1	Supplementary Materials
2	
3	Stable hexaazatrinaphthylene-based covalent organic framework as high-
4	capacity electrodes for aqueous hybrid supercapacitors
5	
6	Xu Li ^{1,2} , Zhenhu Li ^{1,3,*} , Yulin Zhang ^{1,3} , Hanlin Guo ⁴ , Meiying Zou ^{1,3} , Haoxiang
7	Li ^{1,3} , Yuping Liu ^{1,3} , Shuangyi Liu ^{1,3,*}
8	
9	¹ Research Center for Electrochemical Energy Storage Technologies, Chongqing
10	Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
11	Chongqing 400714, China.
12	² Chongqing CAS Supercap Technology Co., Ltd., Chongqing 401329, China.
13	³ Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714,
14	China.
15	⁴ School of Physics and Electronic Engineering, Harbin Normal University, Harbin
16	150025, Heilogjiang, China.
17	
18	*Correspondence to: Dr. Zhenhu Li and Prof. Shuangyi Liu, Research Center for
19	Electrochemical Energy Storage Technologies, Chongqing Institute of Green and
20	Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue,
21	Chongqing 400714, China. E-mail: lizhenhu@cigit.ac.cn; liushuangyi@cigit.ac.cn
22	

- 26 Figure S1. Simulated pore diameter of HATN-COF.

Figure S2. EDS elemental mapping of O element in the HATN-CO.

Table S1. Elemental analysis of C and N contents of HATN-COF by a Vario EL

	Atomic percent		
Element	(%)	Atomic ratio	
С	71.5	3.4	
Ν	20.9	1	
Н	7.6	-	

cube analyzer

- Figure S3. SEM images at different magnification after ultrasonic crushing of HATN-
- COF.

38 Figure S4. TEM images of HATN-COF.

Figure S5. TGA-DSC curves of HATN-COF.

- 42 The thermostability of HATN-COF is estimated by using the thermogravimetric
- 43 analysis (TGA). The TGA curve can be divided into two stages between room
- 44 temperature and 1000°C. A 9.1% weight loss below 400°C resulted from the adsorbed
- 45 and crystalline ethanol and water molecules of the interlayer of HATN-COF.
- 46 Approximately 13.7% weight loss between 401 and 1000°C attributing to sectional
- 47 collapse of organic ligands. The result indicates that HATN-COF remains high

48 thermostability at the range from room temperature to 400°C.

49

50 Table S2. The C, N and O contents of HATN-COF by XPS spectra

Floment	Atomic percent	
Element	(%)	
С	74.8	
Ν	15.7	
0	9.4	

51

54

55 **Figure S7**. The UV-Vis spectrum of HATN-COF.

56

60

57 The optical band gap is determined to be 1.6 eV, corresponding to a maximum

absorption wavelength of 789 nm (the intersection of the purple dotted line and the X-

59 axis in Figure. S6), indicative of semiconductor behavior^[1], according to the formula:

$$Eg^{op} = hv = (1240/\lambda_{abs}) eV$$
(1)

61 where Eg^{op} is the optical band gap energy (eV), $h = 6.626196 \times 10^{-34}$ J·s, v is the

62 frequency (Hz), and λ is the maximum absorption wavelength (nm).

Figure S8. (a) Nitrogen adsorption-desorption isotherm curves and (b) pore size
distribution curve of HATN-COF.

66

Figure S9. CV curves of HATN-COF electrode from 10 to 100 mV s⁻¹ in 1M Na₂SO₄

- 68 electrolyte.
- 69
- 70 The specific capacitance is 18.6 F g^{-1} at 10 mV s^{-1} in the neutral 1M Na₂SO₄
- 71 electrolyte.
- 72

73

Figure S10. Normalized peak-current plot to determine the *b* value for anodic process
of HATN-COF electrode.

Current density (A g ⁻¹)	Specific capacity (mAhg ⁻¹)
1	367.3
2	364.6
4	355.0
6	351.8
8	330.1
10	313.2
20	259.7

77 Table S3. Specific capacity of HATN-COF electrode from 1 to 20 A g⁻¹

78

79 Table S4. COF-based electrode material and their electrochemical performance

Electrode	Specific capacitance	Electrolyte	Retention (Cycles)	References	
Ni-COF	1257 F g ⁻¹ at 1 A g ⁻¹	3 М КОН	94% (10,000)	[2]	
Phos-COF- 1	100 F g ⁻¹ at 1 A g ⁻¹	3 M Na ₂ SO ₄	90% (5000)	[3]	
PT-COF	1443 F g ⁻¹ at 1 A g ⁻¹	0.5 M H ₂ SO ₄	91% (3000)	[4]	
TpOMe- DAQ	169 F g ⁻¹ at 3.3 mA cm ⁻ 2	3 M H ₂ SO ₄	65% (50,000)	[5]	
COF@OHP @CNTF	249 F g ⁻¹ at 30 mV s ⁻¹	1 M H ₃ PO ₄	80% (10,000)	[6]	
N-PC	112 F g ⁻¹ at 1 A g ⁻¹	6 M KOH	88.4% (5000)	[7]	
Ppy@COF	1983 mF g^{-1} at 1 A g^{-1}	1 M PVA- H ₂ SO ₄	98% (2800)	[8]	
HATN-	367.3 mAhg ⁻¹ (2644.5	6 M KOH	97.8%	This work	
COF	$F g^{-1}$) at 1 A g^{-1}		(20,000)		

80 in three-electrode system reported in literature

81

Figure S11. Structure and morphology characterizations of HATN-COF electrode. 84 SEM images of (a) before and (b) after the cycling test at 6 A g⁻¹. (c) XRD patterns of 85 before and after the cycling test at 6 A g^{-1} , Note that the peaks marked with * and • 86 87 originate from HATN-COF and nickel foam, respectively. (d) FTIR spectra of before and after the cycling test at 6 A g^{-1} . 88

90

Figure S12. Electrochemical performances of AC electrode. (a) CV curves at different 91 92 scan rates. (b) GCD curves at different current densities.

93

94 **Figure S13**. CV curves of HATN-COF//AC at various voltage windows.

95

96 Table S5. COF-based electrode material and their electrochemical performance

97 in two-electrode system reported in literature

	Specific			
Electrode	capacitance	Retention Energy density at (Cycles) power density	Energy density at	References
	(F g ⁻¹)			
PI-COF//PI-	163 F g ⁻¹	84.1%	35.7 W h kg ⁻¹	[0]
COF	at 0.5 A g ⁻¹	(30,000)	at 250 W kg ⁻¹	[9]
[C ₆₀]0.05C	47.6 F g ⁻¹	99%	21.4 W h kg ⁻¹	[10]
OF//rGO	at 1 A g ⁻¹	(5000)	at 900 W kg ⁻¹	[10]
ECTE//AC	148 F g ⁻¹	98.9%	46.3 W h kg ⁻¹	[11]
FUIF//AU	at 1 A g ⁻¹	(10,000)	at 975 W kg ⁻¹	
RuO ₂ //Hex-	64 F g ⁻¹	89%	23.3 W h kg ⁻¹	[10]
COF	at 1 A g ⁻¹	(7500)	at 661.2 W kg ⁻¹	[12]
ТрТа-Ру	102 F g ⁻¹	92%	9.06 W h kg ⁻¹	[12]
//TpTa-Py	at 0.5 A g ⁻¹	(6000)	at 100 W kg ⁻¹	[13]

			Energy	Materials
PFM-	159 E ~-]	010/	29.44 W 1.1	
COF1//	138 F g	81%0	28.44 w n kg	[14]
PFM-COF1	at 0.5 A g ⁻¹	(2000)	at 1077.72 W kg ⁻¹	
PDC MA	94 F g ⁻¹	88%	29.2 W h kg ⁻¹	[1]
COF//AC	at 1 A g ⁻¹	(20,000)	at 750 W kg ⁻¹	[15]
HATN-	215.4 F g ⁻¹	97.3%	67.3 W h kg ⁻¹	T1
COF//AC	at 0.5 A g^{-1}	(20,000)	at 375 W kg ⁻¹	I IIS WORK

98

99

Figure S14. Nyquist plots, with the inset showing the enlarged portion of HATNCOF//AC.

102

103 **References**

- 104 1 Iqbal R, Majeed MK, Hussain A et al. Boosting the Crystallinity of Novel Two-
- 105 Dimensional Hexamine Dipyrazino Quinoxaline-Based Covalent Organic
- 106 Frameworks for Electrical Double-Layer Supercapacitors. *Micropor Mesopor Mat*
- 107 2023;7:2464-2474. DOI:10.1039/D3QM00169E

- 108 2 Li T, Zhang WD, Liu Y et al. A Two-Dimensional Semiconducting Covalent
- 109 Organic Framework with Nickel(||) Coordination for High Capacitive Performance.
- 110 J Mater Chem A 2019;7:19676-19681. DOI:10.1039/c9ta07194f
- 111 3 Sajjad M, Tao R, Qiu L. Phosphine Based Covalent Organic Framework as an
- 112 Advanced Electrode Material for Electrochemical Energy Storage. J Mater Sci-mater
- 113 *El* 2021;32:1602-1615. DOI:10.1007/s10854-020-04929-9
- 114 4 Patra BC, Bhattacharya S. New Covalent Organic Square Lattice Based on
- 115 Porphyrin and Tetraphenyl Ethylene Building Blocks toward High-Performance
- 116 Supercapacitive Energy Storage. *Chem Mater* 2021;33:8512-8523.
- 117 DOI:10.1021/acs.chemmater.1c02973
- 118 5 Halder A, Ghosh M, Khayum MA et al. Interlayer Hydrogen-Bonded Covalent
- 119 Organic Frameworks as High-Performance Supercapacitors. J Am Chem Soc
- 120 2018;140:10941-10945. DOI:10.1021/jacs.8b06460
- 121 6 Xu Z, Liu Y, Wu Z et al. Construction of Extensible and Flexible Supercapacitors
- 122 from Covalent Organic Framework Composite Membrane Electrode. Chem Eng J
- 123 2020;387:124071. DOI:10.1016/j.cej.2020.124071
- 124 7 Vargheese S, Dinesh M, Kavya KV, Pattappan D, Rajendra Kumar RT, Haldorai
- 125 Y. Triazine-Based 2D Covalent Organic Framework-Derived Nitrogen-Doped Porous
- 126 Carbon for Supercapacitor Electrode. *Carbon Lett* 2021;31:879-886.
- 127 DOI:10.1007/s42823-020-00190-6
- 128 8 Haldar S, Rase D, Shekhar P et al. Vaidhyanathan R, Incorporating Conducting
- 129 Polypyrrole into a Polyimide Cof for Carbon-Free Ultra-High Energy
- 130 Supercapacitor. Adv Energy Mater 2022;12:2200754. DOI:10.1002/aenm.202200754
- 131 9 Iqbal R, Badshah A, Ma YJ, Zhi LJ. An Electrochemically Stable 2D Covalent
- 132 Organic Framework for High-Performance Organic Supercapacitors. Chinese J Polym
- 133 *Sci* 2020;38:558-564. DOI:10.1007/s10118-020-2412-z
- 134 10 Zhao X, Sajjad M, Zheng Y et al. Covalent Organic Framework Templated
- 135 Ordered Nanoporous C₆₀ as Stable Energy Efficient Supercapacitor Electrode
- 136 Material. Carbon 2021;182:144-154. DOI:10.1016/j.carbon.2021.05.061

- 137 11 Gao Y, Zhi C, Cui P, Zhang KAI, Lv LP, Wang Y. Halogen-Functionalized
- 138 Triazine-Based Organic Frameworks Towards High Performance Supercapacitors.
- 139 *Chem Eng J* 2020;400:125967. DOI:10.1016/j.cej.2020.125967
- 140 12 Kandambeth S, Jia J, Wu H et al. Covalent Organic Frameworks as Negative
- 141 Electrodes for High-Performance Asymmetric Supercapacitors. Adv Energy Mater
- 142 2020;10:202001673. DOI:10.1002/aenm.202001673
- 143 13 Khattak AM, Ghazi ZA, Liang B et al. A Redox-Active 2D Covalent Organic
- 144 Framework with Pyridine Moieties Capable of Faradaic Energy Storage. J Mater
- 145 *Chem A* 2016;4:16312-16317. DOI:10.1039/C6TA05784E
- 146 14 Biradar MR, Rao CRK, Bhosale SV, Bhosale SV. Flame-Retardant 3D Covalent
- 147 Organic Framework for High-Performance Symmetric Supercapacitors. Energy Fuels
- 148 2023;37:4671-4681. DOI:10.1021/acs.energyfuels.2c04226
- 149 15 Li L, Lu F, Xue R et al. Ultrastable Triazine-Based Covalent Organic Framework
- 150 with an Interlayer Hydrogen Bonding for Supercapacitor Applications. ACS Appl
- 151 Mater Interfaces 2019;11:26355-26363. DOI:10.1021/acsami.9b06867