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Preparation of Na2S4 solution[1]: Sulfur powder, Na2S, and NaOH (in a molar ratio 

of 3:1:1) were mixed in DI-water with continuous stirring for 12 h. The orange 

solution was acquired. 5 × 1 cm2 metal strips of Cu and Al were soaked in 5 mL of 1 

M Na2S4 aqueous solution for 10 mins and then taken out for characterization. 

 

 

Figure S1. The optical picture of Cu foil and Al foil soaking in Na2S4 solution at 

different times. As revealed, the surface of the Cu foil becomes black after soaking for 

10 mins, indicating the chemical reaction between Cu and Na2S4. While the Al foil 

remains unchanged, suggesting its chemical inertia toward Na2S4. 

 

 

Figure S2. XRD pattern of Cu foil (a) and Al foil (b) after soaking in Na2S4 solution 

for 10 mins. The Cu foil shows obvious peaks from Cu2S (PDF No. 00-009-0328), 



confirming the chemical reaction between Cu and Na2S4. 

 

 

 
Figure S3. EDS (Energy Dispersive Spectrometer) of sodium metal after 80 cycles: 

(a). in CNT/S-Cu foil and; (b). CNT/S-Al foil. As shown in Figure S3, the sulfur 

signal from the cycled Na anode in DME-Al system is as high as 2%, much higher 

than that in the DME-Cu system. 

 



 
Figure S4. EIS spectra of CNT/S electrode at different cycles. 

 

 

Figure S5. XRD pattern (a), S 2p XPS (b), SEM image (c) of the CNT/S powder and 

TGA of the CNT/S powder (d). 
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As shown in the X-ray diffraction (XRD) pattern [Figure S5a], the CNT/S powder 

shows very weak peaks corresponding to monoclinic S8 (JCPDS No. 01-071-0137)[2]. 

S 2p X-ray photoelectron spectra (XPS) of the CNT/S powder exhibit two doublet 

peaks at 164.2 and 165.4 eV, corresponding to the S 2p3/2 and S 2p1/2 of S0 [Figure 

S5b]. Scanning electron microscopy (SEM) image shows that the CNT/S powder 

mainly consists of nanotube morphology [Figure S5c], confirming the successful 

dispersion of sulfur in the CNT network. Besides, in Figure S5d, the TGA shows a 

sulfur loading of 56%. 

 

 



Figure S6. XRD pattern (a), SEM-EDX element mapping images (b), and SEM 

image (c) of CNT/S electrode. 

 

 

Figure S7. TEM (a) and HRTEM (b) images of CuS, (c) SAED pattern of CuS, (d) 

TEM-EDS mapping images of CuS. 

 

TEM image reveals that the CuS shows an average size of around 50 nm [Figure S7a]. 

HRTEM image of CuS shows clear lattice fringes with interplanar spacing of 0.272 

nm, corresponding to the (006) plane of hexagonal CuS [Figure S7b]. The 

corresponding SAED pattern shows a series of concentric rings [Figure S7c], which 

well match the standard patterns of cubic CuS. The STEM-EDS elemental mapping 

images of the CuS-S/CNT further confirm the uniform distribution of Cu and S 

elements [Figure S7d]. 



 

Figure S8. The charge-discharge curves of CNT/S at different cycles. 

 

 
Figure S9. XRD patterns of CNT/S electrode after 100 cycles. 

 



 
Figure S10. SEM (a), TEM image (b), and normal distribution of particle size for 

Cu2S (c). 

 

 
Figure S11. EDS elemental maps of CNT/S after 80 cycles. 

 



 

 
Figure S12. Cross-section SEM images of Cu foil (a) and CNT/S electrode (b). The 

pristine Cu foil shows a thickness of around 8 μm. We also calculated the thickness of 

the Cu foil through the mass of the Cu round pieces (diameter ~1.2 cm). The mass of 

ten pieces of Cu foil is around 81.5 mg, and the average mass of Cu foil is 8.15 mg. 

Then the thickness of Cu foil is calculated to be 8 μm based on the area and density of 

Cu foil. 

 

 

Figure S13. CNT/S electrode with a sulfur loading of 3.5 mg cm-2: (a) cross-sectional 

SEM image of CNT/S electrode, and (b) charge-discharge curves. 

 



 
Figure S14. (a) Thermogravimetric analysis (TGA) of Cu@CNT in air. Cu@CNT 

was calcined in air to form CuO@CNT (106.2%), which was heated to 700℃, CNT 

(26.7% in CuO@CNT) transferred to CO2 dispersed to air. After calculation, in 

Cu@CNT, the mass percentage of CNT is 36.5%. (b) XRD pattern of Cu@CNT 

powder, (c) SEM image of Cu@CNT powder. 

 

 
Figure S15. Schematic illustration of preparation and evolution of Cu@CNT/S. 

 

 
Figure S16. (a) XRD pattern of Cu@CNT/S, (b) SEM image of Cu@CNT/S powder.  

 

As shown in Figure S16a, the XRD pattern includes S8 (JCPDS No. 01-071-0137) and 

CuS (JCPDS No. 01-078-0877) crystalline phases, and in Figure S16b, the SEM 



image shows nanotube CNT, particle S, and CuS. 

 

 
Figure S17. (a) SEM image of the Cu@CNT/S-80th, (b) STEM-EDX elemental maps 

of the Cu@CNT/S-80th. 

 

SEM shows the Cu7S4 nanoparticles morphology which were dispersed into CNT 

network uniformly. Besides, STEM-EDX elemental mapping images indicate the 

Cu7S4 and NaPSs uniformly dispersed on the CNT surface.  

 

 

Figure S18. (a) AES and (b) XPS of Cu in Cu@CNT/S-80th. 

 



 
Figure S19. SEM images of pristine Cu-CC (a) and cycled Cu-CC for 80 cycles (b). 

Before SEM testing, the Cu-CC is cleaned with ethanol several times. 

 

 
Figure S20. Cross-section SEM images of Cu@CNT/S electrodes with a sulfur 

loading of 3.5 mg cm-2: (a) pristine electrode, (b) after cycling for 80 cycles. 

 
Figure S21. Cycling performance of Cu@CNT/S electrode at 0.5 A g-1. 



 

 

Figure S22. The electricity chemical performance of Cu@CNT/S with Al foil, (a) 

long cycling performance at 0.5 A g-1, (b) rate performance from 0.1 A g-1 to 5 A g-1. 

 

 

Figure S23. EIS spectra of the Cu@CNT/S electrodes with Cu-CC and Al-CC: (a) 

before cycling, and (b) after 50 cycles. 

 

 
Figure S24. CV curves at various scan rates (a), pseudocapacitive contributions based 

on scan rates of 1 mV s-1 (b), and the different pseudocapacitive contributions based 

on the cyclic voltammetry (CV) curves at various scan rates (c), in the Cu@CNT/S 



electrode. 

 

Table S1. Performance Comparison between our work and published works 

Paper ICE 

Cycle 

life 

(Cycles) 

Capacity 

retention 
Rate Refs 

Adv. Mater. 2021, 33, 

2103846. 

47% 400  ~57% 190 mAh g-1 at 

5 A g-1  

[3] 

Nat. Commun. 2020, 11, 

1-11. 

~78

% 

800  ~83% 349 mAh g-1 at 

5 A g-1  

[4] 

Nat. Commun. 2021, 12, 

1-12. 

92% 2800  ~100% 658.4 mAh g-1 

at 16.73 A g-1  

[5] 

Adv. Mater. 2020, 32, 

1906700. 

~35

% 

300  ~69% 139 mAh g-1 at 

5 A g-1  

[6] 

Adv. Mater. 2022, 34, 

2108363 

~59

% 

2000  ~60% 470 mAh g-1 at 

5 A g-1  

[7] 

ACS Nano 2021, 15, 

15218-15228. 

72% 500 ~65% 383 mAh g-1 at 

5 A g-1  

[8] 

Adv. Funct. Materials 

2021, 31, 2102280. 

~54

% 

600 36% 240 mAh g-1 at 

8.37 A g-1  

[9] 

Small 2022, 2106983 ~74

% 

650 95.8% 759 mAh g-1 at 

3.35 A g-1  

[10] 

Adv. Mater. 2022, 34, 

2204214. 

60.2

% 

1500 ~27% 296 mAh g-1 at 

10 A g-1  

[11] 

Adv. Energy Mater. 

2020, 10, 2000931. 

78.6

% 

500 90% 304 mAh g-1 at 

10 A g-1  

[12] 

J. Mater. Chem. A 2021, 

9, 3451-3463. 

50% 500 ~64% 530 mAh g-1 at 

3.35 A g-1  

[13] 

Adv. Mater. 2022, 34, 

2200479. 

~70

% 

800 ~67% 483 mAh g-1 at 

10 A g-1  

[14] 

ACS Nano 2022, 16, 

14178-14187. 

~95

% 

1000 64% 465 mAh g-1 at 

5 A g-1  

[15] 

Adv. Sci. 2020, 7, ~63 2000 95% 423 mAh g-1 at [16] 



1903246. % 8.37 A g-1  

Angew. Chem. Int. Edit. 

2022. 

~62.

5% 

200 65% 486 mAh g-1 at 

3.35 A g-1  

[17] 

Nat. Commun. 2021, 12, 

1-11. 

~97.

5% 

10000 36% 216 mAh g-1 at 

3.35 A g-1  

[18] 

ACS Nano 2021, 15, 

16207-16217. 

~86

% 

500 70.28% 550.6 mAh g-1 

at 8.37 A g-1  

[19] 

Adv. Sci. 2022, 9, 

2105544. 

~90

% 

1000 ~64% 461 mAh g-1 at 

8.37 A g-1  

[20] 

ACS Nano 2020, 14, 

7259-7268. 

68% 1000 ~41% 170 mAh g-1 at 

5 A g-1  

[21] 

This work (CNT/S) 88.9

% 

1300 98.3% 447.3 mAh g-1 

at 8 A g-1  

 

This work (Cu@CNT/S) 83% 1190 ~100% 396.9 mAh g-1 

at 10 A g-1  
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