
Supplementary Materials

An integrated design of novel RAFM steels with targeted microstructures and

tensile properties using machine learning and CALPHAD

Xiaochen Li1,2, Mingjie Zheng1,3,*, Hao Pan1,3,4, Chunliang Mao5, Wenyi Ding1

1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031,

Anhui, China.
2School of Physics and Electronic Engineering, Jining University, Qufu 273155,

Shandong, China.
3University of Science and Technology of China, Hefei 230026, Anhui, China.
4Department of Mechanical Engineering, City University of Hong Kong, Hong Kong

999077, China.
5College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004,

Hebei, China.

*Correspondence to: Prof. Mingjie Zheng, Hefei Institutes of Physical Science,

Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, China.

E-mail: mingjie.zheng@inest.cas.cn



1. Supplementary information on the data distribution of the microstructural

dataset

Supplementary Figure 1. The data distribution of the microstructural dataset.



2. Supplementary information on the overview of commonly used machine

learning algorithms

In this study, various machine learning algorithms which were commonly used in

materials research, such as decision tree (DT), random forest (RF), support vector

machine (SVM), gradient boosting (GB), k-nearest neighbor (KNN), and artificial

neural network (ANN) were used to develop classification and regression models. The

following section provides an overview of these algorithms, highlighting their unique

strengths and limitations.

DT is a robust and prevalent algorithm that utilize a tree-like flowchart to

effectively partition data into groups for solving classification and regression

problems. It does not require complex domain knowledge [1], making them accessible

for various applications. However, DT can readily result in significant prediction

deviations from actual results [2]. Additionally, it is more suitable for predicting

categorical features than for estimating numerical variables [3].

RF is highly regarded for its strength, flexibility, and capability in processing

high-dimensional data [4]. It helps reduce overfitting compared to individual decision

trees, leading to improved predictive performance. RF works well with large datasets,

can accommodate a wide range of input features, and excels at determining feature

importance [5]. Furthermore, it effectively handles missing values and addresses class

imbalances [5]. However, using RF requires careful attention to hyperparameter tuning,

such as the number of trees and the features chosen for splits. Due to its ensemble

nature, the model is less interpretable than a single decision tree, making it



challenging to understand the contribution of each individual tree.

SVM is a supervised binary classification method introduced by VaPnik [6]. It is

primarily designed to identify a separating hyperplane that maximizes the margin in

the feature space, leading to higher classification accuracy. This segmentation

maximizes the margin, transforming the problem into a convex optimization

challenge. Initially designed for linear classification, SVM has evolved to tackle

non-linear and high-dimensional data while effectively addressing overfitting [7]. It is

known for its robustness and accuracy in managing complex, high-dimensional, and

small-sample challenges [8]. However, SVM requires high computational resources

and relies heavily on selecting an optimal hyperplane [9]. Despite this, its framework is

effortlessly generalized for various issues, making it highly versatile [10].

GB is a machine learning algorithm for regression and classification that builds

models in stages but extends this approach by optimizing a chosen differentiable loss

function [11]. This algorithm assembles multiple weak models, usually decision trees,

to form a more powerful predictive model [12]. The effectiveness of GB stems from the

proven superiority of ensemble methods over other machine learning algorithms in

various situations, making it particularly powerful for complex predictive tasks [13–15].

However, GB builds models in a stage-by-stage way [12], which may result in higher

computational costs and difficulty in achieving parallelization.

KNN is a non-parametric supervised machine learning algorithm utilized for

both classification and regression tasks [16]. It classifies a new data point by finding its

‘k’ nearest neighbors in the training set based on similarity. The prediction for the new



data point is then calculated as the average or weighted average of the outcomes from

its ‘k’ nearest neighbors [17]. KNN is a straightforward algorithm suitable for

applications across various fields and supports multiple distance measures (e.g.,

Euclidean, Manhattan, Minkowski), making it adaptable to different data types and

problem requirements. Despite its usefulness, the KNN algorithm can be sensitive to

outliers in the data, which may disproportionately affect its prediction performance.

ANN is non-linear computational model inspired by biological neural networks

in the brain, utilizing interconnected neurons and weighted connections to recognize

the pattern and tackle complex problems [18]. ANN is particularly effective for

non-linear problems and perform well with large datasets. A basic ANN algorithm

consists of input, hidden, and output layers: the input layer receives primary data, the

hidden layer processes it, and the output layer generates results [19]. Common types of

ANN include Feed Forward Neural Network (FFNN), Back Propagation Neural

Network (BPNN), etc., among which FFNN is the most widely used [20]. ANN is

well-suited for tasks like pattern recognition and matching, grouping, and

classification, but they require extensive computational resources and large datasets to

perform effectively and often lack interpretability.
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