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Abstract
Despite improvements achieved in terms of early detection and therapeutic approach, metastatic breast cancer 
remains one of the principal worldwide causes of death. In recent years, due to the heterogeneous response of 
each patient to chemotherapy, clinical research highlights the need of a personalized approach. Circulating tumor 
cells (CTCs) represents a promising tool for this purpose. Unfortunately, even if their correlation with sever-
ity, outcome and metastatic nature of the tumor has been established, several issues, mainly concerning their 
characterization and isolation, need to be solved. In this review, latest knowledge on CTCs and metastatic pro-
cess in breast cancer were analyzed, aiming to understand their clinical utility and validity for a prospective ther-
apeutic scenario.
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INTRODUCTION
Breast cancer (BC) represents the second leading cause of death among women not only in Western coun-
tries but also, as proved by new evidences, in developing countries[1-5]. BC has been defined as a heteroge-
neous disease with multiple intrinsic tumor subtypes and the possibility to develop one of them is directly 
related to many factors, such as aging, genetics and lifestyle (obesity, lack of physical activity, sedentary 
behavior and frequent alcohol consumption)[6-8]. Furthermore, each BC subtype, with distinctive histopath-
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ological and biological characteristics, reflects different clinical outcomes and therapeutic strategies[6,9]. Es-
trogen and progesterone receptors (ER and PR) in addition to the human epidermal growth factor receptor 
2 (HER-2) and the proliferation index (Ki-67) represent the most clinically used predictive biological mark-
ers[10,11]. Nowadays, it has been amply demonstrated how their expression is correlated with both BC intrin-
sic subtypes classification and the relative prognosis[6,12]. Concisely, the canonical molecular classification, 
firstly established by Perou in 2000, divided breast cancers in two principal subfamilies, ER- positive and 
ER-negative[6,12,13]. In the first subfamily are included the LUMINAL A (ER+PR+HER2-Ki67-) and LUMINAL 
B (ER+PR+/-Her2+/-Ki67+) subgroups that represent the most common subtypes among BC. Despite the high-
est incidence, luminal A has the best survival rate and is recurrence-free, while luminal B, due to their het-
erogeneity, presents a worse outcome together with an high risk of relapse, thus additional chemotherapy 
and anti-HER2 drugs treatment are needed[14,15]. The ER- subfamily includes two principal subgroups. The 
first subtype, called HER2 OVER-EXPRESSED (ER-PR-Her2+Ki67+), is correlated with poor prognosis and 
a higher risk of early relapse. Hopefully, it has been demonstrated that anti-HER2 drugs treatment brings 
an increment on survival and patients respond positively to chemo and neoadjuvant therapy[6]. The second 
ER- subgroup, the so-called BASAL LIKE, that represents 15% of BC, is characterized by an expression 
patterns including lack or low expression of ER, PR and HER2 in addition to a high expression of basal 
markers and Ki67. In the 60%-90% of cases, basal-like BC is TRIPLE NEGATIVE BC (TNBC), due to the 
absence of the principal three biological marker expressions[16]. TNBC represents a very heterogeneous sub-
group comprised of further six subclasses, such as basal-like BL1 and BL2, mesenchymal-like, mesenchy-
mal stem-like, luminal-androgen receptor expression, immunomodulatory and an unstable type subclass-
es[17]. In general, the TNBC subgroup exhibits, in addition to a high proliferation rate, an increase in basal/
myoepithelial cells-related cytokeratins (CKs) and epidermal growth factor receptor (EGFR) expression[14]. 
Furthermore, even if its heterogeneity is correlated with different prognosis and severity levels, the high 
percentage of TNBC patients present the worse clinical outcome, a shorter relapse-free period and a strong 
possibility to develop bone, lung, brain and liver metastasis[18,19]. Actually, it is clearly demonstrated that 
there is a strict correlation between the survival of women with BC and the incidence of distant metasta-
ses[20,21]. The migration of tumor cells from the primary tumor into the blood stream and their subsequent 
dissemination to secondary locations throughout the body represents the sine qua non condition that acts 
as a trigger for the entire metastatic process[22]. Nowadays, circulating tumor cells (CTCs) represent an im-
portant prognostic biomarker in early BC disease and their presence is directly correlated with the patient’s 
response to therapy and with poor prognosis in case of recurrence in radically resected BC or in metastatic 
disease[23-26]. Nevertheless, determination and utility of CTCs, in the common clinical practice, are still 
object of discussion[27]. Therefore, after a little excursion on CTCs characteristics and behavior during the 
metastatic process, the aim of this review is to make a point on clinical utility and validity of CTCs for a 
prospective therapeutic scenario.

CTCs AND THEIR PLASTICITY IN THE METASTATIC PROCESS
It is estimated that, at least in 90% of cases, metastases in distant organs represent an obstacle to the thera-
py and the primary cause of death in BC patients[23,28]. In the presence of metastatic cancers, chemotherapy 
is less effective on tumor cells and, as estimated by the American Cancer Society, only 22% of patients pres-
ent a 5-year survival rate (www.cancer.org). Metastasis can be described as a complex dynamic multi-step 
process that begins with the intravasation of primary tumor-derived cells into blood or lymphatic vessels 
and goes on with the arrest, adhesion and extravasation of CTCs bringing to the colonization of distant 
organs[22,29,30]. Whenever these cells penetrate into the bone marrow, acquiring a status of dormancy, they 
are defined as “Disseminated Tumor Cells” (DTCs)[31,32]. Since their first detection in 1869 by Ashworth, 
several studies and clinical trials have demonstrated and confirmed, over the years, the strict correlation 
between detection and monitoring of CTCs in peripheral blood and metastatic BC (MBC), in terms of dis-
ease progression, prediction of treatment efficacy and overall-survival[33-43]. This concept has also been rati-
fied in the eighth edition of the AJCC Cancer Staging Manual, in which circulating CTCs and bone mar-
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row DTCs detection and enumeration have been included as important prognostic tools in both M0 and 
M1 BC classes[44]. The ability of CTCs to perform several functional and morphologic changes, conferring 
them a high degree of heterogeneity and plasticity, lie behind their clinical and therapeutic attractiveness. 
It has been deeply highlighted the important role of epithelial to mesenchymal transition (EMT) as an es-
sential trans-differentiation process in many physio/pathologic mechanisms, such as mesoderm formation 
in embryonic development, tissue repair or fibrosis[45-47]. Generally, epithelial cells are defined as adherent 
cells, expressing E-cadherin, a transmembrane glycoprotein involved in tight junctions’ formation between 
adjacent cells, and CKs, such as CK8, CK18 and CK19, that exhibit an apicobasal polarity and a dense 
network of intercellular adhesion complexes that prevent them from migrating. In contrast, mesenchymal 
cells are single spindle-shaped cells that do not present intercellular junctions and, consequently, are able 
to migrate. In addition, mesenchymal cells generally exhibit a specific proteins profile such as vimentin, fi-
bronectin and alpha-smooth muscle actin (α-SMA)[48]. Therefore, considering the first part of the metastatic 
process, in which cells loss their epithelial nature, acquire a mesenchymal-like expression profile and the 
detachment from the primary tumor site occurs, CTCs undergo EMT[49,50]. This multiple complex signaling 
system is triggered by the transforming growth factor-β (TGF-β) that enhanced cell migration, invasive-
ness and increased ability to counteract apoptosis[51]. In fact, it has been demonstrated that TGF-β is able 
to induce, in normal mammary epithelial cells, the phosphorylation of Smad2 and Smad3 and the activa-
tion of other EMT-related pathways, such as Notch, PI3K/AKT and Wnt[52,53]. This signal cascade activates 
EMT transcriptional factors, such as ZEB1, ZEB2, Twist, Snail and Slug, that downregulate the expression 
of E-cadherin[54-57]. Consequently, cell-cell adhesions are disintegrated, cytoskeleton fibers and extracellular 
matrix (ECM) component undergo remodeling bringing a loss of cell basal-apical polarity and a strong 
motile and invasive properties acquisition[58,59]. Together with E-cadherin, another epithelial-specific trans-
membrane protein, involved in EMT process, is the epithelial cell adhesion molecule (EpCAM). In normal 
conditions, this protein is localized in the intercellular space, where it is able to promote tight junctions 
formation and interact with E-cadherin, to maintain the epithelial integrity. On the contrary, in cancer tis-
sue, after EMT-related cell-cell adhesion disintegration, EpCAM becomes ubiquitously distributed on the 
entire cancer cell surface and, for this reason, more easy to be detected with antibody-based assay. In view 
of this, CTCs have long been traditionally defined positive for EpCAM and CK markers expression and 
negative for the hematopoietic marker CD45 (EpCAM+/CK+/CD45-). However, in 2014, Lustberg et al.[60] 
identified different circulating cell populations in MBC patients composed of EpCAM-/CK+ cells expressing 
mesenchymal markers, with few or no epithelial markers, and cells with both hematopoietic and epithe-
lial markers profile. This heterogenic nature of CTCs was also confirmed through several gene expression 
profiling. In fact, whilst they supported the correlation between CTCs, metastatic process and patient’s 
overall-survival, to date no consensus has been established regarding biological markers to be used to iden-
tify these cells[61-63]. Currently, putting together different studies, among all the analyzed genes related to 
cell survival (IGFR1, FOXO3), the EMT process (TWIST1, SNAIL, SLUG, VIM) or tumor progression and 
invasion (HER2, CXCR4, uPAR, VEGFA, VEGFR, Cathepsin D) only CK19, mucin 1 (MUC1) and EpCAM 
result as the most accepted genes[61,64-68]. In addition, it has been demonstrated that metastasis exhibit, as 
primary tumors, an epithelial phenotype instead of a mesenchymal one, and that, using mice models, 
mammary tumors can promote an apparent EMT-independent lung metastatic process[69,70]. Considering 
all these evidences, an epithelial-mesenchymal plasticity (EMP) model has been proposed as a hallmark 
of CTCs in the metastatic process, in which circulating cells, during their migration to distant organs, are 
able to switch between a hybrid phenotype along the epithelial to mesenchymal spectrum conferring them 
the ability to adapt in different microenvironments[71-73].

CTCs migration models
In support of the EMP model, several histopathological, intravital microscopy and in vitro studies demon-
strated that CTCs exhibit different invasion strategies (collective or individual) and are able to exchange to-
ward them according to the surrounding microenvironment[74-81] [Figure 1]. The classical migration model 
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depends on a reversible EMT process, known as mesenchymal to epithelial transition (MET). Primary 
tumor-derived CTCs, with a mesenchymal expression profile and an elongated cell shape that allows them 
to adhere on ECM substrate and direct their migration, are able to penetrate in the blood stream[82]. Once 
reached a desirable metastatic niche, CTCs promote disruption of cell adhesion and polarity, remodeling of 
the cytoskeleton and changes in cell-ECM adhesion[83,84]. This tissue remodeling process leads to the gener-
ation of crossing points relevant for migration and tissue invasion[77]. Subsequently, mesenchymal CTCs are 
able to promote MET in order to restore their epithelial profile as well as their proliferative ability. As a re-
sult, secondary tumor growth[78] is promoted. Instead of moving through the complex EMT/MET process, 
another proposed mechanism suggests that epithelial and mesenchymal cells could cooperate to migrate 
and promote the subsequent metastatic process. In the so-called “collective migration model”, it is assumed 
that hybrid phenotypes create and coexist in a multicellular cluster, called tumor micro-emboli or CTC 
cluster[85]. By comparing both collective and individual invasion mechanisms, it is clear that the cluster 
migration, instead of the individual one, provides several advantages to the metastatic process[77,82]. Func-
tionally, this structure is able to guide migration and to invade the secondary organ thanks to the mesen-
chymal “leader cells” that create a protective microenvironment to the poorly mobile but highly proliferate 
epithelial “follower” cells, inserted in the core, to accomplish the metastatic process[76,78,86]. A third mecha-
nism, called mesenchymal to amoeboid transition, refers to a single dissociated primary tumor-derived cell 
that lost its attachment to the ECM adopting a distinctive spherical and highly deformable morphology 
with bubble-like protrusions, able to infiltrate tissues[77,87,88]. In contrast with the previous models, amoe-
boid migration, because it is a protease-independent process in which cells mechanically displace ECM fi-
brils instead of degrading them, represents at the same time a simple and efficient strategy to move through 
tissues and between tissue barriers[89,90]. The Met receptor tyrosine kinase (Met-RTK), a growth factor 
receptor, is able to promote tumor growth and metastasis by enhancing motility, survival, proliferation of 
cancer cells and stimulating angiogenesis[91]. In 2014, Laser-Azogui et al.[87] demonstrated that BC cells ex-
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Figure 1. Cancer cells migration models. A schematic panel of tumor cells migration models discussed in the text: A: epithelial to 
mesenchymal transition/mesenchymal-epithelial transition process; B: collective migration model; C: lymphatic vessel pathway; D: 
mesenchymal to amoeboid transition process [Image created with Servier Medical Art (https://smart.servier.com/)]
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press high levels of activated Met-RTK which are able to induce membrane blebbing and, as a consequence, 
cell dissociation, amoeboid motility and invasion. Furthermore, they highlighted a Met-induced protection 
from apoptosis and the ability of these Met-expressing cancer cells to promote the metastatic process. The 
lymphatic vessel pathway, due to its discontinuous structure, the high concentration of hyaluronic acid and 
the lymph fluid composition, which is able to improve cell survival and to reduced shear stress, represents 
a better and safer dissemination vehicle for cancer cells than the blood stream. Thus, it could be reasonable 
to consider the possibility that both epithelial and mesenchymal cancer cells migrate, preferably, through 
the lymphatic system, spread first to lymph nodes and then drain into the blood[92-94]. Accordingly, another 
mechanism of tumor EMT-independent metastasis, namely tumor-induced lymphangiogenesis, has been 
proposed[95]. Brief ly, mesenchymal cancer cells, which are able to produce and release lymphangiogenic 
factors, such as vascular endothelial growth factor C and D (VEGF-C and VEGF-D), promote an increase 
of lymphatic vessel density in the peri- and intratumoral area, so that epithelial cells are able to colonize 
lymphatic system and lymph nodes can facilitate their entry into the systemic circulation[96-100]. It has been 
demonstrated that an increase in lymph vessel density, due to tumor-induced lymphangiogenesis, is cor-
related with a high amount of lymph node metastasis, VEGF-C expression and worse disease-free/overall 
survival in BC patients[101].

Immune escape
An important issue related to the EMP of CTCs and their metastatic potential is the immune-escape, which 
is the ability of tumor cells, during their migration, to counteract the elimination by the immune system and 
to increase their possibility to survive and to colonize distant organs[102-104]. One of the most studied immune 
evasion mechanism is the programmed death-ligand 1 (PD-L1)/programmed death receptor (PD-1) axis. In 
normal conditions, the PD-L1 and its PD-1 represent a physiological checkpoint of the immune system. 
Antigen-presenting cells express PD-L1 while PD-1 is detectable on the surface of activated T-cells. Once 
ligand/receptor interaction occurred, a strong inhibitory signal promotes apoptosis and functional ex-
haustion in T-cells[105]. In 2014, Chen et al.[106] have identified, in lung tumor, a molecular link between the 
overexpression of the EMT-effector ZEB1 and a more abundant presence of PDL1, able to promote the 
exhaustion of intratumoral T lymphocytes and the development of metastasis[106-108]. Similarly, in breast 
cancer, it has been demonstrated that PD-L1 expression is heterogeneous and it is generally associated with 
the presence of poor-prognosis factors, high proliferative index and aggressive molecular subtypes[109,110]. In 
2015, for the first time, Mazel et al.[111] provided evidence that CTCs, isolated from the blood of BC patients, 
frequently express PD-L1 on their surface. The Fas/FasL axis represents another EMP-dependent immune 
escape mechanism based on the ligand/receptor interaction with a negative impact on the clinical outcome 
of BC patients[112]. Briefly, when the factor-associated suicide (Fas), a transmembrane receptor belonging to 
the tumor necrosis factor (TNF) family, interacts with its ligand (FasL), expressed on the surface of acti-
vated T lymphocytes, Fas-expressing cells go through apoptosis. During BC progression, Fas was found to 
be repressed in association with an increase of FasL level and TGF-β secretion in tumor cells, conferring to 
CTCs the ability to induce cell death and escape immune recognition[113].

Metastatic niche
Despite the migration mechanism and the above-mentioned immune evasion systems adopted by cancer 
cells, only a few percentage of cells that extravasate are able to survive in the unsuitable secondary organ 
environment and promote metastatic growth. Thus, the microenvironment in the metastatic site repre-
sents a major challenge for invading cancer cells. Starting from the “seed and soil” hypothesis, postulated 
by Paget, up to date, it is well known that cancer cells (the seed) require a specific and compatible “soil” 
microenvironment, the pre-metastatic niche, which is able to evolve and to promote both cell engraftment, 
creating the metastatic niche, and cell proliferation, leading to the micro- to macro- metastatic transi-
tion[114-119]. Many evidences demonstrate how primary tumor site is able to modify, before cancer cells’ 
arrival, the secondary organ microenvironment, stimulating the creation of the pre-metastatic niche[120]. 
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Tumor-secreted factors, such as VEGF-A, TNF-α and TGF-β, are able to promote bone marrow-derived he-
matopoietic progenitor cells (BMDCs) recruitment in the secondary organ. Accordingly, BMDCs recruit-
ment results in an ECM remodeling, upregulating fibronectin (FN) and other molecules, such as MMPs, 
and stimulate angiogenesis[121]. Hypoxia-inducible factor (HIF) represents a major effector and adaptor 
in BC cells that, due to a massive and unregulated proliferation in association with vasculature dysfunc-
tions, are exposed to a hypoxic microenvironment[122-124]. Lysil oxidase (LOX), one of the principal HIF-
dependent BC secreted factor, is strictly correlated with tumor invasiveness and lung and bone metastasis 
formation. In the pre-metastatic organ, LOX is able to co-localize with fibronectin and to modulate cell-
ECM interactions[125]. Furthermore, through the interaction with type IV collagen, LOX recruits BMDCs 
and, in a second attempt, promotes the colonization of metastatic tumor cells[126-128]. In the matrix remodel-
ing scenario, it has been demonstrated that the secretion of lysil oxidase-like 2 (LOX-2) is also able to induce 
αSMA expression in pre-metastatic fibroblasts, inducing their activation and the secretion of FN and LOX, 
generating a fibrotic microenvironment capable of supporting tumor cell persistence and survival[129,130]. 
Finally, the primary cancer secretion of VEGF, TGF-β and TNF-α stimulates Angiopoietin-2 expression in 
the pre-metastatic niche increasing vascular permeability and, consequently, promoting the extravasation 
of CTCs so that metastatic process can move forward[131-133].

STATE OF THE ART IN CTCs ANALYSES
The intrinsic mark of rarity of CTCs, in addition to their highly heterogeneous nature, represents an ob-
stacle to study their biology[134,135]. Nevertheless, several technologies are being developed for CTCs detec-
tion in patients’ peripheral blood sample based on their knowing biological properties[136]. The most com-
monly used techniques are based on a combination of enrichment/isolation and detection procedures. In 
the first phase, CTCs are separated from hematologic cells, especially leukocytes that, due to their similar 
physiochemical and biological properties, could contaminate tumor cell pool[134]. The enrichment proce-
dures exploit physical (size, deformability, density and electrical charge) or biological characteristics (cell 
surface protein expression, viability and invasive capacity) of CTCs[137,138]. The detection step consists of im-
munostaining methods ranging from classic immunocytochemistry (ICC) or immunofluorescence to flow 
cytometry[138]. Furthermore, RT-PCR approach represents another option to detect tumor related mRNA 
transcripts in patients’ blood. Although this method does not require a prior CTCs enrichment, the inabil-
ity to provide CTCs enumeration deeply restricts its utilisation[138]. Regarding CTCs isolation from blood 
components, density gradient centrifugation, such as Ficoll-Hypaque, Percoll (GEHealthcare Life sciences), 
OncoQuick (Greiner Bio-One), Cytotrack, Accucyte-cytefinder, represents the most commonly physical 
properties-based technique[139-141]. Other exploited approaches are based on cell-size separation, such as 
microfiltration (Screen Cell, CellSieve, ISET, Parylene filter, Filtration/Sequential ICC) or microfluidic test 
that combines size and deformability properties of CTCs (Ephesia, HB-CTC-chip, Iso-Flux, OncoCEE, 
Parsortix system , the ClearCell FX or Vortex)[135,142-151]. Nevertheless, even if all the described isolation 
methods represent rapid and less expensive alternatives, they are generally hampered by blood cells-related 
false-positive results, thus making necessary the combination with other enrichment methods and the loss 
of large CTCs and CTC clusters due to the high heterogeneity of CTC size[136,152]. Immunological assays, 
based on the extremely specific reaction between antibodies and the target antigens on the cell surface, 
provide a high purity rate of isolated CTCs[145,153-160]. Several of these techniques are based on EpCAM posi-
tive selection and, actually, the most standardized method is the CellSearch® system (Janssen Diagnostics), 
the only one approved by the U.S. Food and Drug Administration for CTCs enumeration in BC and other 
type of cancer[25,27,157,161]. Nevertheless, as reported by several clinical trials, in patients in which EMT oc-
curring with the downregulation of EpCAM and other epithelial markers, this system may fail to capture 
the entire pool of CTCs and may result in false negative findings[74,134,162-165]. Furthermore, it has been dem-
onstrated that the lack of EpCAM+ CTCs detection does not reflect a status of benign prognosis. In fact, 
it could be directly related with negative hormone receptors, high tumor grade, triple-negative disease, 
inflammatory BC and brain metastasis (OR = 6.17, 95%CI: 2.14-17.79; P = 0.001) or conversely with bone 
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metastasis (OR = 0.47; 95%CI: 0.27-0.80; P = 0.01)[166]. Hence, it is important to understand, using different 
epithelial and/or mesenchymal markers, how defined other clinically relevant sub-populations of CTCs. 
Accordingly, taking into account the attested probability of false-negative results, cell-surface vimentin 
and EGFR were suggested as alternative markers for detecting mesenchymal transitioned CTCs[136,167,168]. To 
recapitulate, the common issue underlined with positive selection procedures is to fail the capture of cells 
with low expression of EpCAM and non-epithelial phenotypes such as those that have undergone EMT. 
In addition, the isolated CTCs have reduced viability and this aspect represents an important obstacle to 
CTCs’ biological characteristics understanding[137]. Otherwise, immunological methods based on negative 
selection are also available. The latters are commonly used to deplete cells that do not express CD45 leuco-
cyte antigen or a cocktail of antibodies direct against red and white blood cells, such as RosetteSep, Easy-
Sep, Dynabeads, mojoSort[137]. Cells isolated with this approach are relatively more viable but, at the same 
time, are highly impure. In fact, the purified cells pool contains epithelial and non-epithelial phenotypes 
together with normal blood vessel, stromal cells or other cells normally present in the circulation[137]. These 
evidences, as reported by a huge number of studies, confirm that the main challenge of CTCs isolation and 
characterization are the lack of specific standardized procedures that strongly restrict their use in clinical 
practice[134,169,170].

CLINICAL RELEVANCE OF CTCS
Despite progress achieved in terms of prevention, diagnosis and treatment, drug resistance and tumor re-
lapse, whose severity and probability are specific for each patient, remain one of the principal issue in breast 
cancer. Therefore, as a good clinical practice, it has been established that a patient’s 5-year follow up, since 
primary tumor, could lead to an early detection of recurrence or metastasis and to a more specific and ef-
ficient therapy[169]. Canonical tissue biopsy represent on one side a costly, painful and hard to repeat proce-
dure. In addition, it is not able to provide a complete genetic or epigenetic tumor characterization in order 
to identify possible tumor phenotypical alteration[171]. In this optic, non-invasive liquid biopsies and the 
measurement of specific blood-based biomarkers represent an effective alternative parameter to monitored 
invasive BC patients. Cancer Antigen 15-3 (CA 15-3), carcinoembryonic antigen, tissue polypeptide antigen, 
tissue polypeptide-specific antigen and the soluble form of HER2 represent the most detected serum BC 
biomarkers[172-174]. Nevertheless, even if it has been demonstrated a correlation between single or combined 
circulating biomarker levels and recurrence incidence, many issues need to be solved[175-178]. For instance, 
there are still problems associated with the lack of a validated clinically relevant level to establish, for each 
biomarker, a cut-off parameter[169]. Furthermore, it has been demonstrated that biomarker prognostic efficacy 
depends on the recurrence site. In fact, higher levels of biomarkers were detected in BC distant metastases, 
such as bone or liver, than in loco-regional or lung recurrence[179]. Additionally, these biomarkers are inap-
propriate to figure out mechanisms of therapy resistance[169]. For these reasons, nowadays, the detection of 
CTCs from patient blood samples appears as a powerful tool in the management of early and advanced BC 
patients[138]. CTC-based liquid biopsy represents a more informative tool, able to improve patients’ selection 
and monitoring for target treatments, than conventional tumor tissue based- biomarkers that focused only 
on the primary tumor or metastases. Indeed, in the last few years, several studies highlighted the prognos-
tic relevance of CTCs in MBC. In particular, it has been demonstrated that patients with a persistent CTCs 
count > 5 cell per 7.5 mL blood had a worse patient free survival (PFS) and overall survival (OS) compared 
to those that have CTCs < 5 at baseline and during follow-up[25,27,180-182]. Furthermore, due to their character-
istics and minimally invasive procedures, the use of CTCs permits to evaluate the dynamic change of tumor 
over time for each patient that may impair the response to specific targeted treatments[138,183]. From this point 
of view, CTC detection appears to hold promise of a better patients’ management but up to date they are 
not still routinely used in clinical practice. In fact, CTC enumeration and variation during treatment were 
independent from any other baseline clinical or pathological characteristics and were not associated with 
pathological complete response[26,27]. Furthermore, as highlight by the SWOG S0500 randomize trial in ad-
vanced breast cancer, there is no evidence that changing or discontinuing therapy based on CTC level could 



improve patients’ health outcomes, quality of life or cost effectiveness. In addition, PFS and OS showed no 
difference in outcome when patients were switched to an alternate regimen[180]. Thus, the American Society 
of Clinical Oncology guidelines affirm that the use of CTC count alone may be prognostic but not predic-
tive for monitoring response to treatment for metastatic breast cancer[184]. Nevertheless, several clinical trials 
based on the comparison in HER2/ER/PR expression profiles between patient’s biopsy, from primary tumor 
or metastatic site, and CTCs, demonstrated a discrepancy between biopsies and circulating cells that could 
have important therapeutic implications[185]. In fact, it has been revealed in HER2- and ER+ BC patients the 
presence, respectively, of HER2+ and ER- CTCs associated with an increased mortality risk, poor PFS and 
low OS[186-188]. Therefore, knowing that the switch between HER2-/+ or ER+/- can occur after multiple courses 
in patients under HER2- targeted or ER-endocrine therapies, the monitoring of CTCs becomes crucial[189,190]. 
Obviously, these evidences suggest a potential mechanism of a patient’s specific therapy-resistance, which 
is still unknown and under investigation in ongoing clinical trials[191]. In conclusion, despite several issues 
needing to be overcome, CTCs could be considered as a “real-time” liquid biopsy, able to provide important 
molecular information about patient’s current disease and, hopefully, to suggest the suitable personalized 
treatment regimen[138].

CONCLUSION
At present, personalized medicine represents one of the principal aims of medical research. For this rea-
son, even the improvement achieved in treatment options and the better clinical outcomes for BC patients, 
conventional tissue biopsies are considered, up to date, a poor diagnostic procedure. The growing interest 
in CTCs and their in progress validation as diagnostic and prognostic biomarker, could represent the tool 
for achieving this wishes of “personalization”. In fact, despite the still outstanding issues already covered in 
this review, CTCs could be crucial to the understanding of the complex BC heterogeneity, at the same time, 
they could be considered as a screening tool. Furthermore, their proved implication in the metastatic pro-
cess and, most important, in chemoresistance, is stimulating the rapid development of new CTC isolation 
and single cell analysis platform. In the future, it is expected that the improvement in CTCs knowledge 
may pave the way to the discovery of new targets and to therapies that are more efficient.
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