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Abstract
Aim: Chemoresistance is the biggest obstacle in cancer treatment. Our previous study demonstrated that Shenmai 
injection (SMI), a Chinese herbal medicine, enhanced the antitumor effect of cisplatin via glucose metabolism 
reprogramming. This study aimed to further determine whether the SMI sensitizes the non-small cell lung cancer 
(NSCLC) cells to cisplatin through regulation mitochondrial dynamics.

Methods: The Kaplan-Meier Plotter database was used to investigate the relationship between mRNA expression 
of mitofusin-2 (Mfn2) and the survival analysis of NSCLC patients. The protein expression of Mfn2 in a lung 
adenocarcinoma tissue chip was detected by immunohistochemistry staining. The expression of Mfn2 and 
ATAD3A were compared between cisplatin-sensitive A549 and cisplatin-resistant A549/DDP cells. Additionally, 
A549/DDP cells were co-treated with cisplatin and SMI to detect mitochondrial morphology by fluorescent 
staining, apoptosis-related protein expression with Western blotting, and mitochondrial membrane potential 
(ΔΨm) with flow cytometry analysis.
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Results: The mean survival time of the Mfn2low group was significantly lower than that of the Mfn2high group by 
Kaplan-Meier Plotter database analysis, and the Mfn2 protein expression level was lower in cancer tissues than in 
adjacent tissues. The combination of SMI and cisplatin induced dynamic changes in A549/DDP cells, with 
increased mitochondrial fusion followed by upregulation of Mfn2 and downregulation of ATAD3A and reduced 
mitochondrial mass and ΔΨm. Moreover, SMI significantly enhanced cisplatin-induced A549/DDP apoptosis, 
upregulated Bax and the active subunit of caspase-3, and downregulated Bcl-2 expression, as shown via Hoechst 
staining and flow cytometry analysis.

Conclusion: Our findings suggest SMI enhances cisplatin-induced apoptosis through regulation of Mfn2-dependent 
mitochondrial dynamics in cisplatin-resistant lung adenocarcinoma cells.
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INTRODUCTION
Lung cancer is one of the most common malignancies worldwide and has become the leading cause of 
cancer-related mortality in China. Non-small cell lung cancer (NSCLC) accounts for approximately 80%-
85% of all lung cancers[1]. Cisplatin-based combination chemotherapy is the standard drug treatment for 
NSCLC; however, multidrug resistance to chemotherapy results in failure of NSCLC treatment[2].

Herbal and traditional medicines [traditional Chinese medicine (TCM)] are important complementary and 
alternative medicines used for developing anticancer therapies in Asia. Shenmai injection (SMI), the water-
soluble extract of Radix Ginseng Rubra and Radix Ophiopogonis, is derived from a well-known traditional 
Chinese formula, Shendong Yin, and approved by the China Food and Drug Administration as an 
injectable treatment[3]. SMI is widely applied in cardiovascular diseases, such as myocardial infarction, 
arrhythmia, and myocardial fibrosis[4-6]. Current clinical practice has shown that SMI is a valid alternative 
medicine for anti-tumor therapy and alleviates chemotherapy-induced side effects in NSCLC, breast cancer, 
and pancreatic cancer[7]. Additionally, experimental studies have demonstrated the mechanism of reversal of 
adriamycin and paclitaxel in colorectal cancers[8], as well as enhancing the antitumor effect of cisplatin via 
glucose metabolism reprogramming in lung adenocarcinoma A549/DDP cells as detected by our previous 
study[9].

Recent studies have brought to light the fundamental role of mitochondria in the resistance to 
chemotherapy. Mitochondria are highly dynamic organelles, and their morphology and function are strictly 
preserved by the balance between mitochondrial fission and fusion[10]. The fission and fusion processes are 
generically termed mitochondrial dynamics. Mitochondrial fission is mediated by GTPase dynamin-related 
protein-1 (Drp1), fission protein 1 (Fis1), and mitochondrial fission factor. The fusion process is regulated 
by two membranes, the mitofusin proteins (Mfn1 and Mfn2) and the optic atrophy 1 protein (Opa1)[11]. We 
reported the antitumor mechanisms of various TCMs as drug resistance reversal agents. Shenqi Fuzheng 
injection effectively improved cisplatin sensitivity in human lung adenocarcinoma A549/DDP cells through 
Mfn2-mediated cell cycle arrest and apoptosis. Bu-Zhong-Yi-Qi decoction reversed cisplatin resistance by 
inducing mitochondrial autophagy in A549/DDP cells[12,13]. In the present study, we focused on Mfn2-
mediated mitochondrial dynamics and continued to explore the possible role of SMI in reversing cisplatin 
resistance in NSCLC cells.
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METHODS
Cell culture and chemicals
The A549 human lung adenocarcinoma cell line and the A549/DDP variant cell line were obtained from the 
National Infrastructure of Cell Line Resource, Beijing, China. Cells were cultured in RPMI1640 medium 
(Hyclone, USA) supplemented with 10% fetal bovine serum (Hyclone, USA) and grown at 37 °C in a 5% 
CO2 atmosphere. As in our previous report, the A549/DDP cell medium contained 16.7 μM cisplatin to 
maintain drug resistance, with no cisplatin (Sigma, USA) for two weeks before the experiment[9]. SMI 
containing 200 mg Radix Ginseng Rubra and 200 mg Radix Ophiopogonis/1 mL was purchased from the 
Hebei Shenwei Pharmaceutical Factory.

Patient survival assay
We investigated the correlation between Mfn2 mRNA levels with overall survival using the online survival 
analysis tool Kaplan-Meier Plotter (http://kmplot.com/analysis/). Briefly, Mfn2 was fed into the database, 
and the survival time (months) of patients with lung adenocarcinoma was analyzed according to the hazard 
ratio (HR), 95% confidence interval (CI), and log-rank P-value shown in the main panel of the operating 
system. According to the expression of Mfn2 mRNA, 305 lung adenocarcinoma cases in the database were 
ranked from low expression to high expression. Cases were divided into a high expression group and a low 
expression group[14].

Human tissue immunohistochemistry
The lung adenocarcinoma tissue microarray (HLugA150CS02), including lung adenocarcinoma and paired 
adjacent normal lung tissue (n = 75), was obtained from Outdo Biotech Co. Ltd. (Shanghai, China). The 
rights for the microarray for scientific research was approved by the Committees for the Ethical Review of 
Research at the Taizhou Hospital, Zhejiang province. The expression level of the Mfn2 protein in the tissue 
microarray was detected using tissue immunohistochemistry (IHC). IHC staining of the microarray was 
performed as previously described. Briefly, after dewaxing, rehydration, and blocking of endogenous 
peroxidase, the microarray was incubated with anti-Mfn2 and then a secondary antibody, stained with 
DAB, and images were captured using a tissue chip scanner (Pannoramic MIDI, Hungary)[15]. The TMA 
software of the Quant center analysis software was applied to automatically identify and analyze the 
percentage of cells in each tissue point, and the staining score was comprehensively determined according 
to the weighted results of the percentage of positively stained cells (1 point, ≤ 25% positive cells; 2 points, 
26%-49%; 3 points, 50%-74%; 4 points, ≥ 75%) and the staining intensity (0 point, negative; 1 point, weak; 2 
points, moderate; 3 points, strong). Using the median score as the critical value, we defined the samples 
with a score less than or equal to the median as the low-expression group and those with a score above the 
median as the high-expression group[16].

Chemo-resistance and assessment of cell viability
The viability of A549/DDP cells following treatment with SMI or co-treatment with cisplatin and SMI was 
determined via CCK-8 assay. A549/DDP cells were seeded into four 96-well plates at a density of 
1 × 104/well, and then the cells were incubated with different concentrations of SMI (5, 10, 20, 40, 80, or 
160 mg/mL) for 24 h at 37 °C. CCK-8 kit reagent was added into each well, and the optical density was 
detected at 460 nm using the Multiscan Spectrum (BioTek, ELx800, USA). For the co-treatment of cisplatin 
and SMI, the cells were re-treated with IC5, IC10, and IC20 of SMI (13, 20, and 30 mg/mL, respectively) for 2 h 
and then different concentrations of cisplatin (15, 30, 60, 120, and 240 μM) for another 24 h incubation[9]. 
Then, chemoresistance was tested using the above treatment scheme. The IC20 of cisplatin was calculated 
using the cell survival curve formula previously published in the literature[13].

http://kmplot.com/analysis/
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Western blot analysis
A549 cells or A549/DDP cells were seeded, and the proteins were extracted, quantified, and transferred to a 
polyvinylidene fluoride membrane. Mfn2, ATAD3A (Abcam, Cambridge, UK), and β-actin antibodies 
(CST, Boston, USA) were used. The proteins were visualized using ECL reagent (Vazyme, Nanjing, China), 
and the results were measured using ImageJ software (National Institutes of Health, Bethesda, MD, USA). 
Additionally, a WES™ machine (ProteinSimple, San Jose, CA, USA) was used for apoptosis-related protein 
detection. A549/DDP cells were retreated with SMI at a dose of 13, 20, and 30 mg/mL for 2 h and then 
incubated with cisplatin for another 24 h. During sample loading, the whole-cell protein samples, sealing 
solution, anti-Bax, anti-Bcl-2, anti-Cleaved-caspase 3, secondary antibody (ABclonal, Wuhan, China), 
luminescent solution, and eluent were successively added to the plate according to a set 3 h run 
procedure[17]. Data were analyzed using Compass for SW software.

Hoechst staining
Morphological changes in chromatin were characteristic of apoptosis, which was assessed by Hoechst 33342 
(Sigma, USA). After treatment with cisplatin and SMI, A549/DDP cells were stained with Hoechst, and the 
results were captured by a fluorescence microscope (ZEISS, Observer AL, Germany)[18].

Annexin V-FITC/PI double staining
After treatment with cisplatin and SMI, A549/DDP cells were stained using an Annexin V-FITC/PI assay kit 
(Vazyme, Nanjing, China) according to the manufacturer’s instructions. The results were measured via a 
flow cytometer (BD Biosciences, San Diego, CA) and analyzed with BD Accuri C6 Software[19].

Mitochondrial labeling and mitochondrial mass analysis
After treatment with cisplatin and SMI, A549/DDP cells were stained with 20 nM Mito-Tracker Green 
(Beyotime, Shanghai, China) according to the manufacturer’s instructions and detected and harvested using 
confocal microscopy (Olympus, FV10i, Japan). Mitochondrial mass was analyzed by calculating the 
fluorescent intensity with ImageJ software[20].

Mitochondrial membrane potential assay
Mitochondrial potential (ΔΨm) was determined using fluorescent dye Rhodamine 123 (Beyotime, Shanghai, 
China). After treatment with cisplatin and SMI, A549/DDP cells were stained with Rhodamine 123 and 
analyzed via a flow cytometer (Beckman Coulter, California, US)[21].

Statistical analysis
Each experiment was performed separately at least three times. The data are expressed as means ± SD. 
Statistical analyses were performed using SPSS 22.0 and GraphPad Prism software version 7.0. The survival 
curve was constructed using the Kaplan-Meier method and compared by log-rank test. Pearson chi-square 
test or Student’s t-test was used to detect the relationship between Mfn2 expression and clinical pathological 
factors in the IHC results. Statistical comparisons between different groups were evaluated using one-way 
ANOVA, and P < 0.05 was considered a statistically significant difference.

RESULTS
Mfn2 is a promising biomarker for the prognosis of NSCLC
The effects of the mitochondrial fusion protein Mfn2 in tumors are currently unclear. We first investigated 
the relationship between Mfn2 mRNA expression and the survival of NSCLC patients using the Kaplan-
Meier Plotter database. The analysis showed that the mean survival of the Mfn2low group (n = 210) was 41.17 
months, which was significantly lower than that in the Mfn2high group (n = 294), which was 59.67 months 
(HR = 0.69, 95%CI: 0.51-0.94, P < 0.05) [Figure 1A]. Next, we examined Mfn2 protein expression in 75 pairs 
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Figure 1. Analysis of clinical data on Mfn2 in lung adenocarcinoma patients: (A) the relationship between mRNA expression of Mfn2 and 
survival rate as determined via the Kaplan-Meier Plotter database; and (B, C) IHC staining and score of Mfn2 protein expression, n = 75. 
IHC: Immunohistochemistry.

of human lung adenocarcinoma tissue microarrays via IHC staining, and the results show that Mfn2 
expression level in lung adenocarcinoma was lower than in the matched paracancerous tissues (P < 0.001) 
[Figure 1B and C]. Furthermore, we assessed the association of Mfn2 expression with lung adenocarcinoma 
clinical features. The results show no significant statistical difference in gender, age, tumor size, or TNM 
stage between the high Mfn2 expression group and the low Mfn2 expression group [Table 1].

Mfn2 expression was low in cisplatin-resistant lung adenocarcinoma cells
To determine whether Mfn2 is related to chemical resistance in NSCLC, we compared the expression level 
of Mfn2 in cisplatin-sensitive lung adenocarcinoma A549 cells and cisplatin-resistant A549/DDP cells. The 
results show that the expression of Mfn2 was significantly lower in A549/DDP cells compared to A549 cells 
[Figure 2], which has been affirmed in previous studies[12].

The ATAD3A protein, an important number of the ATPase family AAA domain-containing protein 3 
(ATAD3), is not only involved in mitochondrial dynamics but also takes part in cell death modulation[22]. 
We compared the expression of ATAD3A in cisplatin-sensitive A549 cells and cisplatin-resistant 
A549/DDP cells. Contrary to the expression of Mfn2, the expression levels of ATAD3A were upregulated in 
A549/DDP vs. A549 cells [Figure 2].
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Table 1. The relationship between Mfn2 expression and clinical variables in lung adenocarcinoma patients as determined by IHC 
staining

Mfn2 expression
Variable

High Low
P value

Sample size 47 28

Gender

Female 22 (46.8%) 13 (46.4%)

Male 25 (53.2%) 15 (53.6%)

0.975

Age

≥ 60 28 (59.6%) 17 (60.7%)

< 60 19 (40.4%) 11 (39.3%)

0.922

Tumor size, cm

< 5 32 (68.0%) 23 (82.1%)

≥ 5 15 (32.0%) 5 (17.9%)

0.183

TNM stage

I-II 35 (74.5%) 24 (85.7%)

III-IV 12 (25.5%) 4 (14.3%)

0.250

IHC: Immunohistochemistry.

Figure 2. The expression levels of Mfn2 and ATAD3A in A549 and A549/DDP cells as determined by Western blot analysis: (A) the 
results of Western blot; and (B) the quantified analysis by densitometry. The results are shown as the mean ± standard deviation, n = 3.

SMI significantly enhanced cisplatin-induced A549/DDP cell cytotoxicity
To determine the cytotoxic effects of SMI, we treated A549/DDP cells with various concentrations (5, 10, 20, 
40, 80, and 160 mg/mL) of SMI. The results show that SMI exhibited direct antitumor effects (the IC5, IC10, 
and IC20 values were 13, 20, and 30 mg/mL, respectively) [Figure 3A]. Next, we incubated A549/DDP cells 
with different concentrations of SMI and cisplatin (15, 30, 60, 120, and 240 μM) collectively. The results 
show that SMI significantly enhanced cisplatin-induced cytotoxicity [Figure 3B].

SMI enhanced cisplatin-induced cytotoxicity by modulating Mfn2-dependent mitochondrial 
dynamics
Mitochondrial dynamics have been implicated in tumorigenesis[23]. We labeled mitochondria with a 
MitoTracker Green probe and observed the results via a confocal laser scanning microscope. The 
mitochondria of the cisplatin alone and cisplatin + SMI groups were thread-like and filamentous and 
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Figure 3. SMI reversed cisplatin resistance in A549/DDP cells. (A) Direct cytotoxic effects of SMI in A549/DDP cells. A549/DDP cells 
were treated with various concentrations (5, 10, 20, 40, 80, and 160 mg/mL) of SMI for 24 h. (B) Cytotoxic effects of SMI and cisplatin 
in A549/DDP cells. A549/DDP cells were pre-treated with various concentrations (13, 20, and 30 mg/mL) of SMI (the approximate 
IC5, IC10, and IC20, respectively) for 2 h and then exposed to cisplatin (15, 30, 60, 120, and 240 μM) for another 24 h. The cell viability 
was determined using a Cell Counting Kit. Each data point represents the mean ± SD of the results from four individual measurements. 
SMI: Shenmai injection.

distributed in the perinuclear space, especially in the cisplatin + SMI groups, when compared with the 
cisplatin alone group [Figure 4A]. In addition, mitochondrial mass of the A549/DDP cells was decreased, 
and the greatest effect was shown in the cisplatin (23.3 μM, equivalent to IC20

[9]) + SMI (30 mg/mL) group 
compared with the cisplatin (-) + SMI (-) group (P < 0.05) [Figure 4B]. We also detected the change in 
expression of Mfn2 and ATAD3A, and the results show that Mfn2 gradually increased and ATAD3A 
expression decreased, following the mitochondrial morphology alterations [Figure 4C]. ΔΨm is another 
assessment indicator for mitochondrial morphology that is equally important to apoptosis. Figure 4D shows 
that cisplatin combined with SMI notably attenuated mitochondrial membrane potential.

A combination of SMI and cisplatin induced apoptosis in human lung adenocarcinoma A549/DDP 
cells
We further investigated the relationship between mitochondrial dynamic changes and cell death in 
A549/DDP cells co-treated with SMI and cisplatin. Hoechst staining was conducted for initial apoptosis 
detection, and the results show that apoptotic A549/DDP cells increased gradually with the combination of 
cisplatin and increasing SMI treatment [Figure 5A]. Then, apoptosis was further confirmed by flow 
cytometry using Annexin V-FITC and PI double staining. The results show that apoptotic A549/DDP cells 
(in the Q1-UR quadrant and the Q1-LR quadrant) increased from 12.1% in the cisplatin (23.3 μM) group to 
22.1% in the cisplatin (23.3 μM) + SMI (10 mg/mL) group, 23.9% in the cisplatin (23.3 μM) + SMI 
(15 mg/mL) group, and 33.8% in the cisplatin (23.3 μM) + SMI (20 mg/mL) group [Figure 5B]. We further 
investigated the expression of Bcl-2 and Bax and the initiation of caspase-3, the three important effectors of 
apoptosis, in A549/DDP cells by Simple Western blot analysis. The results show declining expression of the 
anti-apoptotic Bcl-2 protein and increasing expression of the apoptosis-promoting Bax protein in the 
groups treated with the combination of cisplatin and increasing concentrations of SMI. In addition, cleaved-
caspase 3, the active subunit of the mature caspase-3, was significantly increased in the A549/DDP cells 
incubated with cisplatin and SMI compared to the cisplatin alone group [Figure 5C].
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Figure 4. The combination of SMI and cisplatin induced Mfn2-dependent mitochondrial dynamic changes in A549/DDP cells. 
A549/DDP cells were pre-treated with various concentrations (13, 20, and 30 mg/mL) of SMI for 2 h and then exposed to cisplatin 
(25 μM) for another 24 h. (A) A549/DDP cells were labeled with the MitoTracker Green probe. The cells in the SMI and cisplatin 
treatment groups displayed mitochondrial spheres or ovals of widely different size, some several times larger than in the untreated cells’ 
mitochondrial tubules, as shown by a confocal laser scanning microscope. (B) Decrease in mitochondrial mass as determined by 
statistical analysis of the MitoTracker Green fluorescence intensity in (A) by ImageJ. (C) Western blotting detection and the quantified 
analysis by densitometry. Mean ± standard deviation, n = 3. (D) Decrease of ΔΨm in A549/DDP cells treated with a combination of SMI 
and cisplatin. Cells were dyed via Rhodamine 123, and the peak of fluorescence intensity of the SMI and cisplatin co-treatment groups 
shifted left as determined by flow cytometry and fluorescence microscopy (400×). SMI: Shenmai injection; ΔΨm: mitochondrial 
potential.

DISCUSSION
At present, radiotherapy and chemotherapy remain the first comprehensive treatment choices for 
preventing recurrence following surgery. Cisplatin-based chemotherapy is widely used in the clinical 
treatment of NSCLC. However, the growing problem of cisplatin resistance remains an important factor 
leading to multidrug resistance in tumor cells, failure of clinical treatment, and ultimately the death of 
patients[24].

Recently, Mfn2 has attracted much attention in cancer studies, but its exact role is not well established. In 
some studies, Mfn2 has been demonstrated to be an oncogenic gene, whereas others have identified 
antioncogenic effects[25]. We investigated the relationship between Mfn2 mRNA expression and clinical 
characteristics using the Kaplan-Meier Plotter database. The results confirm that Mfn2 may play an 
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Figure 5. Combination of SMI and cisplatin induced apoptosis in human lung adenocarcinoma A549/DDP cells. (A) Apoptosis detection 
by Hoechst staining. White arrows show apoptotic cells with nuclear condensation (400×). (B) Cells were dyed by Annexin V-FITC/PI 
and detected by flow cytometry. (C) Simple Western blot detection for apoptosis-related proteins (Bcl-2, Bax, and cleaved-caspase 3). 
SMI: Shenmai injection.

antioncogenic role; patients with high Mfn2 expression had a better prognosis than those with lower 
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expression. To further clarify the role of Mfn2 in NSCLC, we compared the Mfn2 expression levels in 75 
pairs of lung adenocarcinoma and matched paracancerous tissues. The results show that the expression level 
of Mfn2 in lung adenocarcinoma was lower than that in matched paracancerous tissues. Until now, few 
studies have focused on the role of Mfn2 in lung adenocarcinoma, some of which presented results 
inconsistent with our study showing that Mfn2 was downregulated in human lung adenocarcinoma tissues 
and Mfn2 exhibited antitumor activity in vivo and in vitro[26]. In addition, in our study, we did not identify a 
correlation between Mfn2 expression and clinical pathological parameters such as tumor size and TNM 
stage. This point is consistent with one of the studies, in which there was similarly no significant correlation 
between Mfn2 expression and TNM stage, although Mfn2 expression was higher in lung adenocarcinoma 
tissues than in adjacent tissues[27].

Similarly, there are opposing reports on the effects of Mfn2 in cell and animal studies. One study showed 
that Mfn2 knockdown deregulated cell proliferation, cell cycle modulation, and invasion in cancer cells[28]. 
However, increasing data indicate that Mfn2 exhibits an anti-tumor role by inhibiting cancer cell 
proliferation, migration, and invasion in vitro and decreasing tumor progression in vivo[29-32]. 
Overexpression of Mfn2 triggered cervical tumor cell apoptosis via a mitochondrial-dependent pathway; 
repressed breast cancer cell proliferation, migration, and invasion by the inhibiting Ras-ERK1/2 signaling 
pathway; and inhibited urinary bladder carcinoma cell proliferation via inhibition of G1 to S phase 
transition[31,32]. However, studies on the effect of Mfn2 on chemotherapy resistance in cancer are very 
limited. One study reported that the expression of Mfn2 is upregulated in cisplatin-resistant murine 
leukemia L1210/DDP cells compared with the parental L1210 cells[33]. On the contrary, our previous study 
found that Mfn2 expression in cisplatin-resistant lung adenocarcinoma A549/DDP cells was lower than 
cisplatin-susceptible A549 cells. In addition, Mfn2 expression in A549/DDP cells continued to decrease 
when treated with the IC10 concentration of cisplatin[12]. Here, we re-confirmed that Mfn2 expression in 
A549/DDP cells was significantly lower than that in A549 cells. The difference of Mfn2 expression between 
the article referenced above and ours is likely due to the different roles of Mfn2 in different types or species 
of target cells. Further study is needed to verify this.

ATAD3 is a mitochondrial membrane-bound ATPase expressed in many organisms that plays an important 
role in mitochondrial DNA replication and transcription[34]. ATAD3 is localized to the mitochondrial inner 
membrane, and the topology of ATAD3 shows that it interacts with both the inner and outer mitochondrial 
membranes[35]. ATAD3A is reportedly involved in mitochondrial dynamics, mitochondrial activity, 
cholesterol metabolism, and cell growth and cancer. Furthermore, ATAD3A is confirmed as an anti-tumor 
cytokine involved in sensitivity to chemotherapy and radiation in most cancers[23,36]. We compared the 
expression of ATAD3A in A549 and A549/DDP cells and found that it was upregulated in the 549/DDP 
cells. The high expression of ATAD3A was related to cisplatin resistance in lung adenocarcinoma in our 
studies, which is in agreement with other studies where silencing ATAd3A expression reduced cisplatin 
resistance in prostate cancer and cisplatin, doxorubicin, and paclitaxel resistance in uterine cervical 
cancer[37].

Mitochondria are organized in a small, fragmented or tubular, dynamic network that undergoes continuous 
remodeling dependent on the processes of fusion and fission[11]. Studies have demonstrated a dynamic 
imbalance of fission and fusion in cancer cells, where there is a disturbed equilibrium between fission or 
fusion protein activity or expression levels[38]. It has been reported that mitochondrial fission is frequently 
increased in cancer cells due to the downregulation of the mitofusin proteins including Mfn1, Mfn2, and 
Opa1 and/or the upregulation of Drp1[39]. In our study, we found that a low expression of Mfn2 was related 
to cisplatin resistance in lung adenocarcinoma cells, and the expression of Mfn2 in A549/DDP cells was 
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significantly increased following co-treatment with cisplatin and SMI, followed by reduced mitochondrial 
fragmentation. The sensitivity to cisplatin was further confirmed by reducing the expression level of 
ATAD3A in A549/DDP cells co-treated with cisplatin and SMI. Mitochondrial mass and ΔΨm are 
important indices for evaluating mitochondrial function, and they are frequently followed by apoptosis[40]. 
In our study, we observed that mitochondrial mass and ΔΨm were decreased by co-treatment with cisplatin 
and SMI in A549/DDP cells, which indicated that SMI enhancement of cisplatin sensitivity was related to 
apoptosis. It is generally believed that continuous mitochondrial fusion can preserve cellular integrity, 
protect against autophagy in response to nutrient deprivation, and fission is helpful for maintaining 
mitochondrial health by selectively eliminating damaged mitochondrial proteins through apoptotic 
pathways in normal cells[41]. However, mitochondrial morphology, regardless of whether characterized by 
small and fragmented or long and interconnected tubule mitochondria, is related to the cellular processes 
and different circumstances the cell is under[42]. Furthermore, because mitochondrial function is closely 
related to mitochondrial dynamics, highly activated aerobic glycolysis has been linked to mitochondrial 
fusion and fission in many types of cancer[43]. Additionally, a switch of cells from one form of ATP 
production to another is also likely accompanied by a change in mitochondrial structure[42]. Previous studies 
have shown that cells with mitochondria that have undergone fusion rather than fission are more likely to 
generate ATP via oxidative phosphorylation (OXPHOS) than glycolysis. Mfn2 plays an important role in 
increasing the expression of OXPHOS genes[44]. In our study, A549/DDP cells presented with punctate and 
fragmented mitochondria when treated with cisplatin long term. Co-treatment with cisplatin and SMI 
caused mitochondria to fuse and appear as thread-like and filamentous, which was followed by Mfn2 
upregulation. More powerful evidence came from our recent study showing that cisplatin-resistant 
A549/DDP cells were more dependent on aerobic glycolysis than cisplatin-sensitive A549 cells. In addition, 
co-treatment with cisplatin and SMI reduced glycolysis in A549/DDP cells with reduced expression levels of 
key glycolytic enzymes such as hexokinase 2 (HK2), pyruvate kinase M1/2 (PKM1/2), glucose transporter 1 
(GLUT1), and pyruvate dehydrogenase (PDH)[9]. In summary, SMI combined with cisplatin promoted 
mitochondrial fusion by upregulating Mfn2 expression, which switched cisplatin-resistant cells from 
glycolysis to OXPHOS.

A recent study found that SMI attenuates hypoxia/reoxygenation-induced mitochondrial dysfunction and 
cell damage[45]. In our study, we found that SMI enhanced cancer cells apoptosis by regulating 
mitochondrial dynamics. SMI is extracted from two crude drugs, Radix Ginseng Rubra and Radix 
Ophiopogonis root. The main bioactive constituents of Radix Ginseng Rubra are the ginsenosides, and 
steroidal saponins are the principal active components of Radix Ophiopogonis[46,47]. Some of ginsenosides 
have been found to induce cell apoptosis by increasing mitochondrial membrane permeability, promote the 
release of cytochrome C into the cytosol, and activate caspase proteases[48]. Diosgenin has also been reported 
to induce mitochondrial apoptosis by enhancing the production of ROS and cleaved caspase-9 and regulates 
the balance of Bax/Bcl-2[49]. In this study, the mechanism of SMI combined with cisplatin inducing 
mitochondrial apoptosis by upregulating Mfn2 expression might be associated with the active components 
of Radix Ginseng Rubra and Radix Ophiopogonis.

In conclusion, we first confirmed that the expression of Mfn2 in lung adenocarcinoma was lower than that 
in matched paracancerous tissues. Second, we demonstrated that Mfn2 expression in cisplatin-resistant lung 
adenocarcinoma A549/DDP cells was lower than that in cisplatin-susceptible A549 cells. Finally, we found 
that co-treatment with SMI and cisplatin enhanced lung adenocarcinoma apoptosis through regulation of 
Mfn2-dependent mitochondrial dynamics [Figure 6]. This study is the first to focus on mitochondrial 
dynamics in the study of the pharmacological mechanisms of SMI for tumor therapy. These findings 
highlight the therapeutic potential of mitochondrial dynamics regulation as a novel strategy to overcome 
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Figure 6. The combination of SMI and cisplatin induced apoptosis through regulation of Mfn2-dependent mitochondrial dynamics in 
cisplatin-resistant A549 cells. SMI: Shenmai injection.

drug resistance in lung cancer. Furthermore, these results provide direct scientific data on SMI, a modern 
Chinese medicinal injection, as an effective chemotherapy sensitizer in tumor adjunctive treatment.
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