 
gene and protein 
● in vitro, TSPAN1 inhibition decreased autophagy and EMT traits, 
induced apoptosis, increased sensibility to chemotherapy and 
inhibited the pSrc-signaling cascade 
● in vivo, TSPAN1 depletion impaired tumor growth and metastasis 
spreading

● Cisplatin resistant cells and CSCs showed high SDCBP levels and 
formed slow-growing but highly aggressive tumors in vivo 
● SDCBP inhibition promoted cisplatin sensitization in HNSCC cell 
lines with high resistance to cisplatin, reduced tumorsphere 
formation, EMT traits, and CSCs fraction identified as SP 
● p-Src was identified as a major downstream target in SDCBP-
mediated CSC properties and cisplatin resistance in HNSCC 
● SDCBP protein expression in HNSCC was associated with 
advanced tumor stage, shorter disease-free survival and overall 

Mir et al.[138] In vitro, 
in vivo

Cisplatin (0-150  μM), 
Desatinib (5-100nM)

Fadu, CCL-138, CCL-138 CisR, 
JHU-027, SCC-25, HTB-43

Growing cells in non-
adherent conditions for 
3 generations

SDCBP
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survival

Lee et al.[139] In vitro, 
in vivo

Cisplatin (5-50 µM) SNU-1041, FaDu, HNSCC 
CSCs cell lines (K1 and K3)

- ABCC1, ABCC2, ABCC3, ABCC4, 
ABCC5, nuclear β-catenin target 
genes ( cyclin D1, cyclin A, Cyclin 
E and c-Myc) 
Oct4, Sox2, Nanog, CD44, 
ABCB1, ABCG2 
Wnt 3a, Wnt 5a Wnt 7a, Wnt 
10a Wnt 10b, Wnt 13 
FZD2, FZD4 
FZD5

● Wnt/β-catenin signaling pathway is activated in CSCs cell lines
and β-catenin overexpression drives the acquisition of CSCs
properties as self-renewal, stem cell marker expression, including
Oct4, and chemoresistance
● β-catenin directly regulates Oct4 transcription in CSCs and Oct4
overexpression abrogates the inhibition of stemness caused by β-
catenin knockdown in CSCs
● Wnt/β-catenin axis mediates the self-renewal of CSCs in HNSCC
● Novel therapeutic strategies for targeting CSCs in HNSCC may
focus on the blockade of the Wnt/β-catenin signaling pathway

Byun et al.[140] In vitro, 
in vivo

Cisplatin (different 
concentrations)

SCC-15, SCC-25, fresh HNSCC CD44+ - ● CD44+ cells were more resistant to chemo and radiotherapy than 
CD44- cells in vitro and in vivo 
● in vivo treatment with cisplatin and radiation increased tumor 
hypoxia, HIF-1α and the fraction of CD44+ cells 
● HIF-1α promotes stemness via upregulation of NOTCH1 in 
HNSCC 
● HIF-1α or NOTCH1 knockdown increases susceptibility to cisplatin 
and radiation, which was mediated by Blc-2 inhibition and caspase-
3 expression 
● Blocking HIF-1α associated with cisplatin substantially decreased 
tumor growth in vivo 
● HIF-1α/NOTCH1 signaling in CSCs can be targeted to impair 
tumor growth and progression as well as to overcome therapeutic 
resistance

ABCB1: ATP binding cassette subfamily B member 1; ABCC1: ATP binding cassette subfamily C member 1; ABCC2: ATP-binding cassette sub-family C member 2; ABCC3: ATP binding cassette subfamily C member 
3; ABCC4: ATP-binding cassette sub-family C member 4; ABCC5: ATP-binding cassette sub-family C member 5; ABCG2: ATP-binding cassette super-family G member 2; ALDH1A: Aldehyde dehydrogenase 1 
family, member A1; Bmi1: B lymphoma Mo-MLV insertion region 1 homolog; cIAP-2: Cellular inhibitor of apoptosis 2; DOT1L: DOT1 like histone lysine methyl transferase; EGFR: epidermal growth factor receptor; 
EMT: epithelial mesenchymal transition; FGF2: fibroblast growth factor; FGFR2: fibroblast growth factor receptor 2; GLI1: glioma-associated oncogene; HDAC1: histone deacetylase 1; HDAC2: histone deacetylase 2; 
HNSCC: head and neck squamous cell carcinoma; KAT6A: Klysine acetyltransferase 6A; KAT6B: Klysine acetyltransferase 6B; KLF4: kruppel-like factor 4; NOTCH1: neurogenic locus notch homolog protein 1; Oct4: 
octamer-binding transcription factor, OSCC: oral squamous cell carcinoma; SDCBP: syndecan-binding protein; SIRT1: sirtuin 1; SMO: smoothened, frizzled class receptor; Sox2: sex-determining region Y [SRY]-box; 
Sox8: SRY-box transcription factor 8; TSPAN1: tetraspanin-1; ZEB1: Zinc finger E-box-binding homeobox 1XIAP = X-Linked Inhibitor of apoptosis.

CD44 is frequently associated with other potential markers of CSC aiming for efficient enrichment of this subpopulation within HNSCC cell lines and tissues.
Galbiatti-Dias et al. identified the CSC profile of HNSCC cell lines as CD44high CD133high CD117high profile[116]. This CSCs subpopulation demonstrated higher
migration capacity and more resistance to Paclitaxel chemotherapy, in addition to an up-regulation of CD44 and down-regulation of EGFR transcripts in the
HN13 oral cancer cell line[116]. Elkashty et al. combined the positivity of CD44 to CD271 (p75NTR), a described marker of CSC in many tumors[117], to isolate an
enriched subpopulation of CSCs, followed by their characterization in vitro, in vivo, and HNSCC tissue samples. The authors found that CD44+ CD271+ cells
exhibited higher cell proliferation, sphere/colony formation, chemoresistance to cisplatin and 5-FU, and radioresistance, upregulation of CSCs-related genes
(Sox2, Oct4, Bmi1, Smo, and GLI1), and in vivo tumorigenicity[117]. These combined cell markers also showed increased expression in patients with advanced
disease.
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A study from Oh et al. demonstrated that CD44+ cells derived from primary HNSCC had increased
expression of ABCG2 and enriched side population[118]. Yu et al. found that side population cells
characterized by the CD133+ phenotype show elevated chemoresistance and ABCG2 expression, which was
abrogated by combining cisplatin with CD133-targeted therapy[119]. Moreover, Snail is overexpressed in
CD44+ CSCs and associated with cisplatin resistance and high expression of ABC transporters[120].
Interestingly, the percentage of Oct4 positive cells increases significantly after treatment with 5-FU,
cisplatin, and paclitaxel[121], and increased expression of ABCC6 was associated with increased resistance to
cisplatin in Oct4 overexpressing cells, indicating that this poor explored ABC transporter may be relevant to
resistance acquisition in HNSCC[122]. Thus, constitutive or acquisition of stem cell and EMT-associated
genes are involved with the up-regulation of drug transporters pumps and multi-drug resistance.

The process of EMT is tightly linked with the CSC’s biology and chemoresistance in HNSCC. CSCs keep
their EMT phenotype until depositing in the distant sites of metastasis (a migratory phenotype), where they
change their phenotype toward attaining a MET morphology to proliferate rapidly, causing tumor
outgrowth (a proliferative phenotype)[123]. This rapid cellular proliferation leads to hypoxia in the nearby
milieu, thereby exacerbating tumor resistance to therapy[124]. Masui et al. observed that the CSC-like
phenotype is induced after Snail-overexpression and is associated with increased CD44+/ALDH+ in HNSCC
cell lines[125]. The EMT and CSC phenotype acquisition in Snail overexpressing cells also decreased
chemosensitivity. Similarly, Ota et al. demonstrated that Snail-induced EMT was associated with increased
stemness, inducing in vivo cancer invasive progression and enhancement of chemoresistance[126]. A recent
study from Oliveira et al. demonstrated that the CSC subpopulation and activation of the EMT program,
characterized by down-regulation of E-cadherin and up-regulation of vimentin, mainly via association of
epigenetic regulators and ZEB1, is involved with resistance to cisplatin in HNSCC cell lines[96].

It is worth mentioning that the ability of tumor cells to dynamically adapt to signals provided by the tumor
microenvironment and/or induced in response to therapy is obtained by the property of cell plasticity at
different stages of tumor progression. Cancer cell plasticity reflects genetic and epigenetic alterations in
tumor cells, promoting phenotypical diversity and contributing to intra-tumor heterogeneity[127]. EMT and
CSCs states are the two most studied axes of tumor cell plasticity and are often tacitly assumed to be
synonymous[128]. This is because both cell plasticity axes appear to drive one another in silico, in vitro, and in
vivo studies[129]. Notably, both mathematical modeling studies and experimental observations have reported
that EMT is also not a unidirectional process since there are one or more hybrid epithelial/ mesenchymal
(E/M) states between the two extremes of pure epithelial or pure mesenchymal phenotypes[130,131] during
EMT. For this reason, the term Epithelial-Mesenchymal Plasticity (EMP) has been used as a more accurate
description of the process.

The same is true for CSC since there may be subsets of CSCs defined as epithelial, mesenchymal, and hybrid
E/M (E-CSCs, M-CSCs, H-CSCs)[132,133]. According to Sahoo et al. 2022[128], the emerging evidence points to
EMT and stemness being semi-independent axes, i.e., not every cell undergoing EMT may acquire stemness
and not every cell switching to be a CSC is mandated to show one or more features of EMT. These authors
recently proposed a mathematical model to understand the interconnectivity between the EMP and
stemness axes aiming to elucidate the critical cellular processes driving metastasis. This model allows many
possible couplings between EMP and stemness, showing that all phenotypes - epithelial, mesenchymal, and
hybrid E/M - have the potential to be stem-like; however, this potential is likely to be maximum for hybrid
E/M cells[128]. On the other hand, tumor cells exhibiting an amoeboid phenotype belong to the utterly
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mesenchymal end of the EMP spectrum but show high stemness and metastatic potential[134]. So, many stem 
cell phenotypes exist across the EMP spectrum that would only be identified based on single-cell RNA 
sequencing approaches[128].

Garcia-Mayea et al. showed that CSCs isolated by sphere formation in non-adherent conditions were more 
resistant to cisplatin and 5-FU, possibly due to the increased levels of LC3II/I, indicating that autophagy 
may be involved in within-drug resistance of CSCs[135]. Recently, using the same CSC model, these authors 
identified by RNAseq the TSPAN1 (Tetraspanin 1) gene as an essential modulator of chemoresistance in 
HNSCC[136]. Blocking TSPAN1 demonstrated encouraging in vivo results, leading to impaired tumor growth, 
EMT acquisition, and metastasis spreading. Another possible target to eliminate HNSCC CSCs and cisplatin 
resistance is the SDCBP (Syndecan-binding protein), a central contributor in different phases of the 
metastasis cascade[137,138]. Upon fibronectin and extracellular molecule engagement, SDCBP, as an adaptor 
protein, interacts with Src and forms a stable complex with FAK in the cellular membrane leading to long-
term Src activation. As a result, downstream target signaling pathways such as NF-kB and TGF-β are 
activated, promoting EMT, tumor migration, invasion, metastasis, and cisplatin resistance[138]. Lee et al. 
showed that Wnt/β-catenin signaling is activated in CSCs, and β-catenin overexpression drives the 
acquisition of CSCs properties as self-renewal, stem cell marker expression, including Oct4, and 
chemoresistance[139]. In hypoxic conditions, HIF-1α activates NOTCH1, which is responsible for stemness, 
EMT activation, and resistance to cisplatin in CD44+ cells[140].

All these exposed findings reveal how broad and complex the process of resistance to the chemotherapeutics 
available today for treatment could be. It also guides us to seek new and innovative drugs focused on CSCs, 
such as targeted therapy and immunotherapy, for better treatment and prognosis of HNSCC patients. 
Notably, the plasticity of CSCs must also be considered since their dynamic phenotype switch may be 
responsible for different levels of resistance even in the same tumor type. As pointed out by Biddle & 
Marles[141], an effective biomarker should be precise in correlating the presence of phenotypically plastic 
CSCs with tumor aggressiveness and therapeutic resistance. It would allow more accurate clinical decisions, 
such as neck dissection and chemotherapy regimens in HNSCC. More recent evidence highlights some 
meaningful advances, for example, monoclonal antibody therapy anti-CD44v6 and other markers related to 
EMT signaling pathways activation, such as the Notch, WNT, and ERK/ MAPK pathways. Although, in 
terms of clinical safety, targeting CSC-specific processes is not well established yet.

CONCLUDING REMARKS
The presence of CSCs in HNSCC and other solid tumors is associated with tumor heterogeneity and 
resistance to standard therapies. Target CSCs therapy is very challenging as these cells are a dynamic and 
plastic population capable of switching between different phenotypes and activation states according to the 
stimuli provided by the TME. As a result, the frequency of CSCs and their spatial localization in the primary 
tumor and metastatic foci may be variable, leading to different levels of tumor resistance after treatment. 
Many studies demonstrated that after radio and chemotherapy, CSCs are enriched and guide tumor 
recurrence and progression.

In this scenario, it is mandatory to characterize the CSCs and their mechanisms of interactions with the 
TME in HNSCC to better design targeted therapies that efficiently eliminate these cells in combination with 
standard treatment and/or immunotherapy. Disrupting the TME can lead to hypoxia inhibition and disturb 
the CSC niche, facilitating CSCs sensitization to chemotherapy. Moreover, CSCs interaction with different 
cell types in the TME may be impaired, facilitating its elimination and response to standard treatment. It is 
essential to highlight that CSCs have an efficient drug efflux machinery that should be considered as 
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possible targets to improve drug accumulation within this subpopulation of tumor cells. Targeting signaling 
pathways involved with acquiring stemness, such as the Wnt/β-catenin, FGF, and NOTCH1 in HNSCC, 
may also be an attractive strategy to eliminate the CSCs and drug resistance. Taken together, CSCs are a 
relevant target to achieve control of disease and treatment response in HNSCC as they represent significant 
drivers of tumor resistance. Future studies, especially those using cutting-edge methodologies such as 
scRNAseq, will help to identify new CSCs targets and cellular interactions that can be used to develop new 
multi-faceted adjuvant therapies.
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