Supplementary Material

Binary anion and cation co-doping enhance sulfide solid electrolyte performance for all-solid-state lithium batteries

Cheng Li¹, Yuqi Wu¹, Zhongwei Lv¹, Jinxue Peng¹, Jun Liu¹, Xuefan Zheng¹, Yongmin Wu², Weiping Tang², Zhengliang Gong^{1,*}, Yong Yang^{1,3,*}

¹College of Energy, Xiamen University, Xiamen 361102, Fujian, China.
²State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China.
³College of Chemistry and Chemical Engineering & Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen University, Xiamen 361102, Fujian, China.

Correspondence to: Prof. Zhengliang Gong, College of Energy, Xiamen University, Xiamen 361102, Fujian, China. E-mail: <u>zlgong@xmu.edu.cn</u>; Prof. Yong Yang, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry and College of Chemistry and Chemical Engineering & Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen University, Xiamen 361102, Fujian, China. E-mail: <u>yyang@xmu.edu.cn</u>

Figure S1. XRD patterns and Standard spectrum of oxides (SiO₂, GeO₂, SnO₂)

Figure S2. SEM images and EDS maps of the treated sulfide electrolyte particles of (a) LPS-0.05SiO₂; (b) LPS-0.05GeO₂; (c) LPS-0.05SnO₂.

Figure S3. Nyquist plots for the LPS solid electrolytes measured at room temperature.

Figure S4. Relationship between the doping amount and ionic conductivities of samples

Figure S5. The high-frequency range of Nyquist plots for the solid electrolytes measured at room temperature. (A) LPS- $xSiO_2$ (x=0.02, 0.05, 0.08, 0.1). (B) LPS- $xGeO_2$ (x=0.02, 0.05, 0.08, 0.1). (C) LPS- $xSnO_2$ (x=0.02, 0.05, 0.08, 0.1).

Figure S6. XPS detail spectra of Si 2p and O 1s for LPS, LPS-0.02SiO₂, LPS-0.05SiO₂, LPS-0.08SiO₂ and LPS-0.1SiO₂.

Figure S7. XPS detail spectra of Si 2p and O 1s for LPS, LPS-0.02GeO₂, LPS-0.05GeO₂, LPS-0.08GeO₂ and LPS-0.1GeO₂.

Figure S8. CV curves of the Li/SSEs/SSEs+AB cells within the voltage range from 2 to 4.5 V (vs Li/Li⁺), the first cycle curves of (A) LPS-xSiO₂ (x=0, 0.02, 0.05, 0.08, 0.1), (B) LPS-xGeO₂ (x=0, 0.02, 0.05, 0.08, 0.1), (C) LPS-xSnO₂ (x=0, 0.02, 0.05, 0.08, 0.1).

Figure S9. Nyquist plots and XPS spectra of LPS+AB/LPS/Li cell with pristine electrolytes LPS (A) Before cycling , (B) Charge to 4.5 V, (C) Discharge to 2 V.

Figure S10. Nyquist plots and XPS spectra of cell with electrolytes LPS-SiO₂ (A) Before cycling , (B) Charge to 4.5 V, (C) Discharge to 2 V.

Figure S11. Nyquist plots and XPS spectra of cell with electrolytes LPS-GeO₂ (A) Before cycling , (B) Charge to 4.5 V, (C) Discharge to 2 V.

Figure S12. Nyquist plots and XPS spectra of cell with electrolytes LPS-SnO₂ (A) Before cycling , (B) Charge to 4.5 V, (C) Discharge to 2 V.

Figure S13. Current-time curve of the SS/SSEs/SS cells with the potentionstatic voltage 0.5V. (A) LPS-xSiO₂ (x=0, 0.02, 0.05, 0.08, 0.1). (B) LPS-xGeO₂ (x=0, 0.02, 0.05, 0.08, 0.1). (C) LPS-xSnO₂ (x=0, 0.02, 0.05, 0.08, 0.1).

Figure S14. Galvanostatic charge/discharge voltage profiles of the Li/SSEs/Li symmetric cells at 0.1 mA cm⁻² at room temperature.

Figure S15. XPS detail spectra of pristine LPS electrolyte (A) Before cycling, (B) After five cycles

Figure S16. XPS detail spectra of (a) LPS-0.05SiO₂ and (b) LPS-0.05GeO₂ sulfide electrolyte after five cycles.

Supplementary Table S1. The lattice constant change of LPS-xMO₂ electrolytes with different doping conditions

	space group	a (Å)	b (Å)	c (Å)
LPS	P1	12.4502	6.0483	12.5215
LPS-0.02SiO ₂	P1	12.4506	6.0486	12.5218
LPS-0.05SiO ₂		12.4513	6.0491	12.5225
LPS-0.08SiO ₂		12.4517	6.0498	12.5231
LPS-0.1SiO ₂		-	-	-
LPS-0.02GeO ₂	P1	12.4539	6.0521	12.5244
LPS-0.05GeO2		12.4572	6.0562	12.5272
LPS-0.08GeO2		12.4601	6.0611	12.5298
LPS-0.1GeO2		-	-	-
LPS-0.02SnO ₂	P1	12.4566	6.0531	12.5257
LPS-0.05SnO ₂		12.4617	6.0597	12.5296
LPS-0.08SnO ₂		12.4691	6.0654	12.5334
LPS-0.1SnO ₂		_	-	-

Electronic conductive (×10 ⁻¹⁰ Scm ⁻¹)							
	<i>x</i> =0	<i>x</i> =0.02	<i>x</i> =0.05	x=0.08	<i>x</i> =0.1		
LPS-xSiO ₂	12	11.75	11.44	10.76	10.18		
LPS- <i>x</i> GeO ₂	12	12.67	12.39	12.21	11.97		
LPS-xSnO ₂	12	12.19	12.28	12.73	14.19		

Supplementary Table S2. Electronic conductive of treated electrolytes with different doping conditions