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Figure S1. Simulated pore diameter of HATN-COF. 26 

 27 

Figure S2. EDS elemental mapping of O element in the HATN-CO. 28 
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Table S1. Elemental analysis of C and N contents of HATN-COF by a Vario EL 29 

cube analyzer 30 

Element 
Atomic percent 

(%) 
Atomic ratio 

C 71.5 3.4 

N 20.9 1 

H 7.6 - 

 31 

 32 

 33 

Figure S3. SEM images at different magnification after ultrasonic crushing of HATN-34 

COF. 35 

 36 
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 37 

Figure S4. TEM images of HATN-COF. 38 

 39 

Figure S5. TGA-DSC curves of HATN-COF. 40 

 41 
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The thermostability of HATN-COF is estimated by using the thermogravimetric 42 

analysis (TGA). The TGA curve can be divided into two stages between room 43 

temperature and 1000°C. A 9.1% weight loss below 400°C resulted from the adsorbed 44 

and crystalline ethanol and water molecules of the interlayer of HATN-COF. 45 

Approximately 13.7% weight loss between 401 and 1000°C attributing to sectional 46 

collapse of organic ligands. The result indicates that HATN-COF remains high 47 

thermostability at the range from room temperature to 400°C. 48 

 49 

Table S2. The C, N and O contents of HATN-COF by XPS spectra 50 

Element 
Atomic percent 

(%) 

C 74.8 

N 15.7 

O 
9.4 

 51 

 52 

Figure S6. The high resolution XPS spectrum of O 1s of HATN-COF. 53 
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 54 

Figure S7. The UV-Vis spectrum of HATN-COF. 55 

 56 

The optical band gap is determined to be 1.6 eV, corresponding to a maximum 57 

absorption wavelength of 789 nm (the intersection of the purple dotted line and the X-58 

axis in Figure. S6), indicative of semiconductor behavior[1], according to the formula: 59 

                         Egop = hv = (1240/λabs) eV                    (1) 60 

where Egop is the optical band gap energy (eV), h = 6.626196×10-34 J∙s, v is the 61 

frequency (Hz), and λ is the maximum absorption wavelength (nm). 62 

 63 

Figure S8. (a) Nitrogen adsorption-desorption isotherm curves and (b) pore size 64 

distribution curve of HATN-COF. 65 
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 66 

Figure S9. CV curves of HATN-COF electrode from 10 to 100 mV s-1 in 1M Na2SO4 67 

electrolyte. 68 

 69 

The specific capacitance is 18.6 F g-1 at 10 mV s-1 in the neutral 1M Na2SO4 70 

electrolyte. 71 

 72 

 73 

Figure S10. Normalized peak-current plot to determine the b value for anodic process 74 

of HATN-COF electrode. 75 

 76 
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Table S3. Specific capacity of HATN-COF electrode from 1 to 20 A g-1 77 

Current density (A g-1) Specific capacity (mAhg-1) 

1 367.3 

2 364.6 

4 355.0 

6 351.8 

8 330.1 

10 313.2 

20 259.7 

 78 

Table S4. COF-based electrode material and their electrochemical performance 79 

in three-electrode system reported in literature 80 

Electrode Specific capacitance Electrolyte 
Retention 

(Cycles) 
References 

Ni-COF 1257 F g-1 at 1 A g-1 3 M KOH 94% (10,000) [2] 

Phos-COF-

1 
100 F g-1 at 1 A g-1 3 M Na2SO4 90% (5000) [3] 

PT-COF 1443 F g-1 at 1 A g-1 0.5 M H2SO4 91% (3000) [4] 

TpOMe-

DAQ 

169 F g-1 at 3.3 mA cm-

2 
3 M H2SO4 65% (50,000) [5] 

COF@OHP 

@CNTF 
249 F g-1 at 30 mV s-1 1 M H3PO4 80% (10,000) [6] 

N-PC 112 F g-1 at 1 A g-1 6 M KOH 88.4% (5000) [7] 

Ppy@COF 1983 mF g-1 at 1 A g-1 
1 M PVA-

H2SO4 
98% (2800) [8] 

HATN-

COF 

367.3 mAhg-1 (2644.5 

F g-1) at 1 A g-1 
6 M KOH 

97.8% 

(20,000) 
This work 

 81 

 82 
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 83 

Figure S11. Structure and morphology characterizations of HATN-COF electrode. 84 

SEM images of (a) before and (b) after the cycling test at 6 A g-1. (c) XRD patterns of 85 

before and after the cycling test at 6 A g-1, Note that the peaks marked with * and  86 

originate from HATN-COF and nickel foam, respectively. (d) FTIR spectra of before 87 

and after the cycling test at 6 A g-1. 88 

 89 

 90 

Figure S12. Electrochemical performances of AC electrode. (a) CV curves at different 91 

scan rates. (b) GCD curves at different current densities. 92 
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 93 

Figure S13. CV curves of HATN-COF//AC at various voltage windows. 94 

 95 

Table S5. COF-based electrode material and their electrochemical performance 96 

in two-electrode system reported in literature 97 

Electrode 

Specific 

capacitance 

(F g-1） 

Retention 

(Cycles) 

Energy density at 

power density 
References 

PI-COF//PI-

COF 

163 F g-1 

at 0.5 A g-1 

84.1% 

(30,000) 

35.7 W h kg-1 

at 250 W kg-1 
[9] 

[C60]0.05C

OF//rGO 

47.6 F g-1 

at 1 A g-1 

99% 

(5000) 

21.4 W h kg-1 

at 900 W kg-1 
[10] 

FCTF//AC 
148 F g-1 

at 1 A g-1 

98.9% 

(10,000) 

46.3 W h kg-1 

at 975 W kg-1 
[11] 

RuO2//Hex-

COF 

64 F g-1 

at 1 A g-1 

89% 

(7500) 

23.3 W h kg-1 

at 661.2 W kg-1 
[12] 

TpTa-Py 

//TpTa-Py 

102 F g-1 

at 0.5 A g-1 

92% 

(6000) 

9.06 W h kg-1 

at 100 W kg-1 
[13] 
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PFM-

COF1// 

PFM-COF1 

158 F g-1 

at 0.5 A g-1 

81% 

(2000) 

28.44 W h kg-1 

at 1077.72 W kg-1 
[14] 

PDC MA 

COF//AC 

94 F g-1 

at 1 A g-1 

88% 

(20,000) 

29.2 W h kg-1 

at 750 W kg-1 
[15] 

HATN-

COF//AC 

215.4 F g-1 

at 0.5 A g-1 

97.3% 

(20,000) 

67.3 W h kg-1 

at 375 W kg-1 
This work 

 98 

 99 

Figure S14. Nyquist plots, with the inset showing the enlarged portion of HATN-100 

COF//AC. 101 

 102 
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