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Abstract
NaNbO3-based lead-free energy storage ceramics are essential candidates for next-generation pulsed power 
capacitors, especially under the background of energy saving and environmental protection. However, the room-
temperature antiferroelectric P phase of pure NaNbO3 ceramics limits its further development in energy storage 
owing to the irreversible antiferroelectric to ferroelectric phase transition under electric fields. In this work, CaZrO3 
was introduced to NaNbO3 ceramics to destroy the long-range polarization ordering but keep large 
antiferrodistortion, causing the formation of superparaelectric state with macrodomains, which can be identified by 
the refinement results of high-energy synchrotron X-ray diffraction, neutron diffraction and TEM results. Combined 
with the fine grains, dense and homogeneous microstructure, ergodic relaxation behaviors, and delayed 
polarization saturation, a high recoverable energy storage density of ~5.4 J/cm3 and efficiency of ~82% can be 
realized in 0.85NaNbO3-0.15CaZrO3 ceramics at an ultrahigh breakdown electric field of ~68 kV/mm. The results 
found in this work suggest that the supersparaelectric with non-cubic phase would be a good candidate for 
generating excellent dielectric energy storage properties.
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INTRODUCTION
Energy plays an irreplaceable role in the development of human society, and how to efficiently store energy 
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has gradually become the focus of research. Currently, energy storage devices are mainly divided into four 
categories: lithium-ion batteries, fuel cells, electrochemical super-capacitors, and dielectric capacitors[1-3]. 
Solid-state dielectric capacitors, compared with other energy storage devices, possess high power density 
and ultrafast charge-discharge rates, which are widely used in advanced high power and pulse power 
electronic devices, such as hybrid electric vehicles, distributed power systems, and directional energy 
weapons[4,5]. However, the low recoverable energy storage density (Wrec) limits their energy storage 
development.

In the context of energy saving and environmental protection, to effectively improve the Wrec of dielectric 
capacitors, lead-free perovskite energy storage ceramics have become a research hotspot[6,7]. The total energy 
storage density (Wtotal), Wrec, and efficiency (η) are the main parameters to evaluate energy storage 
performance which can be calculated based on the following formula:

where Pmax, Pr, and E are the maximum polarization, remanent polarization, and applied electric field, 
respectively. As a result, large ∆P (Pmax-Pr) and high Eb are indispensable for materials with high Wrec

[8]. The 
researches on lead-free energy storage materials generally focus on linear dielectrics, ferroelectrics, 
antiferroelectrics, and relaxor ferroelectrics. Linear dielectrics possess ultrahigh η and Eb but low Wrec due to 
their low polarization characteristic[9]. Both high Pmax and Pr can be found in ferroelectrics, resulting in 
highly inferior Wrec and η. Similarly, antiferroelectrics also own unsatisfactory energy storage properties with 
low η and poor cycle stability because of irreversible antiferroelectric to ferroelectric phase transition under 
applied electric field and comparatively significant difference between EF and EA

[10-12]. Relaxor ferroelectrics 
are characterized by a diffuse phase transition over a broad temperature range, from the Burns temperature 
(TB) at which nanodomains appear, to the intermediate temperature (Tm) at which nanodomains grow and 
the permittivity reaches the maximum, and finally to the freezing temperature (Tf) at which nanodomains 
become frozen(Tf < Tm < TB)[13,14]. In particular, relaxor ferroelectrics located at the temperature range of 
Tm-TB can be defined as superparaelectrics, in which the size of nanodomains is further decreased, and the 
domain interaction is further weakened[14]. Therefore, Relaxor ferroelectrics, especially for 
superparaelectrics[15,16], show excellent performance superiority for achieving both high Wrec and η 
simultaneously[17-20].

NaNbO3 (NN) is one of the typical lead-free ferroelectrics with complex crystal structure and phase 
transition under various temperatures. Despite the remaining controversies, it is commonly agreed that NN 
adopts seven major phases with the sequence of U→T2→T1→S→R→P→N on cooling, where the common P 
and R phases are antiferroelectrics[21,22]. The complex temperature-driven structure also means great 
potential for performance regulation. NN ceramic exhibits antiferroelectric P phase structure with Pbma 
space group at room temperature[23,24]. Generally, an effective strategy to improve the energy storage of NN 
ceramics focuses on stabilizing their antiferroelectric phase. For example, ultrahigh Wrec of 12.2 J/cm3 was 
obtained in 0.76NaNbO3-0.24(Bi0.5N0.5)TiO3 ceramics due to stable relaxor antiferroelectric phase, however, 
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accompanied by a relatively low η of 69% owing to large polarization hysteresis for the first-order 
antiferroelectric-ferroelectric phase transition under high electric field[25]. Therefore, a practical approach is 
urgently required to simultaneously regulate the Wrec and η of NN ceramics. In this work, CaZrO3 (CZ) was 
introduced into NN ceramics to not only destroy long-range antiferroelectric ordering but also remain large 
antiferrodistortion. On the one hand, the enhanced local random field along with the strengthened 
dielectric relaxation behavior would benefit the high η owing to the fast response of nanoclusters to the 
external electric field. On the other hand, the existence of large oxygen octahedron tilt would hinder the 
formation of long-range ferroelectric ordering under electric field, leading to the delayed polarization 
saturation process. Combined with the fine grains, dense and homogeneous microstructure, ergodic 
relaxation behavior, and delayed polarization saturation, a high recoverable energy storage density of 
~5.4 J/cm3 and a large efficiency of ~82% can be realized in 0.85NaNbO3-0.15CaZrO3 ceramics at an 
ultrahigh breakdown electric field of ~68 kV/mm, showing a great application potential in the field of 
dielectric energy storage.

MATERIALS AND METHODS
Sample preparation 
The ceramics of (1-x)NaNbO3-xCaZrO3 ((1-x)NN-xCZ, x = 0-0.15) were prepared by the conventional 
solid-state reaction process. The raw materials of Na2CO3 (> 99.9%), CaCO3 (> 99.5%), Nb2O5 (> 99.9%), and 
ZrO2 (> 99.9%) were weighed according to the chemical formula and mixed by planetary ball milling for 8 h 
using ethanol as ball milling media. The mixed powders were calcined at 850 °C for 5 h after drying. Then, 
the calcined powders were ball-milled again by high-energy ball milling (700 r/min for 8 h) with ethanol 
and 0.5 wt% PVB binder. Afterward, the powders were pressed into pellets with a diameter of 8 mm and a 
thickness of ~1 mm. The pellets were sheathed using the corresponding calcined powders in crucibles and 
sintered at 1370 °C for 2 h. Finally, the sintered ceramics were polished to a thickness of ~0.1 mm with a 
diameter of ~6.5 mm and coated with silver electrodes with a diameter of ~2 mm, which were fired under 
550 °C for 30 min to measure their electrical properties.

Structural and performance characterizations
The high-energy synchrotron X-ray diffraction (SXRD) data was measured on the 11-ID-C beamline of 
advanced photon source. Powder neutron diffraction data were collected at CSNS (China Spallation 
Neutron Source, MPI) using time-of-flight powder diffractometers. The diffraction data refinement was 
taken by the Rietveld method on software GSAS II. Temperature- and frequency-dependent dielectric 
properties were carried out using an impedance analyzer (Keysight E4990A, Santa Clara, CA). Domain 
morphology and selected area electron diffraction (SAED) were observed on a field-emission transmission 
electron microscope (TEM, JEM-F200, JEOL, Japan) at an accelerating voltage of 200 kV. High-angle 
annular dark-field (HAADF) atomic-scale images were obtained using an atomic-resolution scanning 
transmission microscope (STEM, aberration-corrected Titan Themis 3300), and the polarization vectors, 
polarization magnitude, and polarization angle maps were calculated by customized MATLAB scripts. The 
morphology of grains was filmed using a scanning electron microscope (SEM, LEO1530, ZEISS SUPRA 55, 
Oberkochen, Germany). Energy-storge properties of ceramics were investigated by a ferroelectric analyzer 
(aix ACCT, TF Analyzer 1000, Aachen, Germany).

RESULTS AND DISCUSSION
Figure 1A shows the temperature-dependent dielectric permittivity (εr) of (1-x)NN-xCZ ceramics at 1 MHz. 
Pure NN is determined to be antiferroelectric P phase structure at room temperature accompanied by two 
dielectric anomaly peaks at 130 °C and 370 °C, representing the transitions from antiferroelectric P phase to 
incommensurate (INC) phase and INC phase to antiferroelectric R phase, respectively[26-28]. With the 
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Figure 1. (A) Temperature-dependent dielectric permittivity for (1-x)NN-xCZ ceramics. (B) Frequency-dependent dielectric permittivity 
and (C) diffuseness degree (γ) fitted from the modified Curie-Weiss law for x = 0.1 and 0.12. (D) SEM surface morphology and grain size 
distribution of 0.85NN-0.15CZ ceramic.

increase of CZ, the dielectric anomaly peak at 130 °C disappears, and the maximum dielectric peak shifts 
gradually to low temperature together with the transition of phase structure. To characterize the relaxor 
feature, the dielectric properties of x = 0.1 and 0.12 at different frequencies are shown in Figure 1B. Both 
samples exhibit apparent frequency dispersion behavior. As shown in Figure 1C, the diffuseness degree (γ) 
for x = 0.1 and 0.12 was obtained using the modified Curie-Weiss Law:

where εm is the maximum dielectric permittivity and Tm is the according temperature, C is the Curie 
constant. The γ value of 0.9NN-0.1CZ and 0.88NN-0.12CZ ceramics are ~1.41 and ~1.92, respectively, 
indicating that the (1-x)NN-xCZ ceramics should be relaxor ferroelectrics for x ≥ 0.1. These also 
demonstrate that the Ca2+ and Zr4+ are substituted into the lattice of NN matrix, breaking the long-range 
antiferroelectric order and increasing the local random field. Especially, the relaxed dielectric peak of 
0.85NN-0.15CZ ceramic located far below room temperature and the TB ~85 °C obtained according to the 
Curie-Weiss Law, as shown in Supplementary Figure 1, indicate it should be superparaelectric state around 
room temperature. It is recognized that ultrasmall and highly active polar nanoregions (PNRs) can be found 
in the superparaelectric region, leading to the improvement of η[29-31]. Compared with other samples, 
0.85NN-0.15CZ ceramic has moderate room-temperature εr ~545, which can effectively delay the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202301/5381-SupplementaryMaterials.pdf
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polarization saturation process under a low electric field and reduce the possibility of electromechanical 
breakdown generated by the electrostriction effect. These phenomena indicate that 0.85NN-0.15CZ ceramic 
shows excellent potential to become a high energy storage material.

Another basic guarantee for realizing high energy storage properties is the uniform and compact 
microstructure. As shown in Figure 1D, the surface morphology of 0.85NN-0.15CZ ceramic presents a 
dense microstructure with few pores. A uniform grain size distribution can be found in 0.85NN-0.15CZ 
ceramic with a smaller average grain size (Ga) of ~2.1 μm compared with that of pure NN ceramic shown in 
Supplementary Figure 2. Moreover, the uniform distribution of elements in Supplementary Figure 3 
suggests the achievement of a pure phase structure. It is believed that good sample quality, along with small 
grain size and dense structure, is beneficial to strengthening Eb.

Even though a superparaelectric state for the 0.85NN-0.15CZ ceramic can be easily identified by using 
dielectric spectra, however, it is widely known that there are several different paraelectric states as well as 
(anti)ferroelectric states in NN ceramics at different temperature ranges. To analyze the phase structure of 
0.85NN-0.15CZ ceramic, as shown in Figure 2A and B, high-energy SXRD and powder neutron diffraction 
data were collected and refined. Together with the EDS images shown in Supplementary Figure 3, the 
sample should certainly be a pure perovskite phase. Moreover, apparent non-cubic phase structure can be 
identified for 0.85NN-0.15CZ ceramic according to the split main diffraction peaks and superlattice 
diffraction peaks. This feature is quite different from the average structure characteristics of traditional 
superparaelectrics[15,16], indicating the existence of lattice distortion. The lattice distortion in 
(anti)ferroelectrics mainly includes oxygen octahedron tilt and cation off-centering displacement. 
Considering the macro nonpolar feature of superparaelectrics, the lattice distortion in the studied sample 
should be attributed to the oxygen octahedron tilt. As the insensitive response of X-ray to the oxygen ions, 
powder neutron diffraction was measured. Rietveld refinement using the model with P21ma space group 
was taken simultaneously on the SXRD and neutron diffractions, and the satisfying results with low-
reliability factors of weighted patterns (Rwp) are shown in Figure 2A and B. To convince the best refinement 
result, Rietveld refinement of SXRD data using the model with cubic space group of Pm-3m was also carried 
out in Supplementary Figure 4. It can be found that the 0.85NN-0.15CZ ceramic should be a ferroelectric Q 
phase with P21ma space group and a-b+c- oxygen octahedron tilt system but small polarization displacement, 
which is different from that of NN ceramic (P phase: a-b-c-/a-b+c-). According to Glazer notation, the 
superscripts +, -, and 0 represent in-phase tilt, anti-phase tilt, and no tilt of oxygen octahedral along one 
axis, respectively[32]. The tilt degree of oxygen octahedron can be calculated using ω = (180°- B-O-B)/2. As 
shown in Supplementary Figure 5, the oxygen octahedron tilt degree for NN ceramics with Pbcm space 
group at room temperature is calculated as  ~7.9°-13.15°. According to the lattice parameters obtained from 
the refinement results of SXRD and powder neutron diffraction, the crystal structure model of 0.85NN-
0.15CZ ceramic was drawn and displayed in Figure 2C. A large oxygen octahedron tilt of  ~10.89°-12.20° 
can be calculated according to the B-O1-B ~157.55°, B-O2-B ~156.61°, B-O3-B ~155.61°, and B-O4-B 
~158.22°, which is much larger than that of traditional relaxor ferroelectrics such as Pb(Mg1/3Nb2/3)O3 and 
Ba(Ti, Zr)O3. That is to say, the relaxor ferroelectric Q phase can be identified in 0.85NN-0.15CZ ceramic, 
which is quite different from the previously reported results that the addition of CZ would stabilize 
antiferroelectric P phase in NN ceramic[33-35]. The decreased tolerance factor after doping CZ into NN 
ceramic would increase the oxygen octahedron tilt. However, according to the statistics of recently reported 
antiferroelectrics (NN, AgNbO3, (Bi0.5Na0.5)TiO3-based, BiFeO3-based, PbZrO3, and PbHfO3-based 
ceramics), it can be found that the antiferroelectric phase only exists in a narrow tolerance factor range. The 
perovskites with ultralow tolerance factor are usually paraelectrics, such as CaZrO3 and CaHfO3. Therefore, 
the polarization ordering would be destroyed when the amount of CZ is over a critical value, leading to the 
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Figure 2. (A) High-energy synchrotron XRD, and (B) powder neutron diffraction structure refinement patterns of 0.85NN-0.15CZ 
Ceramic. (C) Schematic diagram of the large antiferrodistortion in 0.85NN-0.15CZ ceramic.

disappearance of anti-phase tilt modules along b axis. Moreover, the formation of dielectric relaxation 
behavior would also destroy the long-range polarization ordering. As a result, a superparaelectric state with 
large antiferrodistortion can be detected in 0.85NN-0.15CZ ceramic at room temperature.

TEM is an essential and helpful method to characterize the domain morphology and lattice microstructure 
for ferroelectric materials. Figure 3A suggests that 0.85NN-0.15CZ ceramic exhibits apparent 90° and 180° 
microdomains. Figure 3B and C display high-resolution TEM lattice fringe images along [100]c and [111]c 
directions, respectively, demonstrating good sample quality. Figure 3D and E show the SAED image along 
[100]c and [111]c directions, respectively, which once again confirm that 0.85NN-0.15CZ ceramic should be 
pure perovskite structure. It is recognized that the 1/2 types of superlattice diffractions of (ooe)/2 and 
(ooo)/2 (o and e are odd and even, respectively) are mainly related to the in-phase and anti-phase oxygen 
octahedron tilt, respectively[32]. Therefore, the 1/2 type superlattice diffraction spots observed in the 
accordingly SAED images further prove the existence of oxygen octahedral distortion. It is widely accepted 
that normal ferroelectrics with macrodomains exhibit poor energy storage properties ascribed to the large 
polarization hysteresis along with irreversible domain switching, which occurs together with polarization 
reorientation. However, there is no macroscopic polarization alignment in this superparaelectric sample, 
which could be further directly confirmed by the quantitative analysis of the polarization mapping using 
HAADF-STEM results, as shown in Figure 4. Therefore, these macrodomains should be ferroelastic 
domains constructed by the ordered oxygen octahedron tilt, and the domain switching process has very 
little influence on polarization reorientation. According to the polarization mapping, ultrasmall PNRs with 
a size of about 2-3 nm can be seen, which is at the same level as other superparaelectrics. Namely, fast 
response of PNRs with little polarization hysteresis during charging and discharging processes can also be 
expected for this sample, benefiting excellent energy storage properties. Moreover, large antiferrodistortion 
would also delay the polarization saturation process, which would also favor the energy storage properties.

Due to the irreversible phase transition from antiferroelectric to ferroelectric under electric fields for pure 
NN ceramic, a square P-E loop with poor energy storage properties can be achieved, as shown in 
Supplementary Figure 6. With the stabilization of antiferroelectric P phase by adding a small content of 
CZ[35], even though increased energy storage density can be obtained along with the appearance of 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202301/5381-SupplementaryMaterials.pdf
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Figure 3. (A) Domain morphology of 0.85NN-0.15CZ ceramic. Lattice fringes and SAED patterns of 0.85NN-0.15CZ ceramic along 
(B and D) [100] c, and (C and E) [111]c.

Figure 4. (A) Atomic-resolution HAADF-STEM polarization vector image and (B) polarization displacement distribution mappings along 
[100]c.

repeatable double P-E loop, quite low energy efficiency can also be found owing to the large hysteresis 
caused by the first order antiferroelectric-ferroelectric phase transition. An obvious increase in both energy 
storage density and efficiency can be detected with the entrance of relaxor ferroelectric phase zone of 
x > 0.1, accompanied by the generation of slim P-E loops. Moreover, energy efficiency tends to increase with 
increasing relaxor behavior. Thus a good balance with both large Wrec and η can be commonly realized in 
superparaelectrics. Figure 5A shows the P-E loops and energy storage properties of 0.85NN-0.15CZ ceramic 
under various electric fields. It is found that Pmax and Pr gradually increase when the electric field is applied 
from 2 kV/mm to 68 kV/mm, showing the characteristic of relaxor ferroelectric. As the electric field 
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Figure 5. (A) P-E loops and energy storage performance under various electric fields for 0.85NN-0.15CZ ceramics. (B) Comparison of 
energy storage performance among 0.85NN-0.15CZ ceramic and some other systems[6].

increases, Wtotal and Wrec present an almost parabolic growth trend. Eventually, a comprehensive 
performance of Wrec ~5.4 J/cm3 and η ~82% can be obtained in 0.85NN-0.15CZ ceramic under an ultrahigh 
external electric field of 68 kV/mm. It is believed that the excellent energy storage performance is associated 
with the following sections: Firstly, the sample with a small grain size of ~2.1 μm has high grain boundary 
density, and the grain boundary with large resistance can act as a dissipative layer, effectively hindering the 
conduction of space charge and reducing the generation of leakage current. In addition, according to the 
relationship of [36], small grain size is favorable for the enhancement of Eb. Complex impedance 
spectroscopy of pure NN and 0.85NN-015CZ ceramics measured at 500 °C are shown in 
Supplementary Figure 7. The Z″-Z′ curves of the two exhibited nearly a single semicircle arc with good 
fitting results using a series R||CPE equivalent circuit model, and 0.85NN-0.15CZ showed twice as much 
resistance as pure NN, which proves the dominant role to the enhanced Eb of the grain boundary. Secondly, 
the dense and uniform internal structure with few pores is beneficial to decreasing the possibility of local 
breakdown, which can broadly promote Eb

[3]; Thirdly, the introduction of CZ induces the transition from 
antiferroelectric P phase to superparaelectric phase, leading to an enhanced relaxor behavior in ergodic 
relaxor region at room temperature. PNRs with fast electric field response characteristics can cause 0.85NN-
0.15CZ ceramic to form the fast and reversible transition between relaxor ferroelectric and ferroelectric 
phase under an external electric field, resulting in a small Pr and a large η. Finally, 0.85NN-0.15CZ ceramic 
with moderate room-temperature εr can enhance Wrec by inhibiting early polarization saturation under 
external electric fields.

Advanced ceramic capacitors are developing toward large energy storage density and high efficiency[37]. 
Figure 5B shows the comparison of energy-storage performance among 0.85NN-0.15CZ ceramic and other 
relevant dielectric energy storage ceramics (AgNbO3(AN), BiFeO3(BF), Bi0.5K0.5TiO3(BKT), Bi0.5Na0.5TiO3

(BNT), BaTiO3(BT), K0.5Na0.5NbO3(KNN), SrTiO3(ST))[6,12,18,38-46]. Obviously, 0.85NN-0.15CZ ceramic 
exhibits great performance superiority, making it one of the prospective materials for advanced pulse power 
capacitor applications.

CONCLUSIONS
In this work, (1-x)NN-xCZ ceramics are prepared by a conventional solid-state reaction method. With 
increasing CZ content to 0.15, the structure of samples changes from antiferroelectric P phase to relaxor 
ferroelectric Q phase with superparaelectric state, leading to the destruction of long-range polarization 
ordering but reservation of antiferrodistortion ordering, which can be confirmed by the high energy 
synchrotron XRD and powder neutron diffraction refinement results as well as TEM images. In this case, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202301/5381-SupplementaryMaterials.pdf
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the grain size of the sample decreases to 2.1 μm, accompanied by dense and homogeneous microstructure. 
The 0.85NN-0.15CZ ceramics showed comprehensive energy storage performance of Wrec = 5.4 J/cm3 and 
η = 82% under an ultrahigh breakdown electric field of 68 kV/mm. The excellent energy storage 
performance is believed to originate from the small grain size, dense and homogeneous microstructure, 
superparaelectric state with fast polarization response, and delayed polarization saturation relating to the 
large oxygen octahedron tilt. The results of this work indicate that 0.85NN-0.15CZ ceramics exhibit colossal 
application potential in the field of dielectric energy storage.
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