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A B S T R A C T
Esophagogastric junctional adenocarcinoma is commonly treated as esophageal adenocarcinoma (EAC) and has dramatically 
increased in Western countries for several decades. The similar trend has been observed in Asian countries (not in China).   Barrett’s 
esophagus (BE) is a widely accepted precursor of EAC. Recent advances of next-generation sequencing could provide researchers 
with a better understanding of genetic and epigenetic alterations in the carcinogenesis of EAC. In this review, we have summarized 
the recently reported major genetic and epigenetic alterations in both BE and EAC. Sonic hedgehog/bone morphogenetic protein 
axis, which is a key signaling for esophageal development, plays an important role in BE intestinal   metaplasia. Single nucleotide 
polymorphisms related to esophageal organogenesis, such as FOXF1 and FOXP3, are frequently detected in BE patients. During 
the progression of BE to adenocarcinoma, lacking of normal function of TP53 and CDKN2A by loss of heterozygosity (LOH), 
mutation, or promoter methylation has been frequently observed. LOH at 9p (coding CDKN2A) is an earlier event to EAC 
carcinogenesis compared to that at 17q (coding TP53) LOH. In order to further elucidate the pathogenesis of BE and EAC, it will 
be necessary to analyze these genetic/epigenetic alterations in combination with clinical data in a  large-scale cohort.
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Introduction
Esophagogastric junctional (EGJ) adenocarcinoma is 
classifi ed as I to III, based on the location of the tumor 
center or tumor mass, by Rudiger Siewert et al.[1] EGJ 
cancer is considered to be an esophageal cancer, according 
to the 7th edition of    Union for International Cancer 
Control tumour, node, metastasis classifi cation.[2] EGJ 
adenocarcinoma/esophageal adenocarcinoma (EAC) has 
dramatically increased by 600%, mainly in Western 
countries, over the past few decades, although the current 
incidence rate shows only a moderate increase.[3] Currently, 
a similar trend was reported in Asian country.[4] EGJ 
adenocarcinoma often presents at a late stages despite recent 
improvements in diagnostic technology and multidisciplinary 
treatment. The 5-year survival rate is reported to be about 
20% and median survival less than one year.[3,5]

Barrett’s esophagus (BE) is a widely accepted precursor 
of EGJ adenocarcinoma/EAC, although the reported risk 

is around 0.5% per year.[6] Epidemiological studies have 
revealed that adenocarcinomas occur from BE through 
multistep morphological changes, such as low-grade to 
high-grade dysplasia.[6,7] BE and EGJ adenocarcinoma/
EAC share poly-genetic/epigenetic alterations.[8] BE 
can be described as mucosal replacement of normal 
squamous epithelium with metaplastic columnar 
mucosa, known as specialized columnar metaplasia, 
in response to chronic gastroesophageal refl ux 
disease (GERD).[9] Understanding the pathogenesis 
of BE and EGJ adenocarcinoma/EAC is important 
in prevention and thus the development of molecular 
targeting therapy. Here, we review the pathogenesis of 
EGJ adenocarcinoma/EAC, including BE, focusing on 
molecular alterations. We use the term EAC and include 
EGJ adenocarcinoma.
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Barrett’s Esophagus
BE is defi ned by American Gastroenterological 
Association as “BE is the condition in which any extent 
of metaplastic columnar epithelium that predisposes to 
cancer development replaces the stratifi ed squamous 
epithelium that normally lines the distal esophagus.”[10] 
This means a specialized columnar epithelium 
characterized by columnar cells, goblet cells, and a 
villous-like structure.[11,12] However, another classifi cation 
includes two types of BE. One is “junctional or cardiac 
type,” consisting of the predominantly foveolar surface 
containing mucous glands and resembling cardiac 
mucous glands. Another one is “gastric-fundic type,” 
containing both parietal and chief cells with atrophic 
fundic glands.[11-13] Thus, the histological defi nition of BE 
remains controversial.

The cell of origin of BE has not yet been elucidated. Six 
cell types are currently considered as potential origins, 
including transdifferentiation of esophageal squamous 
cells,[14] gastric cardia cells,[15] esophageal submucosal 
gland cells,[16] esophageal progenitor cells,[17] circulating 
bone marrow cells,[18] and residual embryonic cells at 
squamo-columunar junction (SCJ).[19]

There are some reports suggesting an association between 
p63 and intestinal metaplasia. p63 null embryos have 
idiopathic metaplasia in SCJ.[20] It has been shown that 
genetic alterations in metaplastic cells in mice lacking 
p63 were similar to those in human BE.[21] It has also 
been suggested that epithelium with such genetic changes 
may originally exist at SCJ. Also, lack of SRY (sex 
determining region Y) box 2 (SOX2) induces columnar 
changes in esophageal epithelium in mice models.[22] 
Both p63 and SOX2 are essential for squamous epithelial 
formation during organogenesis. Although these fi ndings 
were based on studies using rodent esophagus, there are 
structural differences in the esophageal between rodents 
and human. For example, in rodents, the esophagus lacks 
submucosal glands and SCJ is located in mid-stomach. 
Therefore, fi ndings in rodent models may not be 
applicable to human BE.

Molecular and Genetic Alterations Related 
to Intestinal Metaplasia and Intestinal 
Differentiation
Sonic hedgehog (SHH)/bone morphogenetic protein 
(BMP) signaling plays an important role in the 
development of columnar metaplasia, being associated 
with organogenesis, especially of the esophageal. These 
are critical molecules for separating trachea from the 
esophagus[23] and are involved in the development of 
cell-renewable epithelium.[24] Expressions of SHH and 
  BMP4 are usually low in human squamous epithelia. In 
BE tissue, however, SHH/BMP4 signaling induces SRY 
(sex determining region Y) box 9 (SOX9).[25,26] SOX9 
subsequently induces CDX2 and MUC2 expression, 

which are related to an intestinal phenotype.[27] 
Furthermore, BMP4 shifts the gene expression profi le 
of normal squamous cells into columnar cells. Because 
cytokeratin (CK) is a major cytoskeleton molecule, 
it can be regarded as a representative phenotype of 
certain cells. CK 13/14 expressions are highly expressed 
in squamous cells, whereas CK 7, 8, 18, and 20 
expressions elevated in BE epithelium.[28] It has been 
shown that expression of SOX9, but not CDX2 or 
BMP4, induces squamous epithelial cells formation 
toward columnar-like epithelium with expression of 
CK 8.[29] SHH/BMP signaling were also activated in 
a mouse model with interleukin-1β overexpression. 
After one year of continuous infl ammation, intestinal 
metaplasia occurred at the SCJ, and the gene expression 
pattern of those metaplastic cells was similar to those in 
human BE.[30]

Recent advances of next-generation sequencing have 
provided the opportunity to elucidate genetic alterations 
such as single nucleotide polymorphisms (SNPs). 
The association between SNPs and BE has been 
clarifi ed. It has been reported that chromosomes 
2p24 (rs3072), 12q24 (rs2701108), 6p21 (rs9257809), 
and 16q24 (rs9936833) are related to risk of BE 
development.[31,32] Among these SNPs, rs9936833 at 
16q24 is located close to FOXF1, which is a transcription 
factor in the SHH signaling pathway. Interestingly, 
FOXF1 is associated with embryonic development 
of gastrointestinal tract formation, especially the 
esophagus.[33] Also, the importance of FOXP3, at 
3p14 (rs2687201), which is also known to possess a 
role in esophageal organogenesis, is based on analyzing 
datasets of BE or EAC cases.[34] 19p13 (rs10419226) and 
9p22 (rs11789015), with signifi cant relation to BE and 
EAC, has also been identifi ed. rs10419226 SNPs at 19p13 
are known as an intronic variant of cAMP-regulated 
transcriptional co-activators (CRTC1  ). CRTC signaling 
exerts oncogenic activities when activated by loss of 
LKB1 through transcriptional activation of LYPD3, 
which contributes to esophageal tumor progression.[35] 
rs11789015 SNP at 9p22 is located at the intron region 
of BARX1. BARX1 is a transcription factor involved in 
tracheal and foregut organogenesis in developing mouse 
embryos.[36,37] These fi ndings suggest that key molecules 
in BE development may overlap with those in esophageal 
development.

Wnt/β-catenin, and Notch are critical signaling for 
intestinal differentiation. Wnt family is one of the 
fundamental mechanisms of cell proliferation, polarity, 
and differentiation.[38] Wnt signaling pathways include 
Wnt/β-catenin canonical pathway and Wnt/calcium 
or Wnt/planar cell polarity non-canonical pathway. 
Among these, Wnt/β-catenin pathway is associated with 
intestinal type gene expressions.[39,40] Wnt signaling also 
regulates CDX gene expression, which controls intestinal 
differentiation, and homeostasis.[41] Notch signaling 
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also plays an important role in intestinal differentiation 
in cell proliferation, apoptosis, and normal cell 
differentiation.[42,43]

SHH, BMP4, SOX9, and CDX2 are key molecules 
for the development of intestinal metaplasia. SHH/
BMP4 axis, which is a key signaling for esophageal 
development, plays an important role in the intestinal 
metaplasia of BE. In addition, SNPs that are related to 
esophageal organogenesis, such as FOXF1 and FOXP3, 
are frequently observed in BE patients [Table 1].

Genetic Alterations in Progression of BE to 
EAC
Few cases of BE will develop high-grade dysplasia or 
adenocarcinoma. The widely accepted molecular events 
during progression of BE to adenocarcinoma are loss 
of normal TP53 and CDKN2A function. Mechanisms 
underlying this have been explained by loss of 
heterozygosity (LOH), mutation, or promoter methylation. 
Tumor suppressor genes, TP53 and CDKN2A, are located 
at 17p and 9p, respectively.[44] 17p LOH occurs frequently 
in EAC,[45-47] while TP53 mutation possesses malignant 
transformation potential during EAC carcinogenesis.[48] 9p 
LOH has been reported to be the important factor driving 
to EAC.[44] Somatic mutation of CDKN2A has also been 
detected in EAC cases.[49] In addition, tumors harboring 
promoter methylation in CDKN2A showed a higher risk of 
EAC progression.[50,51] Although 9p LOH is an earlier event 
during EAC carcinogenesis compared to 17q LOH, patients 
with BE harboring 9p LOH experienced much higher 
incidence of EAC compared to those with 17q LOH.[44]

Comprehensive genetic analysis has provided new 
insights in the genetic landscape of BE-to-EAC. One 
group has shown that most mutations in EAC had 
already occurred in matched BE, using comprehensive 
genetic analysis on 11 cases with EAC and 2 of BE. 
Another group analyzed the mutations in selected 26 
genes and reported that around half of the cases with 
BE without dysplasia already possessed mutations. Also, 
there was no signifi cant difference in frequencies of 
those mutations between BE without dysplasia, BE with 
high-grade dysplasia, and EAC.[52] Of note, they also 
examined associations between frequencies of mutations 
in the 26 genes and disease stage. They also found that 
only TP53 and SMAD4 mutations signifi cantly increased 

with progression of BE to high-grade dysplasia or EAC.

ARID1A is another key molecule driving BE to EAC.[53] 
ARID1A is a member of SWI/SNF family of chromatin 
remodeling. This molecule has been examined mainly 
in gastric cancer and reported to be associated with 
microsatellite instability.[54,55] ARID1A mutation 
was detected around 15% of BE with high-grade 
dysplasia and EAC. The frequency of loss of ARID1A 
by immunohistochemistry correlated with disease 
progression from BE to EAC. The EAC cell line, OE33, 
showed phenotypes of increased proliferation and 
aggressive invasion, as the gastric cancer cell line also 
did.[53,54] In addition to ARID1A, the other members of 
chromatin remodeling factors encoding genes, ARID2, 
and SMARC4A mutations, were also reported.[56]

Rho family GTPase activation is an important molecule 
in gastric cancer and EAC. Rho family consists of 
Cdc2, Rac1, and RhoA. These molecules are master 
regulators of actin cytoskeleton rearrangements, 
promote cancer cell invasion, and cell survival. In 
gastric cancer, a mutation of RhoA is frequently 
associated with diffuse-type gastric cancer. It has 
been reported that mutations in ELMO1 and DOCK2 
are frequently noted in cases with EAC. These are 
intracellular mediators of RAC1. ELMO1 and DOCK2 
promote tumor cell invasion and seem to be associated 
with EAC carcinogenesis.[57] It was observed that 6% 
of EAC cases analyzed had mutations in ELMO1 and 
13% in DOCK2. Other genes encoding Rac1 activating 
enzymes were ECT2 (1%), TIAM1 (3%), TRIO (3%) 
and VAV2 (1%) although these frequencies were lower 
than those in ELMO1 and DOCK2. Taken together, 
around 30% of Rac1- activating mutations occurred 
in EAC patients. Also reported in EAC were frequent 
transversions of A to C at AA sites (T to G at TT 
sites).[56,58] One possible explanation was that low pH 
due to GERD induces 8-OH-dG, resulting in A to C 
transversion at AA sites.[59,60] Further studies also needed 
to clarify this interesting fi nding.

Epigenetic Changes and microRNA Status in 
BE and EAC
Recent global methylation profi ling revealed that broad 
epigenetic alterations occur in both BE and EAC and 
are associated with carcinogenesis in EAC.[61-64] CpG 
island promoter hypermethylations are a common feature 
of cancer, and regulate (traditionally down-regulate) 
downstream gene expression. On the other hand, DNA 
hypomethylation increases gene expression.[62] As for 
specifi c CpG island promoter methylations, CDKN2A, 
APC, CDH1, MGMT, TIMP-3 and ESR1 have 
been evaluated in several reports.[51,65-68] CDKN2A 
hypermethylation has been considered to occur in early 
steps in EAC carcinogenesis. One study suggested that 4 
genes, SLC22A18, PIGR, GJA12 and RIN2, were highly 
methylated in EAC compared to BE.[63]

Table 1: Major molecular alterations reported across 
malignant progression of BE
Morphological status Key molecular alterations
BE SHH, BMP4, SOX9 and CDX3
Esophageal adenocarcinoma Loss of function of CDKN2A or 

TP53 (by loss of heterozygosity, 
or mutation); ARID1A, SMAD4

SHH: Sonic hedgehog; BE: Barrett’s esophagus; BMP: Bone 
morphogenetic protein; SOX9: SRY (sex determining region Y) 
box 9
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Micro RNA (miRNA) is a small non-coding RNA related 
to post-transcriptional gene expression and silencing. 
Generally, up-regulation of oncogenic-miRNA or 
down-regulation of tumor-suppressor miRNA is identifi ed 
as tumor-related miRNAs. Mir-21 up-regulation has 
been observed in BE and EAC compared with normal 
squamous cell epithelium and was associated with 
carcinogenesis.[69] miRNA-194 was also induced in BE 
and EAC and found to be related to intestinal metaplasia 
and metastasis.[70,71] miRNA-143, which suppresses 
transcription of KRAS, was down-regulated in EAC and 
associated with TP53.[72,73] miRNA-31 and miRNA-375 
were found to be down-regulated in EAC and are early 
and late-stage markers of EAC carcinogenesis.[74]

Conclusion
Recent advances of next-generation sequencing have 
provided researchers with better understanding of 
genetic and epigenetic alterations in EAC carcinogenesis. 
However, little study has examined those genetic 
and epigenetic alterations in combination with 
clinicopathological factors. In order to elucidate the 
pathogenesis of BE and EAC and to fi nd molecules for 
biomarkers and targeting therapy, it will be necessary 
to analyze those genetic alterations in combination with 
clinical data in a  large-scale cohort.
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