Supplementary Materials

Two-dimensional (2D) materials for 3D printed micro-supercapacitors and micro-b atteries

Ghuzanfar Saeed¹, Taehun Kang¹, Jin Suk Byun¹, Donghyun Min¹, Jun Su Kim¹, Shrikant Vaiju Sadavar¹, Ho Seok Park^{1,2,3,*}

¹School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

²SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan Universit y, Suwon 440-746, Republic of Korea.

³SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea.

*Correspondence to: Prof. Ho Seok Park, School of Chemical Engineering, Sungkyun kwan University, 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of Korea, E-ma il: <u>phs0727@skku.edu</u>

Table S1: Electrochemical performance of 2D driven materials for 3D printed electric double layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors.

3D-printed EESDs type	2D materials	Electrolyte	Voltage window (ΔV)	Specific/Areal capacitance	Energy density	Cycling stability (%)	References
	GO	1M H ₂ SO ₄	0.8	212 F g ⁻¹ at 1 A g ⁻¹	-	50000 (90)	[1]
	G-CNT	PVA/H ₃ PO ₄	1.0	9.81 mF cm ⁻² at 0.05 mA cm ⁻²	$\frac{1.12 \ \mu Wh \ cm^{-2}}{at \ 0.25 \ mW}$	10000 (95.5)	[2]
	G/Ethyl cellulose	PVA/H ₃ PO ₄	1.0	13.2 mF cm^{-2} at 0.4 mA cm ⁻²	$2.68 \ \mu Wh \ cm^{-2}$ ² at 7 $\mu W \ cm^{-2}$	10000 (96)	[3]
Electric Double Layer Capacitors (EDLCs)	3D-MCA	0.5 M TEABF ₄ in AN/MF	1.6	148.6 F g ⁻¹ at 5 mV s ⁻¹	-	-	[4]
	TROG	1M KOH	1.0	60 F g^{-1} at 5 mV s ⁻¹	7.68 Wh kg ⁻¹ at 115.8 kW kg ⁻¹	-	[5]
	AC	PVA/H ₂ SO ₄	1.0	0.121 F g ⁻¹ at 4.5 mA cm ⁻²	-	-	[6]
	AC	PVA/H ₃ PO ₄	0.8	1.48 F cm ⁻² at 20 mV s ⁻¹	0.064 Wh kg ⁻¹ at 57.6 W kg ⁻¹	500 (56)	[7]
	rGO	1M Na ₂ SO ₄	1.2	10.84 F g ⁻¹ at 0.1 A g ⁻¹	-	200 (70)	[8]
Pseudocapacitors	Ti ₃ C ₂	PVA/H ₂ SO ₄	0.6	393 F g ⁻¹ at 5 mV s ⁻¹	0.1 mWh cm ⁻² at 0.38 mW cm ⁻²	10000 (95.5)	[9]
	Ti ₃ C ₂	PVA/H ₂ SO ₄	0.6	$\frac{1035 \text{ mF cm}^{-2}}{\text{at 2 mV s}^{-1}}$	$\begin{array}{ccc} 0.1\overline{84} & \mu Wh \\ cm^{-2} \end{array}$	-	[10]

	MXene-N	3M H ₂ SO ₄	0.6	66.7 F g^{-1} at 12 mA cm ⁻²	$0.42 \ \mu Wh \ cm^{-2}$	5000 (96.2)	[11]
	Ti ₃ C ₂	PVA/H ₂ SO ₄	0.6	50 mF cm ⁻² at 25 μ A cm ⁻²	$0.76 \mu \text{Wh cm}^{-2}$	10000 (94.1)	[12]
	NiV-LDH	6М КОН	1.8	1069 F g ⁻¹ at 1 A g ⁻¹	$75.8 \ \mu Wh \ cm^{-2}$	1500 (68.0)	[13]
	MXene/C12E9	PVA/H ₂ SO ₄	0.6	2.66 F cm ⁻² at 11.1 mA cm ⁻²	-	10000 (86.5)	[14]
	MXene	PVA/H ₂ SO ₄	0.6	61 mF cm ⁻² at 800 μA cm ⁻²	-	10000 (93.7)	[12]
	Ti ₃ C ₂ T _x MSC	PVA/H ₂ SO ₄	0.6	2.1 F cm^{-2} at 1.7 mA cm ⁻²	$24.4 \ \mu Wh \ cm^{-2}$ at 0.64 mW cm ⁻²	10000 (90.36)	[15]
	ZIF-8	2M ZnSO4	1.8	16.9 F cm^{-2} at 5 mA cm ⁻²	7.23 mWh cm ⁻² at 34.7 mW cm ⁻²	2000 (>100)	[16]
	Kcu ₇ S ₄ /rGO/MWCNTs	ЗМ КОН	0.7	1674.3 F g ⁻¹ at 0.5 A g ⁻¹	-	2000 (88.6)	[17]
Hybrid capacitors	Ti ₃ C ₂ /Cellulose	1M H ₂ SO ₄	0.9	2.02 F cm ⁻² at 1 mA cm ⁻²	101 µWh cm ⁻²	5000 (85)	[18]
	GF-Ni-Au@NiOx	2М КОН	1.6	3.57 F cm ⁻² at 3 mA cm ⁻²	6.19 mWh cm^{-3}	15000 (92.1)	[19]
	SWNT-NiCo ₂ O ₄	6М КОН	0.4	588 mF cm^{-2} at 1 mA cm ⁻²	138 μWh cm ⁻²	50000 (82)	[20]
	Cu/Co-THQ	LiPF ₆ /EC/DMC	1.6	178.68 F g ⁻¹ at 1 A g ⁻¹	396.89 Wh kg ⁻	4000 (89.43)	[21]
	G/ZnV ₂ O ₆ @Co ₃ V ₂ O ₈	1М КОН	1.6	149.71 F g ⁻¹ at 0.5 A g ⁻¹	52.64 Wh kg ⁻¹	10000 (95.5)	[22]

	e-ReSe ₂ @INC	NaPF ₆	3.5	252.5 mAh g ⁻¹ at 20 A g ⁻¹	81.4 Wh kg ⁻¹ at 9992.1 W kg ⁻¹	3500 (89.6)	[23]
	PEDOT:PSS/MXene	PVA/H ₂ SO ₄	0.8	242.4 mF cm ⁻² at 51 mA cm ⁻²	_	6000 (83)	[24]
	PANI/rGO	1M H ₂ SO ₄	1.0	311 F g ⁻¹ at 0.86 A g ⁻¹	-	1000 (75)	[25]
	G-VNQDs/GO	LiCl-PVA	1.6	$207 \text{ mF cm}^{-2} \\ at 0.43 \text{ mA} \\ cm^{-2} \\ cm^{-2}$	73.9 μWh cm ⁻ ² at 3.77 mW cm ⁻²	8000 (65)	[26]
	MXene-AgNW- MnONW-C60	PVA-KOH	0.8	216.2 mF cm ⁻² at 10 mV s ⁻¹	^{19.2} μWh cm ⁻ ² at 58.3 mW cm ⁻²	10000 (85)	[27]
	Ex-Ti ₃ C ₂ T _x /CC MoS ₃ @3DnCF/CC	PVA/H ₂ SO ₄	1.6	90 F g ⁻¹ at 1 A g ⁻¹	$56.9 \mu Wh cm^{-2}$ at 0.20 mW cm ⁻²	25000 (92.8)	[28]
	V ₂ O ₅ /MWCNTs VN/MWCNTs	PVA-KOH	1.6	152.7 mF cm ⁻²	54.3 μ Wh cm ⁻	12000 (93.1)	[29]

3D-printed EESDs type	2D materials	Electrolyte	Voltage window (ΔV)	Specific/Areal capacity	Energy density	Cycling stability (%)	References
Li-based batteries	rGO-AgNWs-LTO	1 M LiFP ₆ in EC/DEC/DMC (1:1:1 volume)	1.5 V	132.8 mAh g ⁻¹ at 5C, 200 cycles	199.2 mWh kg ⁻¹	200 cycles (99.1)	[30]
	3DP-pSG	1 M LiTFSI in DMC/DOL (1:1 volume) with 1 wt.% LiNO ₃	1.5V	352.8 mAh g ⁻¹ at 50 mA g ⁻¹ , 50 cycles	529.13 mWh kg ⁻¹	50 cycles (43.4)	[31]
	Ni/r-GO	1 M LiTFSI in TEGTME	1 V	14.6 mAh cm ⁻² at 0.1 mA cm ⁻² , Full discharge	14.6 mWh cm ⁻²	Full discharge (-)	[32]
	3D-PC	1 M LiTFSI in DOL/DME (1:1 volume) with 1 wt.% LiNO ₃	1.3 V	505.4 mAh g ⁻¹ at 0.2 C, 500 cycles	657.02 mWh kg ⁻¹	500 cycles (76.8)	[33]
	LFP/rGO	1 M LiPF ₆ in EC/DEC (1:1 volume)	2 V	169 mAh g ⁻¹ at 10 mA g ⁻¹ , 20 cycles	338 mWh kg ⁻	20 cycles (91.8)	[34]
	3DP-VAE	1 M LiTFSI in DME/DOL (1:1 volume) with 1 wt% LiNO ₃	1 V	739.6 mAh g ⁻¹ at 1 mA cm ⁻² , 200 cycles	739.6 mWh kg ⁻¹	200 cycles (80)	[35]
	r-hGO	1 M LiTFSI in DMSO	2.5 V	3879 mAh g ⁻¹ at 0.1 mA cm ⁻² , Full discharge	9.70 Wh kg ⁻¹	Full discharge (-)	[36]
	$V_2O_5/Ti_3C_2T_x$	1 M LiPF ₆ in	2 V	112 mAh g ⁻¹ at	224 mWh kg ⁻	680 cycles	[37]

 Table S2: Electrochemical performance of 2D driven materials for 3D printed Li-based batteries and next generation batteries.

		EC/DMC (1:1		10.5C, 680 cycles	1	(91.7)	
	3D printed MXene	volume) 1 M LiTFSI in DOL/DME (1:1 volume) with 1 wt.% LiNO ₃	2 V	25.3 mAh cm ⁻² at 1C, 500 cycles	81.6 mWh cm ⁻²	500 cycles (73.8)	[38]
Next generation batteries	V ₂ CT _x /rGO-CNT microgrid Aerogel (NIBs)	1 M NaPF ₆ in diglyme	1.8 V	86.27 mAh g ⁻¹ at 100 mA g ⁻¹ , 400 cycles	155.29 mWh kg ⁻¹	400 cycles (99.31)	[39]
	rGO/Super-P aerogel (VRBs)	2 M H ₂ SO ₄	1.5 V	620.2 mA h cm ⁻² at 80 mA cm ⁻² , 100 cycles	930.3 mWh cm ⁻²	300 cycles (-)	[40]
	3DP-FeVO/rHGO (ZIBs)	2.5 M Zn(CF ₃ SO ₃) ₂	1.2 V	126.4 mAh g ⁻¹ at 2 A g ⁻¹ , 675 cycles	151.68 mWh kg ⁻¹	675 cycles (93.3)	[41]
	3DP-NGA (NIBs)	1 M NaPF ₆ in diglyme	1.8 V	85.3 mA h g ⁻¹ at 100 mA g ⁻¹ , 1000 cycles	153.54 mWh kg ⁻¹	1000 cycles (99.93)	[42]
	NVPF/EC, NTP/EC (Ionogel-based NIBs)	NaTFSI-IE	1.8 V	4.5 mAh cm ⁻² at 2 mA cm ⁻² , 6000 cycle	7.33 mWh cm ⁻²	6000 cycles (80)	[43]
	Na@rGO/CNT (NIBs)	1 M NaPF ₆ in diglyme	1.8 V	67.6 mA h g ⁻¹ at 100 mA g ⁻¹ , 100 cycle	121.68 Wh kg ⁻¹	600 cycles (>99)	[44]
	NVP-rGO (NIBs)	1 M NaClO ₄ in EC/PC (1:1 w/w) with 5 wt.% FEC	2 V	1.07 mAh cm ⁻² at 1C, 900 cycles	0.771 mWh cm ⁻²	900 cycles (90.1)	[45]

References:

[1] Y. Jiang, Z. Xu, T. Huang, et al., Advanced Functional Materials. 28 (2018) https://doi.org/10.1002/adfm.201707024

[2] Y. Wang, Y. Zhang, G. Wang, et al., Advanced Functional Materials. 30 (2020) https://doi.org/10.1002/adfm.201907284

[3] Y. Wang, Y. Zhang, C. Tang, G. Wang, H. Liu, L. Li, Journal of Alloys and Compounds. 927 (2022) <u>https://doi.org/10.1016/j.jallcom.2022.166965</u>

[4] B. Yao, H. Peng, H. Zhang, et al., Nano Lett. 21 (2021) 3731-3737. https://doi.org/10.1021/acs.nanolett.0c04780

[5] T. Nathan-Walleser, I.-M. Lazar, M. Fabritius, et al., Advanced Functional Materials. 24 (2014) 4706-4716. <u>https://doi.org/10.1002/adfm.201304151</u>

[6] M. Areir, Y. Xu, R. Zhang, D. Harrison, J. Fyson, E. Pei, Journal of Manufacturing Processes. 25 (2017) 351-356. <u>https://doi.org/10.1016/j.jmapro.2016.12.020</u>

[7] M. Areir, Y. Xu, D. Harrison, J. Fyson, Materials Science and Engineering: B. 226 (2017) 29-38. <u>https://doi.org/10.1016/j.mseb.2017.09.004</u>

[8] V. Chauhan, N. Singh, M. Goswami, et al., Applied Physics A. 128 (2022) https://doi.org/10.1007/s00339-022-05604-y

[9] X. Huang, J. Huang, D. Yang, P. Wu, Adv Sci (Weinh). 8 (2021) e2101664. https://doi.org/10.1002/advs.202101664

[10] J. Orangi, F. Hamade, V. A. Davis, M. Beidaghi, ACS Nano. 14 (2020) 640-650. https://doi.org/10.1021/acsnano.9b07325

[11] L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun, Z. Liu, Advanced Energy Materials. 9 (2019) https://doi.org/10.1002/aenm.201901839

[12] C. J. Zhang, M. P. Kremer, A. Seral-Ascaso, et al., Advanced Functional Materials. 28 (2018) <u>https://doi.org/10.1002/adfm.201705506</u>

[13] Q. Tu, Q. Zhang, X. Sun, et al., Applied Surface Science. 615 (2023) https://doi.org/10.1016/j.apsusc.2023.156347

[14] G. Shi, Y. Zhu, M. Batmunkh, et al., ACS Nano. 16 (2022) 14723-14736. https://doi.org/10.1021/acsnano.2c05445

[15] W. Yang, J. Yang, J. J. Byun, et al., Adv Mater. 31 (2019) e1902725. https://doi.org/10.1002/adma.201902725

[16] N. R. Catarineu, D. Lin, C. Zhu, D. I. Oyarzun, Y. Li, Chemical Engineering Journal. 465

(2023) https://doi.org/10.1016/j.cej.2023.142544

[17] Y. Zhao, F. Liu, K. Zhu, S. Maganti, Z. Zhao, P. Bai, Advanced Composites and Hybrid Materials. 5 (2022) 1537-1547. <u>https://doi.org/10.1007/s42114-022-00430-5</u>

[18] G. Zhou, M. C. Li, C. Liu, Q. Wu, C. Mei, Advanced Functional Materials. 32 (2021) https://doi.org/10.1002/adfm.202109593

[19] Y. Wang, S. Su, L. Cai, et al., Energy Storage Materials. 20 (2019) 315-323. https://doi.org/10.1016/j.ensm.2018.11.018

[20] Z. Yang, X. Yang, T. Yang, et al., Energy Storage Materials. 54 (2023) 51-59. https://doi.org/10.1016/j.ensm.2022.10.025

[21] J. Zhao, Y. Zhang, H. Lu, et al., Nano Lett. 22 (2022) 1198-1206. https://doi.org/10.1021/acs.nanolett.1c04367

[22] J. Zhao, Y. Zhang, X. Zhao, et al., Advanced Functional Materials. 29 (2019) https://doi.org/10.1002/adfm.201900809

[23] W. Zong, H. Guo, Y. Ouyang, et al., Advanced Functional Materials. 32 (2021) https://doi.org/10.1002/adfm.202110016

[24] L. Li, J. Meng, X. Bao, et al., Advanced Energy Materials. 13 (2023) https://doi.org/10.1002/aenm.202203683

[25] Z. Wang, Q. E. Zhang, S. Long, et al., ACS Appl Mater Interfaces. 10 (2018) 10437-10444. https://doi.org/10.1021/acsami.7b19635

[26] K. Shen, J. Ding, S. Yang, Advanced Energy Materials. 8 (2018) https://doi.org/10.1002/aenm.201800408

[27] X. Li, H. Li, X. Fan, X. Shi, J. Liang, Advanced Energy Materials. 10 (2020) https://doi.org/10.1002/aenm.201903794

[28] K. Ghosh, M. Pumera, Small Methods. 5 (2021) e2100451. https://doi.org/10.1002/smtd.202100451

[29] X. Huang, J. Huang, D. Yang, P. Wu, Advanced Science. 8 (2021) 2101664. https://doi.org/10.1126/sciadv.abd6978

[30] C. Sun, S. R. Liu, X. L. Shi, C. Lai, J. J. Liang, Y. S. Chen, Chem Eng J. 381 (2020) https://doi.org/10.1016/j.cej.2019.122641

[31] K. Shen, H. L. Mei, B. Li, J. W. Ding, S. B. Yang, Adv Energy Mater. 8 (2018) https://doi.org/10.1002/adfm.201805899

[32] Y. Qiao, Y. Liu, C. J. Chen, et al., Adv Funct Mater. 28 (2018) https://doi.org/10.1002/adfm.201805899 [33] C. L. Chen, J. M. Jiang, W. J. He, W. Lei, Q. L. Hao, X. G. Zhang, Adv Funct Mater. 30 (2020) <u>https://doi.org/10.1002/adfm.201909469</u>

[34] K. Fu, Y. B. Wang, C. Y. Yan, et al., Adv Mater. 28 (2016) 2587-+. https://doi.org/10.1002/adma.201505391

[35] X. J. Gao, X. F. Yang, Q. Sun, et al., Energy Storage Mater. 24 (2020) 682-688. https://doi.org/10.1016/j.ensm.2019.08.001

[36] S. D. Lacey, D. J. Kirsch, Y. J. Li, et al., Adv Mater. 30 (2018) https://doi.org/10.1002/adma.201705651

[37] Y. Wang, T. Lubbers, R. Xia, et al., J Electrochem Soc. 168 (2021) https://doi.org/10.1149/1945-7111/abdef2

[38] J. X. Ma, S. H. Zheng, F. Zhou, et al., Energy Storage Mater. 54 (2023) 304-312. https://doi.org/10.1016/j.ensm.2022.10.036

[39] Z. X. Wang, Z. X. Huang, H. Wang, et al., Acs Nano. 16 (2022) 9105-9116. https://doi.org/10.1021/acsnano.2c01186

[40] Q. Li, Q. Dong, J. N. Wang, et al., J Power Sources. 542 (2022) https://doi.org/10.1016/j.jpowsour.2022.231810

[41] H. Ma, X. C. Tian, T. Wang, et al., Small. 17 (2021) https://doi.org/10.1002/smll.202100746

[42] H. Y. Yang, H. Wang, W. D. Li, et al., J Mater Chem A. 10 (2022) 16842-16852. https://doi.org/10.1039/d2ta03294e

[43] J. X. Ma, S. H. Zheng, L. P. Chi, Y. Liu, Y. Zhang, K. Wang, Z. S. Wu, Adv Mater. 34 (2022) https://doi.org/10.1002/adma.202205569

[44] J. Yan, G. Zhi, D. Z. Kong, et al., J Mater Chem A. 8 (2020) 19843-19854. https://doi.org/10.1039/d0ta05817c

[45] J. W. Ding, K. Shen, Z. G. Du, B. Li, S. B. Yang, Acs Appl Mater Inter. 9 (2017) 41871-41877. <u>https://doi.org/10.1021/acsami.7b12892</u>