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Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with higher incidence and mortality worldwide. 
Recently, significant progress has been made in uncovering immunotherapy in HCC, for instance programmed 
death-1, cytotoxic T-lymphocyte antigen 4, chimeric antigen receptor T-cell therapy, T cell receptor T cell therapy, 
dendritic cell vaccine, and cytokine-induced killer cells. This paper reviews the advances in immunotherapy and 
focuses on the results of many of preclinical studies and clinical trials in the field, as well as some of the promising 
therapeutic strategies for HCC in the future.
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INTRODUCTION
Hepatocellular carcinoma (HCC) was predicted to have the sixth highest incidence and the second highest 
mortality of malignant tumors worldwide in 2018[1]. The risk factors for HCC are closely related with lifestyle, 
chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, fatty liver disease, and cirrhosis[2-4]. 
The management of HCC involves a multidisciplinary team approach, considering not only the tumor stage 
and patient complications but also the seriousness of damaged liver function, as most HCC treatments can 
aggravate the severity of disease[5]. Although surgical resection remains the cornerstone of HCC therapy, 
limitations are caused by high recurrence rates after surgery because HCC is often diagnosed at advanced 
stage[6]. Liver transplantation (LT) is the optimal treatment means for early-stage HCC, but limitations of 
LT are caused by organ shortage, tumor recurrences, and low-ratio eligibility. Comprehensive therapies for 
advanced HCC patients, such as radiotherapy, chemotherapy, interventional therapy, and targeted therapy, 
have been developed, but the 5-year survival rate remains low[7]. 
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Cancer immunotherapy was selected as its annual breakthrough in Science journal in 2013. Following the 
advancements of immunotherapy in solid tumors over the last few years, as shown by the results of immune 
checkpoint inhibitors (ICIs) in lung cancer, renal cell cancer and melanoma[8], in recent years, ICIs with anti-
CTLA-4 antibodies and anti-PD-1/PD-1L antibodies have been utilized to treat advanced melanoma[9]. In 
2018, because of the achievements in the treatment of cancer with ICIs of CTLA-4 and PD-1/PD-L1, James P. 
Allison and Tasuku Honjo were awarded the Nobel prize.

Chimeric antigen receptor T‐cell (CAR-T) immunotherapy has become more popular in the last decade 
as an antitumor therapy. Anti-CD19 CAR-T cell was approved by the FDA for treatment of subjects up to 
25 years of age with B-cell acute lymphoblastic leukemia in 2017[10]. This article mainly summarizes the 
advances in ICIs and cellular immunotherapy for HCC.

PD-1/PD-L1
PD-1 is expressed on a subset of thymocytes and is upregulated on activated T cell, B cell, and myeloid 
cells[11]. Two ligands for PD-1 were identified in 2000 and 2001 and named PD-L1 and programmed death 
ligand 2 (PD-L2), respectively[12,13]. PD-L1 is mainly expressed on stationary T cells, B cells, DC, and 
hepatoma cells, while PD-L2 is only expressed on DC and macrophages[14-16]. In theory, the interaction of 
PD-1 and PD-L1 expressed on immature T cells can interfere with activation. Similarly, if PD-L1 is highly 
expressed on tumor cell, the ligand receptor interactions between tumor cells and activated T cells triggers 
the immunosuppressive response, leading to immune tolerance[17]. It provides a theoretical basis for the 
treatment of PD-L1 in HCC.

It has been demonstrated that PD-L1 is overexpressed in HCC tissues; however, the results are controversial 
with respect to PD-L1 as predictive biomarkers for HCC[18]. Several studies have reported that the higher 
PD-L1 expression on tumor cell in HCC patients were related with worse prognosis and tumor recurrence, 
and the studies also showed PD-L1 expression on macrophages was associated with favorable survival 
rate[19-23]. However, two studies suggested that the expression of PD-L1 was not significantly correlated with 
survival outcomes in HCC[24,25]. Both soluble PD-1 (sPD-1) and soluble PD-L1 (sPD-L1) were prognostic 
factors with opposite prognostic values for HCC patients, while sPD-1 and sPD-L1 were not significantly 
related with PD-L1 expression in tumor[26]. However, two studies suggested plasma sPD-1 was associated 
with HBV activity and increased risk of HCC[27,28].

Liang et al.[29] illustrated that inhibition of PD-1 can suppress the growth of hepatoma and promote the 
apoptosis of hepatoma. Increased expression levels of PD-1 were detected in peripheral blood and tumor 
infiltrating lymphocytes (TILs) of recurrent HCC patients[30]. Blockade of PD-1 on TILs can restore anti-
tumor effects of TILs[31]. However, sPD-1/sPD-L1 was not associated with either PD-L1 expression of 
tumor cell or the numbers of CD4-positive TILs and CD8-positive TILs[26]. Tumor infiltrating neutrophils 
as a new target of immunotherapy participate in tumor progression, while the tumor microenvironment 
(TME) induces impaired antitumor immunity via the modulation of PD-L1 expression on tumor infiltrating 
neutrophils[32]. PD-L1 was positively associated with expression of CD3 and CD8 in HCC samples[23]. PD-L1 
expression on macrophages is also a prognostic factor for HCC patients, and it could activate high levels of 
CD8(+) cytotoxic T-lymphocyte (CTL) infiltration and immune related gene expression[21]. 

Since immune checkpoint molecules are recognized as vital indicators of HCC progress, series of clinical 
trials with ICIs have been implemented to confirm their potential function for advanced HCC. Nivolumab 
was approved by the FDA as immunotherapy for advanced stage HCC in 2017[33]. The efficiency of nivolumab 
was observed in a Phase I/II non-comparative trial (CheckMate 040) of patients with HCC and prior 
sorafenib treatment[33]. Forty-eight patients were treated with nivolumab in a dose-escalation phase. Then, 
since nivolumab showed adequate safety and feasibility, 214 patients from 39 sites in 11 countries received 
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nivolumab in a dose-expansion phase. The objective response rates (ORR) of nivolumab were 15% in the 
dose-escalation phase and 20% in the dose-expansion phase, suggesting that efficacy of nivolumab is not 
efficient. Twelve of 48 patients had Grade 3/4 treatment-associated adverse events. Although the study was 
positive in favor of anti-PD-1 treatment, it is worth corroborating the efficacy of nivolumab in a therapeutic 
schedule. Pre-treatment of sorafenib might potentiate the therapeutic response to subsequent treatment with 
nivolumab. In real-life experience from three German centers, Grade 3 treatment-associated events occurred 
in two patients (5.9%), and the partial response rate and stable disease rate in 34 patients with advanced 
HCC and nivolumab treatment were 11.8% and 23.5% in line with data from the CheckMate 040 trial[34]. 

Pembrolizumab is also an antibody against PD-1. In a Phase II open-label non-randomized trial 
(KEYNOTE-224) to assess the efficacy of pembrolizumab as an alternative second-line treatment for HCC 
patients, the median overall survival (OS) was 12.9 months with a disease control rate of 61% and ORR 
of 17%[35]. Grade 3 toxicities arose in 25 (24%) of the 104 patients. Hence, pembrolizumab is temporarily 
approved by the FDA as a second-line therapy for advanced HCC, but it still needs to be verified by the 
results of more Phase III trials[36]. A Phase III randomized, double-blind trial to further assess the efficacy of 
pembrolizumab versus placebo in HCC patient is still ongoing (NCT02702401). A Phase II study evaluating 
camrelizumab for HCC patients with resistance to systemic treatment displayed ORR of 13.8% and acceptable 
treatment-related adverse events in Chinese advanced HCC patients[37]. In addition to monotherapy, possible 
multimodality therapeutic options involving ICIs are under investigation. Some research has observed that 
ICIs of PD-L1 in combination with sorafenib, lenvatinib, rapamycin, and histone deacetylase inhibitor may 
enhance therapeutic benefit[38-41]. 

Clinical trials of PD-1 antibodies combined with other adjuvant therapy, e.g., transarterial chemoembolization 
(TACE) and selective internal radiation treatment, are currently in progress. In addition, different combination 
regimens, which depend on understanding of the actual immune mechanisms in the various combinations, 
could help us select the optimal therapeutic option for advanced HCC.

CTLA-4
CTLA-4 downregulates activation of T cells by interacting with CD80/CD86 on the surface of DCs[42]. For 
naive T cell activation, CD28 on T cells provides the second activation signal by binding to CD80/CD86 on 
DCs[43]. CTLA-4 has a greater affinity for interacting with CD80/CD86 than CD28 so that it interferes in T 
cell activation[44]. Various single nucleotide polymorphisms (SNP) in CTLA-4 have been well-studied. Several 
studies observed that polymorphism of CTLA-4 was associated with increased susceptibility to HCC and 
haplotypes of CTLA-4 may affect the risk of HCC[45-48]. 

In 2013, the first CTLA-4 blocking inhibitor in practical HCC treatment was tremelimumab, which displayed 
promising antitumor activity and acceptable safety[49]. In a clinical trial to validate efficacy of tremelimumab 
in patients with HCC and HCV infection, partial response rate and disease control rate were 17.6% and 
76.4%, respectively[49]. Duffy et al.[50] attempted to combine tremelimumab with ablation as an expected 
therapeutic option for patients with advanced HCC (NCT01853618) . Five partial responses were observed 
in 19 patients, with median OS of 12.3 months. Tremelimumab is a human IgG2 monoclonal antibody that 
blocks the binding of CTLA-4 on the surface of activated T cell[51]. It has been reported that tremelimumab 
could induce tumor responses in a subset of patients with non-small cell lung cancer and refractory biliary 
tract cancer[52,53]. Tremelimumab therapy could elevate the amount of T cells in the peripheral blood and 
TILs, and CD4(+) PD-1(+) cells were more likely to be activated by tremelimumab[54]. An important adverse 
effect of tremelimumab is transaminitis, as a high proportion of reversible Grade 3/4 transaminitis was 
observed in both the above-mentioned studies. 

Preclinical data based on series of solid tumors indicate that dual immune checkpoint blockade is synergistic 
and leads to higher response rates and improved treatment outcomes compared to monotherapy. Most 
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clinical data suggest that both CTLA-4 and PD-1/PD-L1 blockade a portion of HCC patients. Compared to 
CTLA-4 blockade, PD-1 and PD-L1 blockade showed relatively higher ORR, which could reach 10%-20% 
in advanced HCC patients. PD-1/PD-L1 blockade agents were more tolerable and less hepatoxic. Further 
studies for combined PD-1/PD-L1 and CTLA-4 blockades in HCC treatment are still expected, which 
may help to mitigate the adverse effects of the treatment. Immune checkpoint blockade in advanced HCC 
combined with other conventional ablative treatments, such as radiofrequency ablation (RFA) or microwave, 
TACE, chemotherapy, targeted medicine, or surgery would be the most promising approach for HCC 
patients. However, for unresectable advanced HCC, it is more appropriate to search for other combination 
strategies, such as the combination with multi-kinase inhibitors, vaccines, and oncolytic viruses, as well as 
dual inhibition of two immune checkpoint molecules. 

Based on current evidence, combination therapies with CTLA-4 are now an expected direction for the 
immunotherapy of advanced HCC patients in the future. A Phase III study (NCT03298451) of durvalumab 
with or without tremelimumab vs. sorafenib in patients of advanced HCC enrolled about 1,350 patients 
and explored two treatment schedules. Given the limited data to date, further testing of this combination is 
ongoing in a Phase II expansion. Most ongoing clinical trials have been designed to assess the efficiency of 
the combination strategies. 

CAR-T CELL THERAPY
CD19 targeted CAR-T immunotherapy is an expecting therapeutic option that has shown high efficacy in 
treating hematologic malignancies[55]. Moreover, a great number of CAR-T cell products in solid tumors 
has also been investigated in preclinical and clinical studies. In 2008, Wilkie et al.[56] reported for the 
first time that MUC1 targeted CAR-T could significant delay tumor growth in solid tumor[56]. The basic 
principle of CAR-T cell therapy is the modification of T cells with CARs, so that they can identify tumor 
cells, and then the retransfusion of these CAR-T cells into the human body to fight against the target 
cells[57,58]. Several studies have found that GPC3-targeted CAR-T cell therapy can eliminate HCC cells in 
preclinical research[59-61]. GPC3 is a 70-kDa heparan oncofetal proteoglycans that is located on the tumor cell 
membrane[62]. It has been demonstrated that GPC3 is detected in HCC tissues with higher expression but not 
in normal tissues[63]. A Phase I trial (NCT02395250) of 13 Chinese GPC3-positive HCC patients illustrated 
the safety and preliminary efficacy of GPC3 CAR-T cells in 2017[64]. According to the patient’s tolerance, the 
preliminary analysis showed that GPC3 targeted CAR-T combined with the lymphodepleting conditioning 
had a certain efficacy[64]. The pre-clinical studies for dual-targeted CAR-T cells co-expressing GPC3 CARs 
and GPC3-specific CAR-modified T cells fusing a soluble PD1-CH3 fusion protein showed promising 
results[60,61].

α-fetoprotein (AFP) has been used not only as a biomarker for surveillance and diagnosis of HCC, but 
also as a target for immunotherapy[65]. In a clinical trial of 15 HCC patients who were given a subcutaneous 
injection of AFP-derived peptides, 1 patient had a complete response and the disease stabilized in 8 
patients[66]. AFP, an intracellular/secreted protein, can generate AFP peptide-major histocompatibility 
complex (MHC) complexes as targets for CAR T-cell therapy for solid tumors. Liu et al.[67] detected that AFP-
targeted CAR-T cells showed significant antitumor capacity in a mouse model Additionally, AFP-derived 
vaccines can augment the activity of ICIs, leading to deterioration of HCC. 

The experience from successful clinical studies of hematologic malignancies provides us with the 
understanding that, although selection of the specific antigen to avoid off-target or on-target/off-tumor 
toxicity is a primary task to be tackled, for HCC, the challenge of CAR-T is the need to ascertain a 
specific neoantigen and overcome the TME, gut microbiome, and HCC genomic features. Furthermore, 
the activation, proliferation, and persistence of CAR-T are more important for therapy. In addition, 
standardization in the production of CAR-T and achieving individualized treatment should be considered. 
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TCR-T CELL THERAPY 
TCR-T cell immunotherapy, as one of the novel and effective antitumor treatment means, has been widely 
studied in oncotherapy. In 2011, Parkhurst et al.[68] firstly reported that human carcinoembryonic antigen 
(CEA)-targeted TCR-T cell therapy could induce objective regression of metastatic colorectal cancer[68]. The 
mechanisms of TCR-T cell therapies are similar to CAR-T immunotherapy. TCR-T therapy also modifies the 
autologous T cells with TCR, and then retransfusion expands TCR-T cell back into the patient to recognize 
and eliminate tumor cell, but the mechanisms for identifying antigens are quite different from CAR-T cell 
therapies[57]. The specific antigens recognized by CAR-T cell are all cell membrane antigens, while TCR-T 
cell can identify intracellular and cell membrane antigen peptides presented by MHC molecules[69]. In HBV-
related HCC, by performing the high-throughput TCR sequence of TILs in tumor and matched adjacent 
normal tissues, Lin et al.[70] found that the combination of TCR repertoire overlap and TNM stage showed a 
better prognostic effect for HCC than TNM stage. Qasim et al.[71] firstly reported an HBV-related end-stage 
HCC case treated with HBV surface antigen as a target for HBV-specific TCR T cell therapy in 2015. In most 
HBV-related HCC, HBV integrations have been observed and can result in the expression of HCC cells[72]. 
HCC cells comprise fragments of integrated HBV-DNA that encodes peptides, which can be identified by T 
cells[73]. Another trial was conducted in two advanced HCCs patients who underwent liver transplantation 
with HCC relapses[74]. During the one-year period of follow up, the volume of 5/6 pulmonary metastases was 
decreased in one patient receiving HBV-specific TCR T cell therapy[74]. Basic studies of TCR-T cells therapy 
with specific targets, such as HCV, AFP, and GPC, may be a promising immunotherapy strategy for HCC 
in the future[75-77]. With TCR-T immunotherapy, the efficacy and side effects seem to mainly depend on the 
quality of the specific target and the TCR structure. The primary challenge is the discovery of new targets, 
particularly in the promising field of neoantigens. However, it should be emphasized that neoantigens may 
be expressed on a subset of tumor cells due to heterogeneity of tumor cell; otherwise, it may cause immune 
escape.

DENDRITIC CELL VACCINE
DCs are powerful antigen-presenting cells that can stimulate T cells to induce antitumor activity. The 
infiltration of DCs in tumor tissue was closely associated to the improved clinical prognosis in HCC 
patients[78,79]. In 2002, Ladhams et al.[80] firstly reported two patients with end-stage HCC treated with 
autologous DCs vaccination co-cultured with autologous HCC antigens. The efficacy of DC vaccination 
loaded with tumor antigens from different sources has been investigated in clinical studies. Lee et al.[81] 
reported a trial which enrolled 31 advanced HCC patients receiving DC vaccine pulsed with autologous 
tumor lysates in 2005. They reported that rates of partial response and stable disease were 12.9% and 54.8%, 
respectively. A Phase II clinical trial reported disease control rate was 28% for advanced HCC patients with 
DC vaccination pulsed HepG2 lysate[82]. In another study of note, El Ansary et al.[83], also using DC vaccine 
pulsed with HepG2 lysate, showed that DC vaccination could partially improve survival outcome. DC 
vaccination loaded with autologous tumor lysates or ex vivo HepG2 cell lysate were feasible and effective. 

However, the efficacy of DCs vaccination pulsed with tumor cell lysate is not satisfactory, and thus the 
use of specific antigen-modified DC vaccination has been attempted. Kakumu et al.[84] suggested that the 
depressed function of DCs is associated with pathogenesis of HCC with HBV or HCV infection. Several pre-
clinical studies indicated that DCs infected with AFP or HBV antigen or both were effective strategies to 
enhance efficacy of DC-based vaccine[85-87]. GPC3-modified DCs were potent in inducing T cell proliferation 
and interferon (IFN)-y production[88]. Tada et al.[89] reported a clinical effect was observed in one of the 
five patients receiving DC vaccination pulsed with AFP, GPC3, and MAGE-1 fusion proteins in 2012. 
Subsequently, a large sample study confirmed that the median time of progression of HCC patients with 
DC vaccination pulsed with AFP, GPC3 and MAGE-1 fusion proteins was longer than the control group 
(36.6 months vs. 11.8 months)[90]. 
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DCs pulsed with Hsp70 peptide and OK-432 can enhance efficacy of vaccine inducing T cell proliferation 
and CTL response[91,92]. In a clinical trial using Hsp70-DC vaccination, 2/12 patients demonstrated complete 
response and 5/12 patients demonstrated stable disease[93]. In our previous meta-analysis, we concluded DC-
based therapy could prolong the median progression free survival (PFS) time and median OS time[94].

However, the maturation of DC was closely associated with efficacy of DC immunotherapy. The stimulatory 
capacity of dendritic cells from HCC patients was significantly lower than dendritic cells from liver cirrhosis 
tissue and normal samples[95]. Meanwhile, the numbers of CD83-positive DCs in HCC specimens were 
significantly lower compared with liver cirrhosis samples[96]. Therefore, it is very important to improve the 
maturation of DC, increase antigen source, and depress TME. Various stimuli, such as tumor necrosis factor 
alpha, lipopolysaccharide, IFN gamma, CD40-ligand, PEG10, IL-12, EpCAM, and HCA661, can significantly 
increase the stimulatory capacity of DCs[97-102]. Tumor endothelial marker 8 modified DCs could stimulate 
antitumor immunity by disrupting tumor vasculature, and DCs loaded with specific peptide, such as FoxM1, 
could significantly inhibit tumor growth and metastasis[103,104]. In addition, RFA can create an antigenic 
source with stimuli appropriate for maturation of DCs[105]. Regulatory T cells, producing immunosuppressive 
cytokine IL-10, were concentrated within HCC tissue and were inducted by local TME to interfere the 
differentiation and maturation of DC[7]. To overcome the immunosuppressive TME, Hu et al.[106] introduced 
a promising vaccine candidate, which combine the DC/tumor cell fusion vaccine with nanoparticles of 
folate-modified chitosan carrying interferon-induced protein-10, which could effectively inhibit tumor cell 
proliferation and significantly reduce myeloid-derived suppressor cells in mouse immune organs. 

CIK/DC-CIK
CIK are a subset of non-MHC-restricted T lymphocytes with immune modulatory effects and a crucial 
role in anti-tumor immunotherapy[107]. Several studies suggested that CIK cells co-cultured with DCs can 
significantly enhance antitumor efficiency[108,109]. Qiu et al.[110] reported that alpha-Gal epitope-pulsed DC-
CIK therapy remarkably prolonged the survival of patients with stage III primary HCC as compared to the 
controls (17.1 months vs. 10.1 months). In a retrospective study from 45 patients with metastatic HCC, 
median OS of DC-CIK immunotherapy plus ablation (32 months) or ablation (17.5 months) was higher than 
untreated group (3 months)[111]. In a propensity score-matched analysis, autologous CIK immunotherapy 
showed significantly longer RFS than the control group[112]. After 5-year follow-up, CIK immunotherapy 
show a significant reduction in the risk of recurrence or death[113]. The combination therapies DC-CIK with 
other therapeutic options, such as TACE, could improve the antitumor efficacy. Guo et al.[114] reported that 
DC-CIK therapy combined with TACE can improve the PFS but not the OS outcomes. However, TACE plus 
DC-CIK therapy for HCC patients is superior to TACE alone in improving median OS and PFS in a meta-
analysis[115]. Zhou et al.[116] analyzed that clinical benefit rate of sorafenib combined with DC-CIK is higher 
than oral administration of sorafenib (88.6% vs. 41.9%) in a meta-analysis.

To enhance the therapeutic efficacy of CIK cells, several pre-clinical studies suggested that co-culture of 
modified DCs, such as IL24-modified DCs, AFP-modified DCs, and GPC3-modified DCs, with CIKs can 
significantly promote CIKs differentiation and enhance lytic activity of CIK cells[117-119]. They provided a 
promising DC-CIK vaccine candidate for further clinical trials of HCC patients. Indeed, CIK or DC-CIK 
immunotherapies from autologous or allogeneic donors have already been extensively used in solid tumor 
patients. In our clinical center, we have experience with more than 100 gastric cancer patients with DC-CIK 
immunotherapy and have found that treatment outcomes were effective, safe, and feasible for gastric cancer 
patients. The standardization in the preparation and criteria of indication are progressing; several clinical 
trials are registered and ongoing. CIK or DC-CIK immunotherapies, combined with other antitumor agents, 
should be considered.
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CONCLUSION AND OUTLOOK
Immunotherapies appear to be a promising treatment for advanced HCC. Multiple prospective studies are 
attempting to validate the therapy outcomes with PD-1/PD-L1 and/or CTLA-4 blockade. However, only 
a small proportion of HCC patients effectively respond to immunotherapies and much research is still 
needed. One of the future directions for immunotherapies is combination therapies with other ICIs, TKIs, 
vaccines, and oncolytic viruses, as well as conventional treatments in various stages of patients to improve 
the antitumor efficacy. In addition, it is the important to research how to elevate immunotherapy efficacy 
and ascertain the biomarkers of predictive therapeutic response to immunotherapy. For example, TMB has 
been used in several tumor types to predict therapeutic response to anti-PD-1 therapy. In the future, we 
expect to identify more predictive biomarker subsets which can be used to accurately evaluate the efficacy of 
immunotherapy. 

CAR-T technology and its application has been hailed as a scientific breakthrough in the field of hematological 
tumors. Application of CAR-T therapy and TCR to treat HCC is expected to be a promising therapeutic 
method. The crucial challenge is the need to identify specific antigens; overcome the TME, gut microbiome, 
and HCC genomic features; and guard against adverse effects. Furthermore, the activation, proliferation, 
and persistence of CAR-T immunotherapy should be considered with the outcomes of treatments for HCC. 
In addition, standardization in the production of CAR-T and achieving individualized treatment should be 
considered.

Different modifications of DC vaccine or DC-CIK therapy, such as selection of specific antigen targets and 
appropriate immunologic adjuvant, may elevate the effectiveness and safety in further studies. Dendritic cells 
lead to an increase in the naturally occurring neoantigen-specific immune response as well as the diversity of 
neoantigens. The combination of DC vaccination with other immunotherapies, e.g., TCR-T, may be a novel 
treatment modality in the future.

Because of the heterogeneity of tumor cells and the complexity of immuno-regulatory mechanisms, 
multimodality therapies based on immunotherapy represent the next step in clinical antitumor efficacy, 
which will enable advancing the field and improving the outcomes of HCC patients.
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