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Abstract
Aim: Analysis of large datasets has become integral to biological studies due to the advent of high throughput 
technologies such as next generation sequencing. Techniques for analyzing these large datasets are normally 
developed by bioinformaticists and statisticians, with input from biologists. Frequently, the end-user does not 
have the training or knowledge to make informed decisions on input parameter settings required to implement 
the analyses pipelines. Instead, the end-user relies on “default” settings present within the software packages, 
consultations with in-house bioinformaticists, or on methods described in previous publications. The aim of 
this study was to explore the effects of altering default parameters on the cell clustering solutions generated by 
a common pipeline implemented in the Seurat R package that is used to cluster cells based on single cell RNA 
sequencing (scRNAseq) data.

Methods: We systematically assessed the effect of altering input parameters by performing iterative analyses on a 
single scRNAseq dataset. We compared the clustering solutions using the different input parameters to determine 
which parameters have a large effect on cell clustering solutions.



Results: We used a range of input parameters for many, but not all, of the input parameters required by the Seurat 
R pipeline. We found that some input parameters had a very small effect on the clustering solution, while other 
parameters had a much larger effect.

Conclusion: We conclude that, when implementing the Seurat R package, the “default” parameters should be used 
with caution. We identified specific parameters that have a significant effect on clustering solutions.

Keywords: Single cell RNA sequencing, cell type annotation, Seurat R package, clustering algorithms

INTRODUCTION
Single cell RNA sequencing (scRNAseq) is a next generation sequencing technology that produces gene 
expression data on thousands of single cells. This rich dataset can be mined to answer questions such as 
what types of cells are present in a sample and what is the frequency of the different cell types. Our group 
is interested in understanding the basis of chemotherapy resistance in ovarian cancer, which is the main 
cause of mortality in women with this deadly cancer[1]. We are collecting tumor samples from women with 
ovarian cancer and subjecting them to scRNAseq and other molecular analyses. Our goal is to identify cell 
types that correlate with chemotherapy resistance. If we can identify these cell types, it may be possible to 
develop therapies that counteract these cells and/or their effects. 

There are multiple inherent problems that make it difficult to perform robust unbiased cell clustering 
using scRNAseq data. First, gene expression measurements produced by scRNAseq technologies are not 
exact and spike-in experiments suggest that the technique that we use (10× Genomics 3’ Chromium) only 
measures ~5%-10% of the polyA transcriptome[2]. Second, mRNA content in a cell will vary stochastically 
at different timepoints in the cell’s life cycle, causing the data to be noisy[3]. Third, gold standard gene 
expression patterns in purified cell types are not yet established, making it difficult to compare gene 
expression in single cells to biologically well-characterized gene expression datasets[4]. Fourth, cancer cells 
and immune/stromal cancer associated cells often have different gene expression patterns than their normal 
counterparts[5,6]. For these reasons, it is difficult to perform unbiased clustering and conclude with certainty 
that one has identified “true” biological cell types.

To generate scRNAseq datasets, we use the 10× Genomics 3’ Chromium platform followed by sequencing 
on Illumina machines. The data are initially processed using CellRanger software to produce a gene 
expression matrix based on universal molecular identifier (UMI) counts. A typical dataset will be a matrix 
of several thousand cells by ~18,000 genes with each cell having UMI counts for 1000-3000 genes. One 
of the initial steps is to perform unbiased clustering of the cells based on each cell’s gene expression. In 
this paper, we describe our use of the Seurat R package[7] to perform this unbiased clustering. We identify 
parameters that have a large effect on the clustering solutions generated by the Seurat pipeline and 
make recommendations for choosing what values to use for these input parameters. We have also used 
other methods of clustering [e.g., non-negative matrix factorization in ccFindR[8], consensus methods in 
ClusterExperiment[9] and single-cell consensus clustering (SC3)[10], and imputation based methods like 
clustering through imputation and dimensionality reduction (CIDR)[11]] and methods of annotation that 
do not rely on clustering such as SingleR[12] and CellTypeR (manuscript in preparation). We found similar 
variability in the clustering solutions of these methods. There has been an explosion of methods developed 
and published to analyze scRNAseq data, which makes it difficult to select the ideal method[13].

Instead of providing “benchmarking” between different methods, the purpose of this paper is to provide 
guidance to setting parameters using the Seurat R package when analyzing scRNAseq generated from fresh 
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tumor samples. We recommend doing the same type of comprehensive analysis for any method before 
relying on “default” parameters.

The basic clustering algorithm used in Seurat is a shared nearest neighbor (SNN) graph-based clustering 
method[14]. The pipeline for performing unbiased cell clustering within the Seurat pipeline is: (1) filter the 
dataset based on minimum/maximum cut-offs for genes/cell, cells/gene, and optional parameters such as 
mitochondrial gene UMI count as a percentage of total; (2) normalize the data; (3) find variable genes; (4) 
scale the data; (5) identify principle components; and (6) identify cell “neighbors” and cell clusters. Each 
of these steps requires multiple user-defined input parameters. It should be noted that the developers of 
the Seurat pipeline are constantly upgrading and improving the methods integrated into the package based 
on their work and input from others. In this paper, we report our findings on how similar/different the 
clustering solutions are when using a range of input parameters for each of these steps when analyzing 
single cells dissociated from a fresh ovarian cancer tumor sample. 

METHODS
Sample processing
A fresh tumor sample was collected from a patient enrolled in our ovarian cancer precision medicine 
initiative (OCPMI) following our IRB approved protocol (#2018NTLS170). Fat, fibrous, and necrotic 
areas were removed from the tumor sample and a 0.9-g sample was used for scRNAseq. A single cell 
suspension was created using the Miltenyi Biotech GentleMACs Tissue Dissociation Kit following protocol 
2.2.1. Briefly, the tumor sample was minced and placed in a specialized conical tube containing a mixture 
of dissociation enzymes in media. The tube was placed on a mechanical rotator for 30 s followed by 
incubation on a rotator at 37 °C for 30 min. The process was repeated, and the cell solution was poured 
through a 70-micron filter to remove cell clumps and debris. Cells were treated with red cell lysis buffer for 
5-10 min at room temperature, centrifuged, and resuspended in hypothermosol. An aliquot was removed 
for measuring cell viability using the Cell Countess (Life Sciences). The single cell solution was diluted to a 
concentration of 1000 viable cells/µL and transported to the sequencing facility on ice.

scRNAseq sequencing
Samples were sequenced at the University of Minnesota’s Genomics Center using the 10× Genomics 
Single Cell 3’ Protocol utilizing the ChromiumTM Single Cell 3’ Library & Gel Bead Kit and ChromiumTM 

Single Cell A Chip Kit following the manufacturer’s protocol (Protocol document CG000183 Rev C). 
Approximately 20,000 cells were partitioned into nanoliter-scale Gel Bead-In-EMulsions (GEMs) with 
one cell per GEM. Within each GEM, cells were lysed, and then primers were released and mixed with 
cell lysate. Incubation of the GEMs produced barcoded, full-length cDNA from mRNA. The full-length, 
barcoded cDNA was then amplified by PCR prior to library construction. Sequencing was performed using 
an Illumina HiSeq 2500 or NovaSeq to a depth of at least 100 thousand paired-end reads per cell. 

Sequence processing
Illumina raw sequencing output files were processed using Cell RangerTM software (v. 3.02) to produce 
a filtered gene × cell matrix of UMI counts. The matrix consists of three output files that define a sparse 
matrix (Supplementary Materials, Files barcodes.tsv, features.tsv and matrix.mtx). The output statistics 
generated by CellRanger are listed in Supplementary Table 1. The filtered matrix was used as input for 
the Seurat R software package to create the Seurat R object. When we initiated this project, we were using 
Seurat v 3.0.0.9000, but we have tested the outputs using Seurat v 3.2.

Seurat analysis
We established a baseline analysis of our dataset based on our analysis of over 75 scRNAseq datasets from 
ovarian cancer patients. The baseline was established using preliminary attempts on many of the Seurat 
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parameters as well as iterative analyses testing multiple parameter variations. For this study, we demonstrate 
the effect of changing these parameters by comparing clustering results to our baseline analysis. 

Cell filtering parameters
Initial cell filtering parameters for selecting cells based on number of genes/cell, UMI counts/cell, and 
percent mitochondrial genes were established based on manual visualization of graphic outputs for 
these metrics (Supplementary Figure 1A-C and seurat_filter_1.R). Images were analyzed for bi-modal 
distributions to determine if there were “outlier” populations. In Supplementary Figure 1A-C, there are no 
obvious bimodal distributions. We analyzed 75 similar samples over the course of our OCPMI program 
and identified an outlier population based on percent mitochondrial genes [Supplementary Figure 1C] and 
genes/cell [Supplementary Figure 1A]. Based on these multiple datasets, we set a minimum requirement 
of genes/cells at 100 and maximum percent mitochondrial genes at 0.75%. We also arbitrarily set the upper 
level of genes/cell at 10,000 and UMI counts/cell at 200,000 based on identification of bimodal peaks in 
other samples. The minimum number of cells/gene was arbitrarily set at 20, which eliminated ~7000 genes 
from the analysis [Supplementary Figure 1D]. All of these cut-offs were chosen after manual inspection of 
~30-40 samples. For biologists with one or few datasets, these will all be arbitrarily set.

Normalization parameters 
Normalization is important for scRNAseq datasets due to the sparse data, bias and noise inherent in this 
technique and multiple methods have been proposed for scRNAseq[15]. The Seurat package offers three 
methods of normalization: LogNormalize, centered log ratio transformation (CLR), and relative counts 
(RC). Our baseline analysis uses the LogNormalize method and we compared this to the RC method. 
Furthermore, we compared the results when using different scale factors (100,000 and 1000), which is a 
required parameter in these normalization methods (baseline = 10,000).

Variable gene parameters
Variable gene parameters were tested by comparing the three selection methods (vst, mean.var.plot, and 
dispersion). Comparisons were also conducted for different Loess Spans (0.3, 0.1, and 0.5), number of bins 
(1, 10, 20, and 100), binning method (equal_width or equal_frequency), and number of features based on 
percentage of total genes (20%, 1%, and 6.7%). Our baseline analysis used the vst method, a Loess span of 0.3, 
20 bins using equal width, and a target of 6.7% of features [Supplementary Figure 1E].

Scale data parameters
When scaling the data, we compared the following four combinations of variables to regress: UMI count, 
percent mitochondrial genes, both UMI count and percent mitochondrial genes, or no variables regressed 
out. We also tested three values for the scale.max parameter (10, 50, and 100). For the baseline, we 
regressed out UMI count and percent mitochondrial genes with a maximum scale of 50. Note that we did 
not interrogate the different models or block sizes and minimum cells to block.

Clustering parameters
The Seurat implementation of SNN requires the following parameter inputs when running the 
FindNeighbors function: reduction type, number of dimensions, a k parameter, a prune parameter, 
a nearest neighbor method (rann or annoy), an annoy distance metric, and a nearest neighbor error 
boundary. After identifying cell neighbors, the FindClusters function identifies clusters and also requires 
the following input parameters: algorithm choice (Louvain, refined Louvain, SLM, or Leiden), a resolution 
parameter, and other parameters that we left at default. We limited our analysis to a principle components 
reduction. 

A major input parameter required by the Seurat pipeline is the number of reduction dimensions to use. The 
Seurat pipeline recommends using an Elbow plot of PC standard deviations [Supplementary Figure 1F and G] 
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or a Jackstraw plot using iterative analysis, which assigns a P-value to each PC [Supplementary Figure 1H]. 
We found that the selection of this value has a large effect on the clustering solution, and neither the PC 
Elbow plot nor the Jackstraw plot provided an easily determined value to use.

To obtain a robust clustering solution, we performed iterative analyses using a range of values for several 
of these parameters and compared the clustering solutions to find the number of clusters that is most 
frequently obtained. To automate this iterative analysis, we wrote an R script (seurat_pkpr_loop.R) that 
tests ranges of the four most important clustering parameters: number of reduction dimensions (n = 8), 
k parameter (n = 8), prune parameter (n = 8), and resolution parameter (n = 10). For the range of PC 
dimensions to test, we selected the PC value with a Jackstraw calculated p-value closest to, but still below 
1 × 10-10, and the previous seven PC values (e.g., in Supplementary Figure 1H, we would select PC values 
from 42 to 49). The range of k-parameters was based on the cell count [Supplementary Table 2]. The range 
of prune parameters was from 0.2 to 1.6, in 0.2 increments, and the range of resolution parameters was 
from 0.4 to 2.2, in 0.2 increments. The R script runs the Seurat pipeline 5,120 times (8 × 8 × 8 × 10) and 
returns graphs and tables, including summary tables. The summary tables are used to identify the most 
frequent clustering solution. The four parameters are then selected to produce that clustering solution 
(Supplementary Figure 2 and seurat_pkpr_loop.R_output_files).

Cell type assignment
A final custom script was used to assign cell types to clusters based on percentage overlap of upregulated 
genes in that cluster compared to gene lists generated for known cell types based on literature. We named 
this annotation method cluster annotation by differential gene expression (CADGE). The custom R script 
(seurat_final.R) and the gene lists (annotated_gene_lists) used to perform CADGE are provided in the 
Supplementary Materials.

Comparisons of cell type similarities and calculation of adjusted rand index
The percent cell type similarity was calculated by dividing the number of cells with equivalent cell type 
annotation by the total number of cells. The adjusted rand index (ARI) value was calculated by applying the 
adjustedRandIndex function from mClust[16] to the cluster assignment lists for each comparison analyses.

RESULTS
The Seurat R package is a popular scRNAseq analysis pipeline. The R package has incorporated functions 
to normalize and scale data, identify variable genes, perform dimensional reduction, and identify cell 
clusters based on gene expression similarities. The pipeline consists of loading UMI count data, performing 
normalization, identifying variable genes, scaling the data with an option to regress out variables, finding 
cell neighbors, and finding cell clusters [Figure 1]. The pipeline is agnostic to specific methods within these 
computational tasks and allows the user to specify methods and set parameters. For many of these methods 
and parameters, however, there are no established biological guidelines to use for selecting the appropriate 
method or parameter value. 

To analyze the effects of the different methods and parameters on clustering results, we established a 
“baseline” analysis of an scRNAseq dataset we generated from an ovarian cancer tumor specimen. The 
dataset was produced using the 10× Genomics 3’ Chromium platform followed by sequencing on an 
Illumina NovaSeq. To establish the baseline analysis, we filtered out cells and genes based on an analysis of 
more than 50 similar datasets (Supplementary Figure 1A-D and Methods).

Find neighbors and find clusters parameters
Next, we iteratively ran the Seurat pipeline 5,120 times testing all possible combinations of 8 PC 
dimensions, 8 K values, 8 prune values, and 10 resolution values (Supplementary Figure 2 and Methods). 
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These parameters are required to execute the FindNeighbors and FindClusters functions in Seurat. Large 
differences in clustering solutions occur when these parameters are altered, with clustering solutions 
ranging from 6 to 27 clusters [Supplementary Figure 2A]. From this iterative analysis, we identified 
a cluster solution of 14 clusters that was the most frequent cluster number solution in the 5,120 runs 
[Supplementary Figure 2A]. The 14 clusters are visualized using a uniform manifold approximation and 
projection (UMAP) projection [Figure 2A] and consists of clusters ranging in size from 44 to 608 cells 
[Figure 2B]. Clusters were annotated with the predicted cell type by calculating the percentage overlap 
between genes upregulated in each cluster (compared to other clusters) and genes in a set of annotated 
gene lists for purified cell types. The baseline analysis categorized clusters as immune cells, endothelial 
cells, epithelial cells, or fibroblasts [Figure 2C]. It is important to note that the UMAP and t-distributed 
stochastic neighbor embedding (TSNE) clustering dimensional reductions used to visualize the cells are 
not incorporated into the Seurat SNN graph-based clustering. The UMAP and TSNE clusters tend to be 
similar to the SNN graph-based clustering, but there are many cells that are clustered discordantly between 
the methods, which can be detected as mis-matched colored cells within the groupings produced by UMAP 
and TSNE. The UMAP and TSNE plots are helpful for visualization, but they are not used for the actual 
clustering. The parameter settings used to produce the baseline analysis depicted in Figure 2 are listed in 
Supplementary Table 3 and the script is included in the Supplementary Materials (File seurat_final.R).

Normalization parameters
The Seurat package gives three options for normalizing data: natural log transformation using log1p 
(LogNormalize), relative counts (RC), and a centered log ratio transformation (CLR). Our baseline analysis 
used the natural log transformation. Each of these methods produces slightly different clustering solutions. 
Both the RC and CLR methods produced fewer clusters compared to the LogNormalize method (11 and 10 
vs. 14, respectively) [Figure 3A]. Cells are annotated similarly in all three methods [Figure 3B], but actual 
cluster placement varies considerably between the three methods, as is evident by their ARI comparison 
values in the 0.6 range [Figure 3C]. The ARI value is a measure of similarity/dissimilarity between two 
clustering solutions with a value of 1 representing complete similarity and a value of 0 representing 
complete dissimilarity.

In addition to a normalization method, Seurat requires users to select a scale factor. Compared to our 
baseline scale factor value of 10,000, increasing the scale factor by a factor of 10 when normalizing the 

Figure 1. Seurat clustering pipeline with parameters that must be set at each step
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data resulted in loss of a cluster, while decreasing the scale factor by a factor of 10 generated an additional 
cluster when compared to the baseline [Figure 3D]. Cells were generally annotated similarly [Figure 3E], 
and the clustering solutions were more similar, based on ARI values in the 0.8 range [Figure 3F].

Visualization of cell clusters using UMAP or TSNE allows for manually associating clusters with one 
another. The validity of this manual grouping of clusters is supported by similar cell type annotations, 
which generally indicates that clusters within a group of clusters are all assigned the same cell type 
annotation [Figure 4]. However, subtle but important differences arise between the clustering solutions 
produced by the three normalization methods. Some clusters are identified by one method but not the 
others (Clusters 3 and 12 in Figure 4A and Cluster 10 in Figure 4C). Another difference appears when one 
method defines a group of cells as a single cluster, while another method splits the group. For example, the 
fibroblast cells are split into three groups in the LogNormalize method [Figure 4A and D], but only two 
groups in the RC and CLR methods [Figure 4B, C, E, F], and the two groups produced by the RC and CLR 
methods are not the same.

An analysis of the clustering solutions produced using different scale factors also reveals subtle differences 
between them. For example, the additional cluster identified when the scale factor was reduced (Cluster 
14, Figure 5A and B) was a small group of cells originally identified as macrophages in the baseline analysis 
(Cluster 2, Figure 5A and D). With the new clustering solution, the cells switched annotation to B cells 
[Figure 5B and E]. The cluster that was lost when the scale factor was increased (Cluster 12, Figure 5A and C) 

Figure 2. UMAP projection of 4,344 ells from an ovarian cancer tumor specimen colored by cluster number (A); number of cells per 
cluster (B); and cells colored by cell type determined by analysis of upregulated genes in each cluster compared to gene lists of known 
cell types (C) (see Methods). Blue: cancer epithelial cells; red: fibroblasts; yellow: immune cells; green: endothelial cells. UMAP: uniform 
manifold approximation and projection 

A B

C
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was re-classified as endothelial cells in the new clustering solution (Cluster 10, Figure 5C and F). This 
change is reflected in the small percentage of cells that have dissimilar cell calls and in the reduced ARI 
comparing the clustering solutions to baseline [Figure 3E and F].

Variable gene parameters
Three methods are available for selecting variable genes in the Seurat pipeline (vst, mean.var.plot, and 
dispersion). Running our baseline analysis using the three different methods resulted in the following 
number of variable genes per method: vst (baseline) = 1,125, mean.var.plot = 818, and dispersion = 1,125. 
Of the total number of unique genes selected by all three selection methods (n = 1,750), only 439 (25%) 
were selected by all three methods [Figure 6A]. Half of the genes identified as variable were only identified 
by a single method (871/1750 = 50%). Somewhat surprisingly, even with these different sets of variable 
genes, the clusters detected were similar [Figure 6B], and only 2% of cells were annotated discordantly 
[Figure 6C]. Cell assignments to clusters, however, did vary, as evidenced by the low ARI values [Figure 6D]. 
Based on TSNE visualization, we manually assigned clusters into superclusters based on their visual 
proximity to each other [Figure 7A-C]. Over 96% of cells were placed into concordant superclusters. 

Because the vst method uses a local polynomial regression (loess), an input parameter required is the loess 
span. We compared our baseline analysis (loess span = 0.3) to loess span values of 0.1 and 0.5. There were 

Figure 3. Cluster number (A, D); similarity by cell type (B, E); and ARI (C, F) when comparing baseline method (LogNormalize, Scale 
Factor 10,000) to the RC or CLR methods (A-C) or to scale factors of 1000 or 100,000 (D-F). ARI: adjusted rand index
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Figure 4. UMAP plots of clustering solutions using different methods of normalization. LogNormalize (A, D baseline) was compared 
to RC (B, E) and CLR (C, F) normalization methods. Colored circles are manually placed around clusters that were annotated similarly. 
BCL_bc: B cells; END_en: endothelial cells; EPI_ep: epithelial cancer cells; FIB_fi: fibroblasts; MAC_ma: macrophages. UMAP: uniform 
manifold approximation and projection

Figure 5. UMAP plots of clustering solutions using scale factors of: 10,000 (baseline) (A, D); 1000 (B, E); and 100,000 (C, F). The cells 
are colored by: cluster (A-C); and cell type (D-F). Red circles and arrows indicate cluster gained when scale factor was reduced to 1000 
(B, E) and cluster lost when increasing scale factor to 100,000 (C, E). Boxes below (D-F) show enlarged versions of the clusters within 
the red circles. UMAP: uniform manifold approximation and projection
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almost no differences in cluster numbers, cell annotations, and ARI values when varying the loess span 
[Supplementary Figure 3A-C], bin widths [Supplementary Figure 3D-F], or binning method [Supplementary 
Figure 3G-I]. 

The number of variable genes used will affect clustering. For our baseline analysis, we set the number 
of variable genes to be 6.7% of all genes detected. This number was chosen because it produced a list of 
~1000 variable genes if 15,000 total genes are detected. There is no strong biological rationale, however, to 
choose this cut-off. We compared our baseline analysis (6.7%) to analyses using 1% and 20% of total genes. 
Our baseline analysis resulted in 1,125 variable genes, while the 1% and 20% cut-offs resulted in 168 and 
3,358 variable genes, respectively. Reducing the variable gene list to 1% of total genes had a strong effect on 
clustering, with a large number of cells being placed in different clusters based on the ARI value [Figure 8C]. 
Increasing the variable gene list to 20% of all genes produced a similar clustering solution to the baseline 
analysis using 6.7% of genes [Figure 8].

Scale data parameters
Before scaling and centering data, it is often recommended to “regress out” variables that could affect data 
analysis. The Seurat pipeline allows users to regress out any variables. Our baseline analysis regressed out 

A DB C

Figure 6. Results of using different methods of determining variable genes. Venn diagram illustrating overlap of variable genes detected 
by three different methods (A) (vst, mean.var.plot, and dispersion). Bar graphs showing differences in: cluster number (B); percent of 
cells called concordantly (C); and the ARI measurement (D). Mean.var and dispersion methods are compared to the baseline method, 
vst in (C, D). ARI: adjusted rand index

A B C

Figure 7. Clusters generated using three different lists of variable genes selected by the three methods (vst, mean.var.plot, and 
dispersion). Clusters were manually assigned to “superclusters” based on proximity in the TSNE plots. TSNE: t-distributed stochastic 
neighbor embedding 
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both the total UMI count and the percentage of total genes attributed to the 13 mitochondrial genes. When 
we compared our baseline to analyses that regressed out these variables individually, or did not regress out 
any variables, we found that cluster solutions were very similar and 97% of cells were assigned the same cell 
type [Figure 9A and B]. There was, however, a significant number of cells that were not placed in similar 
clusters, as evidenced by ARI values below 0.8 [Figure 9C]. The cluster solutions, cell assignments, and 
ARI value were most similar comparing the baseline (Both) to regressing out only the total UMI counts, 
suggesting the addition of regressing out percent mitochondrial genes does not change clustering solutions 
greatly.

The ScaleData function also requires a maximum scale value, which defaults to 10 or 50 depending on 
the method used. For the baseline analysis, we used a maximum scale value of 50 and then compared it 
to maximum values of 10 or 100. We found almost equivalent clustering solutions using all three values 
[Supplementary Figure 4].

DISCUSSION
Identifying cell clusters is the main output of the Seurat pipeline. A large portion of subsequent 
downstream analysis will use these clusters to categorize cells and use their aggregated gene expression 
to make phenotype hypotheses and to make comparisons to other samples. A frequent observation noted 

A B C

Figure 8. Bar graphs showing differences when using variable gene lists of 1,125 (0.067 baseline) compared to 168 genes (0.01) and 3,358 
genes (0.2) in: (A) cluster number; (B) percent of cells called concordantly; and (C) the ARI measurement. ARI: adjusted rand index

Figure 9. Bar graphs showing differences when regressing out total UMI count (RNA) and percent of UMI count attributed to 
mitochondrial genes (% mito) in: (A) cluster number; (B) percent of cells called concordantly; and (C) the ARI measurement. Baseline 
analysis regressed both RNA and %mito (both). UMI: universal molecular identifier; ARI: adjusted rand index
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in papers presenting their analysis of scRNAseq datasets is that they identified “X” number of cell types 
based on this clustering. We found, however, that the number of clusters identified can easily be changed 
by altering the parameters used for clustering. In this study, we interrogated the effects of altering many of 
these parameters and report which changes had a strong effect on the clustering solutions.

The Seurat R package, at its core, uses an SNN graph-based algorithm to identify cell clusters based on 
UMI count data. The most important parameters affecting the clustering solutions include the number of 
dimensional reductions to use, the k-parameter, a prune parameter, and a resolution parameter. Altering 
these values generated clustering solutions ranging from 6 to 27 clusters [Supplementary Figure 2A]. As 
there is no biological rationale for choosing the exact values of these parameters, we recommend running 
an iterative analysis over a range of values and select the clustering solution that is produced at the highest 
frequency [Supplementary Figure 2A].

Altering other parameters will also have subtle effects on the clustering solutions produced. We found 
that the normalization method [Figure 3A-C] has a stronger effect than changing the scale factor during 
normalization [Figure 3D-F], with both of them changing cluster solutions [Figures 4 and 5]. Changing 
the method used to select variable genes had a significant effect on which genes were chosen [Figure 6A] 
and resulted in somewhat dissimilar cluster placement [Figure 6D]. Surprisingly, however, the cell type 
assignments were highly similar [Figures 6C and 7]. 

Increasing the number of variable genes to use, from ~1000 to ~3000, did not affect the clustering solution 
as much as lowering the number of variable genes from ~1000 to ~125 [Figure 8]. The parameters for 
loess span, bin widths, or binning method used when finding variable genes had negligible effects on the 
clustering solutions [Supplementary Figure 3]. When scaling the data, in our dataset, regressing out UMI 
count had a strong effect, while regressing out mitochondrial gene percentages had a much smaller effect 
[Figure 9]. Changing the scale maximum when scaling data had essentially no effect on the clustering 
solutions [Supplementary Figure 4].

In conclusion, biologists will always be dependent on statisticians and bioinformaticians to analyze the 
large datasets being generated by rapidly advancing technologies. Relying on default parameters built into 
the analysis packages, however, could result in analyses that do not reveal the true biological attributes of 
the sample being studied. An analogy could be made to performing a cell culture experiment and altering 
variables such as the timing of measurements, temperature, or the media being used before making 
conclusions about the cell properties. We recommend that computational “replicates” be conducted when 
using R packages such as Seurat to analyze biological datasets by varying the input parameters with each 
replicate. This is especially important when there is not a strong biological rationale for setting a given 
parameter.
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