## **Supplementary Materials**

Machine learning-assisted prediction, screen, and interpretation of porous carbon materials for high-performance supercapacitors

Hongwei Liu<sup>1,2,3,#</sup>, Zhenming Cui<sup>1,2,3,#</sup>, Zhennan Qiao<sup>1,2,3</sup>, Xiaokang An<sup>1,2,3</sup>, Yongzhen Wang<sup>1,2,3,\*</sup>

<sup>1</sup>College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.

<sup>2</sup>Shanxi Joint Laboratory of Coal-based Solid Waste Resource Utilization and Green Development, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
<sup>3</sup>Innovation Research Center for Materials Genetic Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
<sup>#</sup>Authors contributed equally.

\***Correspondence to:** Prof. Yongzhen Wang, College of Materials Science and Engineering, Taiyuan University of Technology, 79 Yingze West Main Street, Taiyuan 030024, Shanxi, China. E-mail: wangyongzhen@tyut.edu.cn



**Supplementary Figure 1.** Box-normal plots of the data distributions for each parameter of collected data. (A) Potential window (PW) tested in a three-electrode system, (B) Pore size distribution (PSD) of PCMs, (C) Micropore surface area ( $S_{mic}$ ) of PCMs, (D) micropore surface area proportion ( $S_{mic}$ /SSA) of PCMs, (E) Micropore volume ( $V_{mic}$ ), (F) Micropore volume proportion ( $V_{mic}/V_t$ ).



Supplementary Figure 2. One-dimensional partial dependence plots of (A)  $V_{mic}$  and (B)  $S_{mic}$ .



Supplementary Figure 3. Two-dimensional partial dependence plots of (A) SSA and  $V_t$ , (B) SSA and  $V_{mic}$ , (C) SSA and PSD, (D)  $V_{mic}/V_t$  and PSD, (E)  $S_{mic}$  and  $V_{mic}$ , and (F)  $S_{mic}/SSA$  and  $V_{mic}/V_t$ .



Supplementary Figure 4. Two-dimensional partial dependence plots of (A) N% and N-6%, (B) N% and N-5%, (C) N% and N-Q%, (D) N-5% and N-6%, (E) N-5% and N-Q%, (F) N-6% and N-Q%, (G) O% and O-I%, (H) O% and O-II%, (I) O% and O-III%, (J) O-I% and O-II%, (K) O-I% and O-III%, and (L) O-II% and O-III%.



**Supplementary Figure 5.** (A) The  $N_2$  adsorption desorption isotherms and (B) DFT pore-size distribution curves and (C) its local magnification of eight NOPC samples.



**Supplementary Figure 6.** (A) XPS survey spectra of eight NOPC samples, High resolution XPS spectra for (B) C 1 s, (C) N 1 s, and (D) O 1 s in eight NOPC samples.



**Supplementary Figure 7.** Local SHAPs account for predictive biases in specific experimental NOPC samples from NOPC-1 to NOPC-8. Red represents positive influence, blue represents negative influence.



**Supplementary Figure 8.** (A) Nyquist plot of all NOPC samples, (B) the zoomed high-frequency region of all NOPC samples, (C) The fitted impedance curves of all NOPC samples, inset is the equivalent circuit diagram of impedance, (D) the zoomed high-frequency region of the fitted Nyquist plots of all NOPC samples.

| Data                  | Mean   | Std.  | Mean SE | Minimum | Median | Maximum | 25%    | 50%    | 75%    | Item             |  |
|-----------------------|--------|-------|---------|---------|--------|---------|--------|--------|--------|------------------|--|
| SC                    | 241.32 | 76.60 | 4.62    | 5.44    | 245.46 | 547.00  | 200.00 | 245.46 | 288.03 | Performance      |  |
| CD                    | 5.273  | 8.365 | 0.504   | 0.1     | 2      | 50      | 1      | 2      | 5      |                  |  |
| PW                    | 0.9    | 0.09  | 0.006   | 0.8     | 0.9    | 1       | 0.8    | 0.9    | 1      | rest conditions  |  |
| 0                     | 11.83  | 5.55  | 0.34    | 3.58    | 10.55  | 41.88   | 8.32   | 10.55  | 15.03  |                  |  |
| Ν                     | 4.00   | 4.01  | 0.24    | 0.43    | 2.45   | 21.06   | 1.41   | 2.45   | 5.16   | Element doping   |  |
| SSA                   | 1286   | 880   | 53      | 8       | 1223   | 3430    | 615    | 1224   | 1745   |                  |  |
| $\mathbf{V}_{t}$      | 0.83   | 0.61  | 0.04    | 0.02    | 0.79   | 2.59    | 0.36   | 0.79   | 1.16   |                  |  |
| $\mathbf{S}_{mic}$    | 930    | 562   | 34      | 0       | 954    | 2788    | 530    | 954    | 1296   |                  |  |
| V <sub>mic</sub>      | 0.46   | 0.27  | 0.02    | 0       | 0.49   | 1.27    | 0.26   | 0.49   | 0.63   | Pore structure   |  |
| S <sub>mic</sub> /SSA | 0.78   | 0.18  | 0.01    | 0       | 0.82   | 1.00    | 0.65   | 0.82   | 0.92   |                  |  |
| $V_{mic}/V_t$         | 0.62   | 0.25  | 0.02    | 0       | 0.68   | 0.98    | 0.44   | 0.68   | 0.80   |                  |  |
| PSD                   | 2.75   | 2.09  | 0.13    | 0.64    | 2.03   | 20.89   | 1.90   | 2.03   | 2.68   |                  |  |
| N-6                   | 1.22   | 2.28  | 0.14    | 0       | 0.49   | 14.06   | 0.20   | 0.49   | 1.01   | Pseudocapacitive |  |
| N-5                   | 1.55   | 1.48  | 0.09    | 0       | 0.91   | 8.18    | 0.46   | 0.91   | 2.24   | active site      |  |
| N-Q                   | 0.81   | 0.84  | 0.05    | 0       | 0.47   | 4.19    | 0.22   | 0.47   | 1.18   |                  |  |

## Supplementary Table 1. Descriptive statistics of datasets

| Data  | Mean | Std. | Mean SE | Minimum | Median | Maximum | 25%  | 50%  | 75%  | Item                            |
|-------|------|------|---------|---------|--------|---------|------|------|------|---------------------------------|
| O-I   | 2.67 | 1.96 | 0.12    | 0       | 2.39   | 8.82    | 1.41 | 2.39 | 3.64 |                                 |
| O-II  | 5.43 | 5.04 | 0.30    | 0       | 3.98   | 25.92   | 2.30 | 3.98 | 8.00 | Pseudocapacitive<br>active site |
| O-III | 2.33 | 1.96 | 0.12    | 0       | 2.15   | 9.64    | 0.91 | 2.15 | 2.95 |                                 |

| Samples | PSD  | SSA            | S <sub>mic</sub>                  | S <sub>mic</sub> /SSA | $\mathbf{V}_{\mathbf{t}}$          | V <sub>mic</sub>                   | V <sub>mic</sub> /V <sub>t</sub> | V <sub>mic</sub> /V <sub>t</sub> |
|---------|------|----------------|-----------------------------------|-----------------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------|
| •<br>   | [nm] | $[m^2 g^{-1}]$ | [m <sup>2</sup> g <sup>-1</sup> ] |                       | [cm <sup>3</sup> g <sup>-1</sup> ] | [cm <sup>3</sup> g <sup>-1</sup> ] |                                  |                                  |
| NOPC-1  | 1.84 | 326            | 304                               | 0.932                 | 0.15                               | 0.14                               | 0.933                            |                                  |
| NOPC-2  | 1.81 | 426            | 386                               | 0.906                 | 0.193                              | 0.187                              | 0.969                            |                                  |
| NOPC-3  | 3.00 | 12             | 3                                 | 0.25                  | 0.009                              | 0.001                              | 0.111                            |                                  |
| NOPC-4  | 1.83 | 612            | 564                               | 0.921                 | 0.28                               | 0.27                               | 0.964                            |                                  |
| NOPC-5  | 1.79 | 670            | 589                               | 0.879                 | 0.30                               | 0.28                               | 0.933                            |                                  |
| NOPC-6  | 1.80 | 340            | 304                               | 0.894                 | 0.153                              | 0.146                              | 0.954                            |                                  |
| NOPC-7  | 1.78 | 1192           | 955                               | 0.801                 | 0.53                               | 0.45                               | 0.849                            |                                  |
| NOPC-8  | 1.79 | 1182           | 930                               | 0.787                 | 0.53                               | 0.44                               | 0.83                             |                                  |

## Supplementary Table 2. Pore structure parameters of eight NOPC samples

Note: PSD, average pore diameter, PSD= 4 Vt/SSA; SSA, BET specific surface area;  $S_{mic}$ , micropore BET specific surface area;  $V_{t}$ , total pore volume;  $V_{mic}$ , micropore volume;  $S_{mic}$ /SSA, micropore surface area proportion;  $V_{mic}/V_t$ , micropore volume proportion.

|         | Surface ele | emental co | ntent based | %     | % of N1s for XPS |      |       | % of O1s for XPS |         |  |  |
|---------|-------------|------------|-------------|-------|------------------|------|-------|------------------|---------|--|--|
| Samples | 01          | n XPS rest | ılts        |       |                  |      |       |                  |         |  |  |
|         | C           | NT         | 0           | NG    | N 5              | NO   | C=O   | С-ОН/С-О-С       | -СООН   |  |  |
|         | C           | IN         | 0           | IN-0  | IN-5             | N-Q  | (O-I) | (O-II)           | (O-III) |  |  |
| NOPC-1  | 95.14       | 1.82       | 3.04        | 0.35  | 0.51             | 0.96 | 0.16  | 0.88             | 2.00    |  |  |
| NOPC-2  | 88.3        | 6.94       | 4.76        | 2.55  | 2.38             | 2.01 | 1.76  | 1.26             | 1.74    |  |  |
| NOPC-3  | 79.64       | 10.9       | 9.46        | 5.66  | 3.29             | 1.95 | 3.96  | 3.43             | 2.07    |  |  |
| NOPC-4  | 88.33       | 5.96       | 5.71        | 2.59  | 2.10             | 1.27 | 2.02  | 2.29             | 1.4     |  |  |
| NOPC-5  | 80.53       | 13.44      | 6.03        | 7.12  | 3.39             | 2.93 | 1.99  | 2.29             | 1.75    |  |  |
| NOPC-6  | 76.88       | 17.9       | 5.22        | 10.52 | 5.49             | 1.89 | 2.76  | 0.83             | 1.63    |  |  |
| NOPC-7  | 82.84       | 11.47      | 5.69        | 5.67  | 4.32             | 1.48 | 2.68  | 0.95             | 2.06    |  |  |
| NOPC-8  | 83.78       | 10.19      | 6.03        | 4.51  | 2.98             | 2.7  | 2.26  | 2.31             | 1.46    |  |  |

Supplementary Table 3. Surface elemental content and N/O functional group content based on XPS results for the as-obtained eight NOPC samples

Note: Pyridine nitrogen, N-6; Pyrrole nitrogen, N-5, Graphitic nitrogen, N-Q.

Supplementary Table 4. Charge transfer resistance and equivalent series resistance of the NOPC samples

| Samplas | Charge-transfer resistance (Rct) | Equivalent series resistance (Res) |  |  |  |  |
|---------|----------------------------------|------------------------------------|--|--|--|--|
| Samples | Ω                                | Ω                                  |  |  |  |  |
| NOPC-1  | 2.62                             | 3.37                               |  |  |  |  |
| NOPC-2  | 0.42                             | 1.12                               |  |  |  |  |
| NOPC-3  | 0.57                             | 1.25                               |  |  |  |  |
| NOPC-4  | 0.36                             | 1.21                               |  |  |  |  |
| NOPC-5  | 0.27                             | 0.93                               |  |  |  |  |
| NOPC-6  | 0.04                             | 0.72                               |  |  |  |  |
| NOPC-7  | 0.21                             | 0.81                               |  |  |  |  |
| NOPC-8  | 0.003                            | 0.58                               |  |  |  |  |