Supplementary Information 2

Machine Learning Accelerated Discovery of High Transmittance in (K_{0.5}Na_{0.5})NbO₃-Based Ceramics

Bowen Ma,¹ Fangyuan Yu,¹ Ping Zhou, Xiao Wu,* Chunlin Zhao, Cong Lin, Min Gao, Tengfei Lin, Baisheng Sa*

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.

*Correspondence author.

E-mail: wuxiao@fzu.edu.cn (X. Wu), bssa@fzu.edu.cn (B. Sa).

¹ Bowen Ma and Fangyuan Yu are contributed equally to the study.

1. Feature construction and selection

Supplementary Table 1. Original features in the feature pool for A-site and B-site

Feature	Description	
ST	Sintering temperature	
MT _A	Melting point of A-site element ^[1]	
MT _B	Melting point of B-site element	
IR _A (Å)	Shannon's (1976) ionic radii of A-site (12-coordination) ^[2]	
IR _B (Å)	Shannon's (1976) ionic radii of B-site (12-coordination)	
AR _A (pm)	Atomic radius of A-site element [3]	
AR _B (pm)	Atomic radius of B-site element	
A-O(Å)	ideal A–O bond distance ^[4]	
B-O(Å)	ideal B–O bond distance	
VA	Atomic volume of A-site element ^[1,5]	
VB	Atomic volume of B-site element	
CVRA	Crystallographic van der Waals radii of A-site element (S. S. Batsanov 2001) ^[6]	
CVR _B	Crystallographic van der Waals radii of B-site element (S. S. Batsanov 2001)	
EVRA	Equilibrium van der Waals radii of A-site element (S. S. Batsanov 2001) ^[6]	
EVR _B	Equilibrium van der Waals radii of B-site element	
EPA	Period of A-site element in element period table	
EPB	Period of B-site element in element period table	
CovR _A (Å)	Covalent radii of A-site element ^[7]	
CovR _B (Å)	Covalent radii of B-site element	
Dve _A	Valence electron distance (Schubert) of A-site element ^[1]	
Dve _B	Valence electron distance (Schubert) of B-site element	
Dce _A	Core electron distance (Schubert) of A-site element ^[1]	
Dce _B	Core electron distance (Schubert) of B-site element	
MA	Relative atomic mass of A-site element	

elements.

M _B	Relative atomic mass of B-site element	
NEC _A -S	Nuclear effective charge-Slater of A-site element ^[1]	
NEC _B -S	Nuclear effective charge-Slater of B-site element	
NEC _A -C	Nuclear effective charge-Clementi of A-site element ^[1]	
NEC _B -C	Nuclear effective charge-Clementi of B-site element	
ANA	Atomic number of A-site element in element period table	
AN _B	Atomic number of B-site element in element period table	
Ven/NC-A	Ratio of valence electron number to nuclear charge of A-site element	
Ven/NC-B	Ratio of valence electron number to nuclear charge of B-site element	
P _A	Polarizability of A-site element [8,9]	
PB	Polarizability of B-site element	
E _A -P	A-site electronegativity-Pauling scale ^[1]	
E _{B-} P	B-site electronegativity-Pauling scale	
E _A -MB	A-site electronegativity-Matyonov-Batsanov ^[1]	
E _B -MB	B-site electronegativity-Matyonov-Batsanov	
EIA	First energy ionization of A-site element ^[5]	
EIB	First energy ionization of B-site element	
EA _A	Electron affinity of A-site element ^[5]	
EAB	Electron affinity of B-site element	
PCRA	pseudopotential core radii of A-site element ^[10]	
PCR _B	pseudopotential core radii of B-site element	
C _A -a	Cell parameters of A-site element in the a direction ^[5]	
C _B -a	Cell parameters of B-site element in the a direction	
C _A -b	Cell parameters of A-site element in the b direction	
C _B -b	Cell parameters of B-site element in the b direction	
C _A -c	Cell parameters of A-site element in the c direction	
Св-с	Cell parameters of B-site element in the c direction	
t	Tolerance factor calculated by Shannon's ionic radii	
μ	Octahedral factor calculated by Shannon's ionic radii	

Supplementary Table 1 shows the 27 initial features and 1 process parameter for the properties of perovskite A-site and B-site elements (atoms or ions) extracted from the literature and A. A. Baikov Institute of Metallurgy and Materials Science Database. We calculated the weighting of elements in the component to obtain the A-position and B-position feature features and define the material features as:

$$X_{A/B} = \frac{X_A}{X_B} = \frac{\sum_{i \in A} f_i X_i}{\sum_{i \in B} f_i X_i}$$
(1)

where f_i is the molar fraction and X_i is the elemental counterpart property. Combining with Supplementary Table 1 we obtained 20 material features. For ease of viewing, we removed the $X_{A/B}$ subscript and abbreviated it to an uppercase X.

The Pauling-electronegativity (E-P), Matyonov-Batsanov electronegativity (E-MB), first ionization energy (EI), electron affinity (EA) and pseudo-potential core radii (PCR) were mainly used to compare the difference between anions and cations, so we define it as:

$$X = |(X_A - X_0) + (X_B - X_0)|/2$$
(2)

Tolerance factor t is an important parameter to demonstrate the stability of perovskite, which is defined as:

$$t = (R_A + R_0) / \sqrt{2} (R_B + R_0)$$
(3)

where R_A and R_B are the mole averaged ionic radius of the A-site and the B-site respectively, and R_0 is the ionic radius of the oxygen atom.

The octahedral factor (μ) is defined by:

$$\mu = R_B / R_0 \tag{4}$$

where R_B is the mole averaged ionic radius of the B-site and R_0 is the ionic radius of the oxygen ions.

The above generates a total of 28 features.

We grouped the features with Person correlation coefficients greater than 0.8 or less than -0.8. In each group, we chose a common feature related to the target property and represented the other features in the group. For example, in the first group of highly correlated Pauling-electronegativity (E-P), first energy ionization (EI), pseudopotential core radii (PCR), Octahedral factor (μ), Matyonov-Batsanov electronegativity (E-MB), we chose E-MB because of a common chemical property, and E-MB exhibited a higher correlation coefficient with *T*%. A total of 3 groups of highly relevant features were summarized and 3 features were retained, as shown in Supplementary Table 2.

Supplementary Table 2. Three groups of highly relevant features and the ones retained.

Highly relevant features	Retained feature within each group
E-P, EI, PCR, μ	E-MB
MT, IR, AR, X-O, CVR, EVR, EP, CovR,	Dce
M, NEC-S, NEC-C, AN, P, C-a, C-b, t	
V	Dve

Supplementary Figure 1. Importance assessment of 7 features based on ETR model using Mean Decrease Impurity (MDI) and Permutation Importance methods.

Supplementary Figure 2. Joint distribution of features in the sample data.

Supplementary Figure 3. SHAP dependency plot of ST and its SHAP value in ETR

and Dce value mapping.

Supplementary Figure 4. SEM images of free and fractured surfaces of the 0.04Ba-0.004Tb-KNN ceramics, (a) ST = 1165 °C, (b) ST = 1180 °C, and (c) ST = 1195 °C. Grain size distribution and mean size of the 0.04Ba-0.004Tb-KNN ceramics, (d) ST = 1165 °C, (e) ST = 1180 °C, (f) ST = 1195 °C.

Reference

 Russian Academy of Sciences A.A.Baikov Institute of Metallurgy and Materials
 Science Database on Properties of Chemical Elements, Available from: https://phases.imet-db.ru/elements/main.aspx [Last accessed 2022-06-11].

 R D, Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica* 1976;A32:751-67.
 [DOI: 10.1107/S0567739476001551]

 G V, Samsonov. Handbook of the Physicochemical Properties of the Elements. USA:Springer New York, NY;1968.

4. N E, Brese. M, O'keeffe. Bond-Valence Parameters for Solids. *Acta Crystallographica* 1991;B47:192-7. [DOI: 10.1107/S0108768190011041]

5. WebElements, Available from: https://www.webelements.com [Last accessed 2022-08-19].

 S S, Batsanov. Van der Waals Radii of Elements. *Inorganic Materials* 2001;37:871-85. [DOI: 10.1023/A:1011625728803]

7. Speight JG. Lange's handbook of chemistry. New York:McGraw-Hill, NY;2005.

8. You X. Ionic polarizability. *Chinese Science Bulletin* 1974;19:419-23. (in Chinese)

9. Feng Y, Zhang S, Sun H, Li Y, Zhun Y. Ionic polarizability. *Journal of Dalian Institute of Light Industry* 2000;19:98-101.(in Chinese)

10. Zunger A. Systematization of the stable crystal structure of allAB-type binary compounds: A pseudopotential orbital-radii approach. *Physical Review B*

1980;22:5839-72. [DOI: 10.1103/PhysRevB.22.5839]