

-
-
- **Figure S1.** Simulated pore diameter of HATN-COF.

Figure S2. EDS elemental mapping of O element in the HATN-CO.

29 **Table S1. Elemental analysis of C and N contents of HATN-COF by a Vario EL**

Element	Atomic percent $(\%)$	Atomic ratio
C	71.5	3.4
N	20.9	
Η	7.6	$\overline{}$

30 **cube analyzer**

31

- 34 **Figure S3.** SEM images at different magnification after ultrasonic crushing of HATN-
- 35 COF.
- 36

Figure S4. TEM images of HATN-COF.

Figure S5. TGA-DSC curves of HATN-COF.

- 42 The thermostability of HATN-COF is estimated by using the thermogravimetric
- 43 analysis (TGA). The TGA curve can be divided into two stages between room
- 44 temperature and 1000°C. A 9.1% weight loss below 400°C resulted from the adsorbed
- 45 and crystalline ethanol and water molecules of the interlayer of HATN-COF.
- 46 Approximately 13.7% weight loss between 401 and 1000°C attributing to sectional
- 47 collapse of organic ligands. The result indicates that HATN-COF remains high

48 thermostability at the range from room temperature to 400°C.

49

50 **Table S2. The C, N and O contents of HATN-COF by XPS spectra**

Element	Atomic percent	
	(%)	
\mathcal{C}	74.8	
N	15.7	
	9.4	

51

53 **Figure S6**. The high resolution XPS spectrum of O 1s of HATN-COF.

Figure S7. The UV-Vis spectrum of HATN-COF.

The optical band gap is determined to be 1.6 eV, corresponding to a maximum

absorption wavelength of 789 nm (the intersection of the purple dotted line and the X-

59 axis in Figure. S6), indicative of semiconductor behavior^[1], according to the formula:

$$
Eg^{op} = hv = (1240/\lambda_{\text{abs}}) eV
$$
 (1)

61 where Eg^{op} is the optical band gap energy (eV), $h = 6.626196 \times 10^{-34}$ J⋅s, *v* is the

62 frequency (Hz), and λ is the maximum absorption wavelength (nm).

 Figure S8. (a) Nitrogen adsorption-desorption isotherm curves and (b) pore size distribution curve of HATN-COF.

Figure S9. CV curves of HATN-COF electrode from 10 to 100 mV s⁻¹ in 1M Na₂SO₄

- electrolyte.
-
- 70 The specific capacitance is 18.6 F g^{-1} at 10 mV s⁻¹ in the neutral 1M Na₂SO₄
- electrolyte.
-

 Figure S10. Normalized peak-current plot to determine the *b* value for anodic process of HATN-COF electrode.

Current density $(A g-1)$	Specific capacity $(mAhg^{-1})$
1	367.3
$\overline{2}$	364.6
$\overline{4}$	355.0
6	351.8
8	330.1
10	313.2
20	259.7

Table S3. Specific capacity of HATN-COF electrode from 1 to 20 A g-1 77

78

79 **Table S4. COF-based electrode material and their electrochemical performance**

81

84 **Figure S11.** Structure and morphology characterizations of HATN-COF electrode.

SEM images of (a) before and (b) after the cycling test at 6 A g^{-1} . (c) XRD patterns of 86 before and after the cycling test at 6 A g^{-1} , Note that the peaks marked with * and \bullet 87 originate from HATN-COF and nickel foam, respectively. (d) FTIR spectra of before 88 and after the cycling test at 6 A g^{-1} .

91 **Figure S12**. Electrochemical performances of AC electrode. (a) CV curves at different 92 scan rates. (b) GCD curves at different current densities.

94 **Figure S13**. CV curves of HATN-COF//AC at various voltage windows.

95

96 **Table S5. COF-based electrode material and their electrochemical performance**

97 **in two-electrode system reported in literature**

98

100 **Figure S14.** Nyquist plots, with the inset showing the enlarged portion of HATN-101 COF//AC.

102

103 **References**

- 104 1 Iqbal R, Majeed MK, Hussain A et al. Boosting the Crystallinity of Novel Two-
- 105 Dimensional Hexamine Dipyrazino Quinoxaline-Based Covalent Organic
- 106 Frameworks for Electrical Double-Layer Supercapacitors*. Micropor Mesopor Mat*
- 107 2023;7:2464-2474. DOI:10.1039/D3QM00169E

- 2 Li T, Zhang WD, Liu Y et al. A Two-Dimensional Semiconducting Covalent
- Organic Framework with Nickel(Ⅱ) Coordination for High Capacitive Performance*.*
- *J Mater Chem A* 2019;7:19676-19681. DOI:10.1039/c9ta07194f
- 3 Sajjad M, Tao R, Qiu L. Phosphine Based Covalent Organic Framework as an
- Advanced Electrode Material for Electrochemical Energy Storage*. J Mater Sci-mater*
- *El* 2021;32:1602-1615. DOI:10.1007/s10854-020-04929-9
- 4 Patra BC, Bhattacharya S. New Covalent Organic Square Lattice Based on
- Porphyrin and Tetraphenyl Ethylene Building Blocks toward High-Performance
- Supercapacitive Energy Storage*. Chem Mater* 2021;33:8512-8523.
- DOI:10.1021/acs.chemmater.1c02973
- 5 Halder A, Ghosh M, Khayum MA et al. Interlayer Hydrogen-Bonded Covalent
- Organic Frameworks as High-Performance Supercapacitors*. J Am Chem Soc*
- 2018;140:10941-10945. DOI:10.1021/jacs.8b06460
- 6 Xu Z, Liu Y, Wu Z et al. Construction of Extensible and Flexible Supercapacitors
- from Covalent Organic Framework Composite Membrane Electrode*. Chem Eng J*
- 2020;387:124071. DOI:10.1016/j.cej.2020.124071
- 7 Vargheese S, Dinesh M, Kavya KV, Pattappan D, Rajendra Kumar RT, Haldorai
- Y. Triazine-Based 2D Covalent Organic Framework-Derived Nitrogen-Doped Porous
- Carbon for Supercapacitor Electrode*. Carbon Lett* 2021;31:879-886.
- DOI:10.1007/s42823-020-00190-6
- 8 Haldar S, Rase D, Shekhar P et al. Vaidhyanathan R, Incorporating Conducting
- Polypyrrole into a Polyimide Cof for Carbon‐Free Ultra‐High Energy
- Supercapacitor*. Adv Energy Mater* 2022;12:2200754. DOI:10.1002/aenm.202200754
- 9 Iqbal R, Badshah A, Ma YJ, Zhi LJ. An Electrochemically Stable 2D Covalent
- Organic Framework for High-Performance Organic Supercapacitors*. Chinese J Polym*
- *Sci* 2020;38:558-564. DOI:10.1007/s10118-020-2412-z
- 10 Zhao X, Sajjad M, Zheng Y et al. Covalent Organic Framework Templated
- 135 Ordered Nanoporous C_{60} as Stable Energy Efficient Supercapacitor Electrode
- Material*. Carbon* 2021;182:144-154. DOI:10.1016/j.carbon.2021.05.061

- 11 Gao Y, Zhi C, Cui P, Zhang KAI, Lv LP, Wang Y. Halogen-Functionalized
- Triazine-Based Organic Frameworks Towards High Performance Supercapacitors*.*
- *Chem Eng J* 2020;400:125967. DOI:10.1016/j.cej.2020.125967
- 12 Kandambeth S, Jia J, Wu H et al. Covalent Organic Frameworks as Negative
- Electrodes for High‐Performance Asymmetric Supercapacitors*. Adv Energy Mater*
- 2020;10:202001673. DOI:10.1002/aenm.202001673
- 13 Khattak AM, Ghazi ZA, Liang B et al. A Redox-Active 2D Covalent Organic
- Framework with Pyridine Moieties Capable of Faradaic Energy Storage*. J Mater*
- *Chem A* 2016;4:16312-16317. DOI:10.1039/C6TA05784E
- 14 Biradar MR, Rao CRK, Bhosale SV, Bhosale SV. Flame-Retardant 3D Covalent
- Organic Framework for High-Performance Symmetric Supercapacitors*. Energy Fuels*
- 2023;37:4671-4681. DOI:10.1021/acs.energyfuels.2c04226
- 15 Li L, Lu F, Xue R et al. Ultrastable Triazine-Based Covalent Organic Framework
- with an Interlayer Hydrogen Bonding for Supercapacitor Applications*. ACS Appl*
- *Mater Interfaces* 2019;11:26355-26363. DOI:10.1021/acsami.9b06867