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Abstract
Aim: The associations between dietary macronutrient intake and neurodegenerative diseases (NDDs) have been 
widely reported; however, the causal effect remains unclear. The current study aimed to estimate the causal 
relationship between dietary macronutrient intake (i.e., carbohydrate, fat, and protein) and NDDs [e.g., Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)].

Methods: Mendelian randomization (MR) was applied to evaluate the causal relationship between dietary 
macronutrient intake and NDDs. We used the single-nucleotide polymorphisms strongly associated (P < 5 × 10-8) 
with the exposures from the genome-wide association studies as instrumental variables. Inverse-variance 
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weighted, MR-Egger, weighted median, and the MR pleiotropy residual sum and outlier were used to verify the MR 
assumptions.

Results: Genetically predicted higher carbohydrate intake was associated with an increased risk of ALS [odds ratio 
(OR), 2.741, 95% confidence interval (CI): 1.419-5.293, P = 0.003). Vulnerability to PD was negatively associated 
with the relative intake of fat (OR, 0.976, 95%CI: 0.959-0.994, P = 0.012) and protein (OR, 0.987, 95%CI: 0.975-
1.000, P = 0.042). The study also identified the causal influence of AD on dietary carbohydrate intake (OR, 1.022, 
95%CI: 1.011-1.034, P = 0.001).

Conclusion: We found solid evidence supporting the idea that a higher carbohydrate proportion causally increases 
ALS risk. Genetically predicted higher AD risk is causally associated with increased dietary carbohydrate intake. 
Vulnerability to PD may have a causal relationship with a decrease in the dietary intake of protein and fat.

Keywords: Dietary macronutrient intake, neurodegenerative diseases, Mendelian randomization, causality

INTRODUCTION
Neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS), have become one of the disease categories with the largest increase in 
regard to the global health burden in aging populations[1,2]. Regarding the most common NDDs, 
approximately 46.8 million people worldwide are estimated to be living with AD, and by 2030, it is 
estimated that approximately 74.7 million people might suffer from this disease[2]. Furthermore, the global 
prevalence rates of PD and ALS were 3 per 1000 population and 4.42 per 100,000 population, 
respectively[3,4]. In the absence of practical therapeutic approaches for NDDs, identifying causal risk factors 
can lead to progress in the prevention and treatment of these diseases.

In previous studies, metabolic health has been reported to be closely associated with the prevalence of 
NDDs[5,6]. For example, glucose metabolism dysregulation has been considered a critical regulatory element 
for the progression of NDDs[7-9]. The primary sources of energy intake are carbohydrates, fat, and protein, 
and an individual’s metabolism of these energy sources is one of the major determinants of the development 
of NDD risk factors, including diabetes, cardiovascular disease, hypertension, and obesity[10-12]. Appropriate 
diet composition plays a vital role in reducing these risk factors, thereby reducing the risk of developing 
NDDs. Hence, further research is needed to clarify the effects of the relative intake of macronutrients (i.e., 
carbohydrate, fat, and protein) on the risk of NDDs. Unfortunately, high cost and difficulty often hinder the 
conduct of clinical trials on the effects of macronutrient composition[13]. Additionally, confounding 
commonly occurs in observational studies, and it is inevitable for macronutrient intake to be influenced by 
bias[13].

In the absence of high-quality randomized controlled trials, Mendelian randomization (MR) can be 
considered an alternative approach to assessing the causal relationship between dietary macronutrient 
intake and NDDs[14]. MR is a novel technique that involves using genetic data to assess and estimate the 
causal effects of modifiable (nongenetic) risk factors based on observational data[15]. This method depends 
on the use of genetic variants that are randomly allocated during meiosis, and thus it can decrease 
susceptibility to measurement errors and largely overcome the limitations of reverse causation and residual 
confounding[16]. MR analysis has recently been used to explore the causal association between dietary 
micronutrients (i.e., mineral nutrition) and the risk of NDDs[17]. However, there is no MR study thus far 
related to dietary macronutrients, including carbohydrate, fat, and protein, or their proportions in one’s 
diet.
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The genome-wide association study (GWAS) is used to identify genomic variants that are statistically 
associated with a specific disease or trait. Single-nucleotide polymorphisms (SNPs), which occur more 
frequently in people with a certain disease or trait than in people without it, are regarded to be associated 
with the disease/trait. GWASs may report the association of each SNP with the outcome and provide an 
estimate of the causal effects on the outcome. In MR analysis, SNPs are considered instrumental variables 
(IV) to assess causal relationships between exposures (risk factors) and outcomes (diseases). These SNPs are 
used to calculate the “overall” causal effect of exposure on the risk of diseases[18].

Based on the reviewed literature, we hypothesized that gene-related differences in dietary macronutrient 
intake would increase susceptibility to NDDs. To test this hypothesis, we conducted a univariable 
bidirectional two-sample MR study based on publicly available GWAS summary data of dietary 
macronutrient composition (i.e., carbohydrate, fat, and protein)[19] and NDDs (i.e., AD, PD, and ALS)[20-22].

METHODS
In the present study, we performed a univariable bidirectional two-sample MR analysis to estimate the 
causal association between three dietary macronutrients (i.e., carbohydrate, fat, and protein) and NDDs 
(i.e., AD, PD, and ALS). A flowchart of the MR analysis is presented in Figure 1.

Data source
GWAS of dietary macronutrients
We collected summarized GWAS data on dietary macronutrients from the most recently published 
available studies (release from January 2021). The dietary macronutrient data used in our MR analysis were 
originally from the Social Science Genetic Association and included 268,922 participants aged 27-71 years. 
The subjects included in the dataset above were mainly of European ancestry. The data were based on self-
report questionnaires containing questions on more than 70 food items in all cohorts. The self-report 
questionnaires were used to estimate the composition of the three macronutrients, i.e., the proportion of 
carbohydrate, fat, and protein to the total calories. Summary genetic association estimates were adjusted for 
educational attainment, the total number of dietary intake measurements, sex and birth year. Full details are 
provided elsewhere[19].

GWAS of AD, PD and ALS
The analysis used the genetic variants from the International Genomics of Alzheimer’s Project (IGAP), 
including 21,982 AD cases and 41,944 controls[20]; the International Amyotrophic Lateral Sclerosis 
Genomics Consortium (20,806 ALS cases and 59,804 controls)[22]; and the International Parkinson’s Disease 
Genomics Consortium (33,674 PD cases and 449,056 controls)[21] released on March 2019, March 2018, and 
December 2019, respectively. For AD GWAS summary data, clinically/neuro-pathologically defined AD 
might have a more robust/stronger genetic signal. In addition, PD and ALS GWASs were all from the 
largest Genomics Consortium. The individuals included in the datasets were of European ancestry. 
Principle covariates, such as age and sex, were adjusted in the association tests in all sources.

Statistical analysis
Selection of instruments
First, we selected the SNPs that reached the genome-wide significance threshold (P < 5 × 10-8) as 
instrumental variables (IVs) in this analysis[23,24]. Next, we excluded SNPs that were in linkage disequilibrium 
(r2 threshold < 0.001 within a 10 Mb window) and extracted the retained SNPs from the outcome 
datasets[25]. Finally, we harmonized the exposure and outcome SNPs. We also calculated the F statistics to 
ensure the strength of the exposures, and an F statistic > 10 was considered robust enough against weak 
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Figure 1. Flowchart of our bidirectional two-sample Mendelian randomization analysis. AD: Alzheimer’s disease; ALS: amyotrophic 
lateral sclerosis; AVS: ALS Variant Server; IGAP: the International Genomics of Alzheimer’s Project; IPDGC: International Parkinson’s 
Disease Genomics Consortium; IVW: inverse-variance weighted; MR-PRESSO: Pleiotropy Residual Sum and Outlier; PD: Parkinson’s 
disease; SNP: single nucleotide polymorphism; SSGAC: Social Science Genetic Association.

instrument bias[26,27]. The R2 and F statistics of each SNP were calculated according to the formulas R2 = 2 × 
EAF × (1-EAF) × β2 and F statistics = R2 × (N-2)/(1-R2). Then, we summed them to estimate the overall R2 
and F statistics[28,29] [Table 1].

MR analyses
Data were analyzed between January and April 2022. The inverse-variance weighted (IVW) method was 
used as the primary analysis approach to assess possible causal effects[30]. Then, we used three alternative 
methods of two-sample MR [i.e., MR-Egger, weighted median (WM), and the MR pleiotropy residual sum 
and outlier (MR-PRESSO)] to address variant heterogeneity and pleiotropy effects. The IVW method would 
be considered the best causal estimation if none of the instruments were found to have substantial 
heterogeneity or horizontal pleiotropy[31]. The MR-Egger regression and MR-PRESSO global test were used 
as the main estimation to account for potential pleiotropy[32]. The WM approach was regarded as valid when 
there was large heterogeneity across all SNPs without horizontal pleiotropy[33]. The MR-PRESSO method 
provides a correction test by detecting and removing potentially pleiotropic outliers[34]. A predefined 
decision tree to select methods could yield the best result and was adapted from[35] [Figure 2B]. Cochran’s Q 
statistic evaluated heterogeneity across genetic variants. A Cochran’s Q-derived P < 0.05 was considered to 
indicate heterogeneity[36]. The MR-Egger intercept test, as well as the MR-PRESSO global test, was also 
conducted, and a P value < 0.05 indicated that the IVW results might be invalid due to horizontal 
pleiotropy[32]. An overview of the MR design is presented in Figure 2.

The MR results were expressed as odds ratios (ORs) with 95% confidence intervals (CIs) interpreted as the 
estimated effect of a 1-SD change in dietary macronutrients on NDD risk (or the preference of dietary 
macronutrients per SD increase in log odds of NDDs). All statistical analyses were performed using Rstudio 
(R version 4.1.1) with the packages “TwoSampleMR” and “MR-PRESSO”[37]. Power calculation was 
performed using the online power calculator (mRnd)[38] (https://cnsgenomics.com/shiny/mRnd/).

https://cnsgenomics.com/shiny/mRnd/
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Table 1. The R2 and F-statistics for the genetic instruments and the power for MR

Exposure Outcome nSNP R2 F-statistic Power
Trait Sample size Trait Sample size

The forward MR analysis

Carbohydrate intake (%) 268,922 AD 63,926 9 0.0013 359.73 59.2%

Fat intake (%) 268,922 AD 63,926 5 0.0018 478.11 63.9%

Protein intake (%) 268,922 AD 63,926 7 0.0015 411.24 62.7%

Carbohydrate intake (%) 268,922 PD 1,456,300 12 0.0018 484.34 100%

Fat intake (%) 268,922 PD 1,456,300 5 0.0018 478.11 100%

Protein intake (%) 268,922 PD 1,456,300 7 0.0015 411.24 100%

Carbohydrate intake (%) 268,922 ALS 80,610 11 0.0016 441.80 83.2%

Fat intake (%) 268,922 ALS 80,610 5 0.0018 478.11 65.6%

Protein intake (%) 268,922 ALS 80,610 7 0.0015 411.24 51.1%

The reverse MR analysis

AD 63,926 Carbohydrate intake (%) 268,922 18 0.2424 16071.68 100%

AD 63,926 Fat intake (%) 268,922 17 0.2339 15524.88 100%

AD 63,926 Protein intake (%) 268,922 18 0.2424 16071.68 100%

PD 1,456,300 Carbohydrate intake (%) 268,922 85 0.3085 445039.20 100%

PD 1,456,300 Fat intake (%) 268,922 85 0.3085 445039.20 100%

PD 1,456,300 Protein intake (%) 268,922 85 0.3085 445039.20 100%

ALS 80,610 Carbohydrate intake (%) 268,922 5 0.0323 2578.97 100%

ALS 80,610 Fat intake (%) 268,922 5 0.0323 2578.97 100%

ALS 80,610 Protein intake (%) 268,922 5 0.0323 2578.97 100%

MR: Mendelian randomization; AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: amyotrophic lateral sclerosis; nSNPs: number of single-
nucleotide polymorphisms; R2: Variance explained by the SNPs on exposure.

Figure 2. Overview of the design of the present study. (A) We conducted the forward and reverse MR study to explore the bi-directional 
relationship between dietary macronutrient intake (%) and NDDs. (B) Predefined decision tree for the selection of methods. (C) Sketch 
of the study design. Assumption 1: the genetic variants are supposed to be strongly associated with the risk of interest; Assumption 2: 
the genetic variants should not be associated with any confounding factors; and Assumption 3: the genetic variants should affect the risk 
of the outcome only mediated by the exposures. ALS: Amyotrophic lateral sclerosis; IVW: inverse-variance weighted; WM: weighted 
median; MR-PRESSO: Pleiotropy Residual Sum and Outlier.
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RESULTS
Details of the SNPs used as IVs are presented in Supplementary Tables 1-6. The causal effect estimates of 
the IVW, MR-Egger, WM, and MR-PRESSO are available in Figures 3 and 4 and in Tables 2 and 3.

The causal effect of carbohydrate intake on NDDs
Considering the best causal estimation, ALS showed evidence of being influenced by carbohydrate intake. 
The effect estimate of carbohydrate intake on ALS risk was indicated by OR = 2.741 (95%CI: 1.419-5.293, 
P = 0.003) according to the WM method. As shown in Figure 5, the scatter plot and forest plot visually 
displayed the relationships between carbohydrate intake and ALS risk. The funnel and leave-one-out plot 
are also presented in Figure 5. We found that genetic predispositions to carbohydrate intake were not 
related to AD (IVW: OR = 0.875, 95%CI: 0.409-1.871, P = 0.730) or PD (WM: OR = 0.604, 95%CI: 0.260-
1.403, P = 0.241). Cochran’s Q test revealed strong pleiotropy for carbohydrate intake on PD and ALS (PPD = 
7.33E-07, PALS = 0.016). The MR Egger intercept test suggested no pleiotropic effects in this analysis, with the 
results of AD (P = 0.518), PD (P = 0.382) and ALS (P = 0.168). The MR-PRESSO global test also failed to 
reveal substantial pleiotropy, with P values all greater than 0.05.

The causal effect of fat intake on NDDs
The causal effect estimates in the IVW method were OR = 0.837 (95%CI: 0.446-1.574, P = 0.582), 1.904 
(95%CI: 0.883-4.109, P = 0.101), and 0.798 (95%CI: 0.453-1.405, P = 0.435) for AD, PD, and ALS, 
respectively. No directional pleiotropy or heterogeneity was detected by the MR Egger intercept test and 
Cochran’s Q statistic. The MR-PRESSO global test also showed no evidence that suggested horizontal 
pleiotropy (PAD = 0.255, PPD = 0.339, and PALS = 0.289).

The causal effect of protein intake on NDDs
All models consistently suggested that genetically predicted protein intake failed to be associated with the 
three disorders (AD: OR, 0.774, 95%CI: 0.432-1.384, P = 0.387, IVW; PD: OR, 1.026, 95%CI: 0.422-2.499, P = 
0.954, WM; ALS: OR, 0.978, 95%CI: 0.567-1.688, P = 0.937, IVW). Cochran’s Q test for protein intake on PD 
risk revealed substantial heterogeneity across SNPs (P = 0.002). The MR-Egger intercept test and MR-
PRESSO global test indicated no remarkable horizontal pleiotropy for protein intake of NDDs.

The causal effect of AD on dietary macronutrient intake
The effect estimates for AD and dietary macronutrients were OR = 1.022 (95%CI: 1.011-1.034, P = 0.001, 
MR-Egger), OR = 0.990 (95%CI: 0.977-1.003, P = 0.135, WM), and OR = 1.000 (95%CI: 0.992-1.008, P = 
0.949, IVW) for dietary intake of carbohydrate, fat, and protein, respectively. There was significant 
heterogeneity for relative fat intake (P = 0.018). In addition, the MR Egger intercept test detected the 
presence of horizontal pleiotropy for relative carbohydrate intake (P = 0.017).

The causal effect of PD on dietary macronutrient intake
Genetically predicted higher PD risk was negatively associated with the dietary intake of fat (OR: 0.976, 
95%CI: 0.959-0.994, P = 0.012, MR Egger) and protein (OR: 0.987, 95%CI: 0.975-1.000, P = 0.042, WM) but 
not with carbohydrate intake (OR: 0.999, 95%CI: 0.979-1.020, P = 0.958, MR Egger). Substantial 
heterogeneity was detected by Cochran’s Q test, with the P values of 1.05E-05 for carbohydrate, 0.004 for fat, 
and 3.08E-04 for protein. In addition, regarding the effect of PD on the dietary intake of fat, the intercept 
test in MR-Egger found evidence of unbalanced pleiotropy (P = 0.021). The MR-PRESSO global test also 
indicated strong evidence of directional horizontal pleiotropy for carbohydrate and fat intake. However, the 
MR-PRESSO results were nonsignificant after correcting for outliers.

5107-SupplementaryMaterials.pdf
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Table 2. Forward causal relations of the dietary macronutrient composition with NDDs performed by MR

Exposure nSNPs Method OR (95%CI) P Q pval Intercept 
pval Global P

Carbohydrate intake (%) vs. AD 9 IVW 0.875 (0.409, 1.871) 0.730 0.067

MR Egger 6.536 (0.019, 2259.250) 0.549 0.518

MR-PRESSO 0.958 (0.499, 1.836) 0.899 0.108

WM 1.029 (0.462, 2.293) 0.944

Simple mode 0.989 (0.278, 3.522) 0.987

Weighted mode 1.104 (0.328, 3.710) 0.877

Carbohydrate intake (%) vs. PD 12 IVW 0.558 (0.146, 2.134) 0.394 7.33E-07

MR Egger 0.009 (1.36E-06, 65.922) 0.326 0.382

MR-PRESSO 0.558 (0.146, 2.134) 0.412 0.31

WM 0.604 (0.260, 1.403) 0.241

Simple mode 0.569 (0.168, 1.931) 0.385

Weighted mode 0.588 (0.206, 1.681) 0.343

Carbohydrate intake (%) vs. ALS 11 IVW 2.016 (1.138, 3.570) 0.016 0.016

MR Egger 8.835 (0.855, 20.823) 0.094 0.168

MR-PRESSO 1.974 (1.170, 3.333) 0.027 0.241

WM 2.741 (1.419, 5.293) 0.003

Simple mode 3.378 (1.160, 9.842) 0.049

Weighted mode 3.344 (1.174, 9.527) 0.047

Fat intake (%) vs. AD 5 IVW 0.837 (0.446, 1.574) 0.582 0.152

MR Egger 1.267 (0.393, 4.083) 0.718 0.464

MR-PRESSO 0.837 (0.446, 1.574) 0.611 0.255

WM 1.042 (0.552, 1.966) 0.900

Simple mode 1.322 (0.500, 3.495) 0.604

Weighted mode 1.245 (0.637, 2.431) 0.557

Fat intake (%) vs. PD 5 IVW 1.904 (0.883, 4.109) 0.101 0.194

MR Egger 2.601 (0.561, 12.055) 0.309 0.664

MR-PRESSO 1.904 (0.883, 4.109) 0.176 0.339

WM 2.251 (1.059, 4.785) 0.035

Simple mode 2.153 (0.811, 5.718) 0.199

Weighted mode 2.190 (1.040, 4.614) 0.108

Fat intake (%) vs. ALS 5 IVW 0.798 (0.453, 1.405) 0.435 0.205

MR Egger 1.142 (0.390, 3.344) 0.824 0.489

MR-PRESSO 0.798 (0.453, 1.405) 0.478 0.289

WM 0.913 (0.500, 1.666) 0.766

Simple mode 1.042 (0.423, 2.565) 0.933

Weighted mode 1.013 (0.511, 2.010) 0.972

Protein intake (%) vs. AD 7 IVW 0.774 (0.432, 1.384) 0.387 0.295

MR Egger 0.459 (0.033, 6.303) 0.585 0.704

MR-PRESSO 0.774 (0.432, 1.384) 0.420 0.304

WM 0.594 (0.288, 1.226) 0.159

Simple mode 0.627 (0.182, 2.158) 0.487

Weighted mode 0.566 (0.213, 1.499) 0.296

Protein intake (%) vs. PD 7 IVW 0.617 (0.174, 2.182) 0.454 0.002

MR Egger 5.336 (0.024, 1202.346) 0.571 0.458

MR-PRESSO 0.617 (0.174, 2.182) 0.482 0.071

WM 1.026 (0.422, 2.499) 0.954

Simple mode 1.012 (0.257, 3.984) 0.987
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Weighted mode 1.247 (0.432, 3.596) 0.697

Protein intake (%) vs. ALS 7 IVW 0.978 (0.567, 1.688) 0.937 0.303

MR Egger 6.186 (0.760, 50.366) 0.149 0.136

MR-PRESSO 0.978 (0.567, 1.688) 0.940 0.36

WM 1.380 (0.717, 2.655) 0.335

Simple mode 1.365 (0.480, 3.882) 0.581

Weighted mode 1.459 (0.611, 3.487) 0.428

The selected model is written in bold. NDDs: Neurodegenerative diseases; MR: Mendelian randomization; AD: Alzheimer’s disease; PD: 
Parkinson’s disease; ALS: amyotrophic lateral sclerosis; nSNPs: number of single-nucleotide polymorphisms; OR: odds ratio; CI: confidence 
interval; Q pval: P-value of the Cochran Q statistic; IVW: inverse-variance weighted; WM: weighted median; MR-PRESSO: Pleiotropy Residual 
Sum and Outlier.

The causal effect of ALS on dietary macronutrient intake
Based on the IVW method, we failed to find evidence to support a potential causal relationship between 
ALS and the relative dietary macronutrient intake, with ORs and 95%CIs of 0.998 (95%CI: 0.970, 1.027), 
1.009 (95%CI: 0.987, 1.033), and 1.017 (95%CI: 0.994, 1.041) for carbohydrate, fat, and protein, respectively. 
For all these estimates, the MR-Egger intercept and MR-PRESSO global test did not indicate the pleiotropic 
effects of the SNPs in the MR study. Cochran’s Q tests also did not provide evidence of heterogeneity.

For SNP conformity, we conducted a leave-one-out analysis and generated forest maps. The forest map 
indicated stable results [Figure 5C and Supplementary Figures 1-6]. The F statistics for all the SNPs ranged 
from 28 to 50,488 across the forward and reverse MR analyses, and these values were higher than the 
conventional threshold of 10, the rule of thumb to distinguish between strong and weak instruments. The 
statistical power was also calculated, and the results were all higher than 50%. The R2 and F-statistics for the 
IVs and the power for MR are shown in Table 1.

DISCUSSION
In this work, we used MR to investigate the causal relationships between dietary macronutrient intake 
(carbohydrate, protein, and fat) and the most common NDDs (AD, PD, and ALS). It was shown that 
genetic predisposition to higher carbohydrate intake was related to the increased risk of ALS. Moreover, we 
found that vulnerability to PD was negatively associated with protein and fat intake. The study also found a 
potential causal influence of AD on dietary carbohydrate intake.

According to a previous study, high carbohydrate intake may increase the risk of ALS[39]. Regarding the 
prognosis of the disease, carbohydrate intake was also found to be positively related to the short-term 
survival of ALS[40]. ALS patients were reported to be affected by glucose metabolism abnormalities, which 
could be explained by the deficit of the insulin-mitochondrial axis, a glucose-metabolizing pathway[9,41-43]. 
On the other hand, abnormal glucose tolerance may result from muscle wasting or physical inactivity in 
ALS patients, leading to a decreased ability to promptly store a large glucose load[44,45]. Therefore, there 
might exist a vicious cycle between carbohydrate intake and ALS risk that accelerates the progression of the 
disease. However, two prospective studies recently reported a decreased risk of ALS in persons who were 
obese and overweight[46,47]. A randomized controlled trial identified the benefits of a high-carbohydrate diet 
on the progression of ALS via weight gain, supporting a high-carbohydrate diet as a promising 
nonpharmacologic intervention for ALS[48]. Additionally, studies in a mouse model of ALS have shown that 
a high-carbohydrate hypercaloric diet increases weight and delays disease progression[49,50]. Therefore, the 
causal relationship between high carbohydrate intake and the risk of ALS is still unknown. Our study 
implemented an MR approach with a robustly validated genetic instrument for relative carbohydrate intake 
and provided robust evidence to support that high carbohydrate intake might cause an increased risk of 

5107-SupplementaryMaterials.pdf


Page 9 of Wei et al. Ageing Neur Dis 2022;2:14 https://dx.doi.org/10.20517/and.2022.12 16

Table 3. Reverse causal relations of NDDs with the dietary macronutrient composition performed by MR

Exposure nSNPs Method OR (95%CI) P Q pval Intercept 
pval Global P

AD vs. Carbohydrate intake (%) 18 IVW 1.012 (1.004, 1.020) 0.003 0.608

MR Egger 1.022 (1.011, 1.034) 0.001 0.017

MR-PRESSO 1.010 (1.002, 1.018) 0.026 0.342

WM 1.012 (1.001, 1.023) 0.040

Simple mode 1.010 (0.991, 1.030) 0.329

Weighted mode 1.011 (0.999, 1.024) 0.091

AD vs. Fat intake (%) 17 IVW 0.983 (0.973, 0.994) 0.003 0.018

MR Egger 0.974 (0.960, 0.987) 0.002 0.063

MR-PRESSO 0.985 (0.975, 0.996) 0.012 0.146

WM 0.990 (0.977, 1.003) 0.135

Simple mode 0.997 (0.971, 1.023) 0.819

Weighted mode 0.993 (0.977, 1.010) 0.435

AD vs. Protein intake (%) 18 IVW 1.000 (0.992, 1.008) 0.949 0.451

MR Egger 1.003 (0.992, 1.014) 0.641 0.468

MR-PRESSO 1.000 (0.991, 1.008) 0.964 0.223

WM 1.004 (0.993, 1.016) 0.445

Simple mode 1.006 (0.988, 1.024) 0.526

Weighted mode 1.004 (0.993, 1.015) 0.528

PD vs. Carbohydrate intake (%) 85 IVW 0.993 (0.984, 1.003) 0.155 1.05E-05

MR Egger 0.999 (0.979, 1.020) 0.958 0.499

MR-PRESSO 0.994 (0.985, 1.004) 0.261 < 0.001

Outlier-corrected 0.997 (0.988, 1.007) 0.607

WM 1.001 (0.987, 1.014) 0.936

Simple mode 0.992 (0.968, 1.017) 0.546

Weighted mode 1.004 (0.987, 1.021) 0.643

PD vs. Fat intake (%) 85 IVW 0.996 (0.987, 1.004) 0.309 0.004

MR Egger 0.976 (0.959, 0.994) 0.012 0.021

MR-PRESSO 0.995 (0.986, 1.003) 0.238 0.002

Outlier-corrected 0.996 (0.988, 1.005) 0.411

WM 0.992 (0.980, 1.005) 0.220

Simple mode 1.015 (0.979, 1.052) 0.433

Weighted mode 0.976 (0.955, 0.997) 0.033

PD vs. Protein intake (%) 85 IVW 0.991 (0.982, 1.000) 0.050 3.08E-04

MR Egger 0.997 (0.978, 1.017) 0.779 0.486

MR-PRESSO 0.992 (0.982, 1.001) 0.072 0.067

WM 0.987 (0.975, 1.000) 0.042

Simple mode 0.989 (0.966, 1.015) 0.425

Weighted mode 0.987 (0.972, 1.002) 0.091

ALS vs. Carbohydrate intake (%) 5 IVW 0.998 (0.970, 1.027) 0.891 0.199

MR Egger 0.994 (0.916, 1.079) 0.903 0.931

MR-PRESSO 0.998 (0.970, 1.027) 0.897 0.294

WM 1.010 (0.981, 1.040) 0.492

Simple mode 1.015 (0.970, 1.062) 0.565

Weighted mode 1.014 (0.978, 1.050) 0.497

ALS vs. Fat intake (%) 5 IVW 1.009 (0.987, 1.033) 0.424 0.603

MR Egger 1.043 (0.985, 1.106) 0.247 0.311

MR-PRESSO 1.009 (0.990, 1.029) 0.388 0.636
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WM 1.012 (0.984, 1.040) 0.417

Simple mode 1.023 (0.981, 1.066) 0.348

Weighted mode 1.016 (0.980, 1.053) 0.444

ALS vs. Protein intake (%) 5 IVW 1.017 (0.994, 1.041) 0.149 0.814

MR Egger 1.016 (0.959, 1.077) 0.621 0.982

MR-PRESSO 1.017 (1.002, 1.032) 0.083 0.833

WM 1.019 (0.991, 1.047) 0.184

Simple mode 1.027 (0.989, 1.066) 0.243

Weighted mode 1.019 (0.985, 1.053) 0.339

The selected model is written in bold. NDDs: Neurodegenerative diseases; MR: Mendelian randomization; AD: Alzheimer’s disease; PD, 
Parkinson’s disease; ALS: amyotrophic lateral sclerosis; nSNPs: number of single-nucleotide polymorphisms; OR: odds ratio; CI: confidence 
interval; Q pval: P value of the Cochran Q statistic; IVW: inverse-variance weighted; WM: weighted median; MR-PRESSO: Pleiotropy Residual 
Sum and Outlier.

Figure 3. Forward MR analysis estimates of dietary macronutrient intake (%) and NDDs. NDDs: Neurodegenerative diseases; AD: 
Alzheimer’s disease; PD: Parkinson’s disease; ALS: amyotrophic lateral sclerosis; CI: confidence interval; OR: odds ratio; SNP: single-
nucleotide polymorphism.

ALS. These findings may have important public health implications. Individuals affected by ALS should 
receive advice about avoiding a high carbohydrate diet, and such a carbohydrate restriction strategy should 
be included in prevention guidelines for ALS patients regarding macronutrient intake recommendations.

Unexpectedly and interestingly, our primary analysis showed that AD was causally associated with a higher 
carbohydrate intake, and PD was causally associated with a low intake of protein and fat. However, the 
underlying mechanisms explaining the associations remain unclear. A previous study reported that AD 
patients have a greater preference for sweet or sugary food than normal controls and concluded that craving 
sweet food might be one of the clinical syndromes of AD patients[51]. Decreased serotonin activity could 
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Figure 4. Reverse MR analysis estimates of dietary macronutrient intake (%) and NDDs. NDDs: Neurodegenerative diseases; AD: 
Alzheimer’s disease; PD: Parkinson’s disease; ALS: amyotrophic lateral sclerosis; CI: confidence interval; OR: odds ratio; SNP: single-
nucleotide polymorphism.

provide a link between AD and carbohydrate preference. Previous studies have found that low brain 
serotonin levels are linked to impairments in episodic memory and motor speed[52]. Ingestion of 
carbohydrate-rich food could increase serotonin synthesis via supplementation with tryptophan, the amino 
acid precursor for serotonin[53]. Therefore, the preference for high-carbohydrate foods would be helpful in 
alleviating cognitive function decline by increasing serotonin synthesis[54]. A significant body of evidence has 
pointed to the central role of alpha-synuclein in the pathogenesis of PD. The enteric nervous system, in 
which alpha-synuclein accumulated, was considered the first vulnerable region of the central nervous 
system to become affected in PD[55]. The pathologic accumulation of alpha-synuclein is toxic and can 
interfere with the normal synaptic function of neurons in the gastrointestinal tract, which may contribute to 
gastrointestinal dysmotility. Food rich in protein and high-fat meats can stress the digestive system due to 
overwork, thereby aggravating digestive problems[56]. It is reasonable that PD patients will avoid food that is 
hard to digest in their daily life. Regrettably, there are few clinical trials implying the causal role of PD on 
protein and fat intake. Thus, further study is needed to elucidate the causal relationship.

However, our MR analyses failed to identify a causal association between dietary macronutrient intake and 
the risk of AD and PD. These results are inconsistent with those based on prospective studies, which tend to 
report a significant influence of diet composition on the two disorders[57-60]. Although these studies 
concluded that dietary factors played a role in the onset and progression of the two diseases, the current 
evidence is not adequate to support the existence of a causal relationship between them.

The main strength of the MR study is that it is the first MR study to explore the causal relationship between 
dietary macronutrients and NDDs, which contributes to filling the gaps left by the published observational 
studies and extends the related research considerably. The present study also has limitations. First, there are 
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Figure 5. Scatter plot (A), funnel plot (B), forest plot (C) and leave-one-out plot (D) of the causal effect of dietary carbohydrate intake 
on ALS risk. ALS: Amyotrophic lateral sclerosis; SNP: single-nucleotide polymorphism.

only five available SNPs significantly associated with fat intake and ALS, leading to convergence problems 
of optimization algorithms within MR methods. To address this issue, a larger population is needed. 
Second, information regarding the exposure of interest was all from the self-report questionnaires; thus, it is 
challenging to avoid measurement bias. Third, despite our efforts to ensure the quality of the genetic 
variants included in the analysis, it was not possible to completely avoid pleiotropic effects when evaluating 
several potential disease-associated exposures. These pleiotropic effects could be adequately addressed if 
individual-level data were analyzed. Fourth, the proportional relationship between macronutrient intakes 
and total diet intake means that an increase in one macronutrient intake corresponds to a decrease in at 
least one other macronutrient. For example, the causality between PD and low intake of protein and fat may 
also reflect the causal role of PD in high carbohydrate consumption. However, caution is required when 
explaining causal relationships derived solely from the raw results. Finally, based on given summary-level 
data, we failed to investigate the specific subtypes of macronutrients (e.g., saturated or unsaturated fats), 
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which may exert different causal effects on NDDs.

In this study, genetically predicted relatively high dietary carbohydrate intake was associated with an 
increased risk of ALS. In the other direction, genetically predicted higher AD risk is associated with 
increased dietary carbohydrate intake. We also provided genetic evidence supporting the causal relationship 
between vulnerability to PD and a decrease in the dietary intake of protein and fat. Future studies are 
warranted to replicate this finding and elucidate the potential underlying mechanism.
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