

Supplementary Materials

Heterogeneous catalytic aldehyde-water shift of benzaldehyde into benzoic acid and hydrogen

Xinying Meng^{1,#}, Biwei Yan^{1,#}, Zening Qi², Min Xie², Yuanyuan Ma¹, Fangxian Cao^{3,*}, Yongquan Qu^{1,*}

¹Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.

²Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an 710075, Shaanxi, China.

³Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.

[#]Authors contributed equally.

***Correspondence to:** Prof. Yongquan Qu, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China. E-mail: yongquan@nwpu.edu.cn; Prof. Fangxian Cao, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China, E-mail: cfx_kust@163.com

MAIN TEXT (optional)

1. Materials

Ce(NO₃)₃, H₂PtCl₆, benzaldehyde, benzoic acid, benzyl alcohol, NaOH, KOH, Na₃PO₄, Na₂CO₃, DBU, DMAP, IrCl₃, RhCl₃, HAuCl₄, PdCl₂, RuCl₃, D₂O, PhCDO, 2-methylbenzaldehyde, 3-methylbenzaldehyde, p-tolualdehyde, 4-fluorobenzaldehyde, 2-bromobenzaldehyde, 1, 4-dioxane were purchased from Energy Chemical. All the reagents were of analytical grade and used directly without any further purification before the experiments.

2. Catalytic tests of catalysts

The conversion of benzaldehyde was calculated by:

$$Conv. (PhCHO) = \frac{n_{PhCOOH} + n_{PhCH_2OH}}{n_{PhCHO}} \times 100\% \quad (1)$$

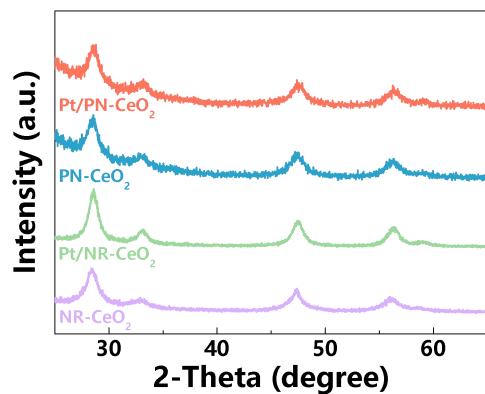
Where n_{PhCOOH}, n_{PhCH₂OH} represented the moles of the generated PhCOOH, PhCH₂OH, respectively. n_{PhCHO} represented the moles of PhCHO.

The selectivity of benzoic acid and benzyl alcohol were calculated by:

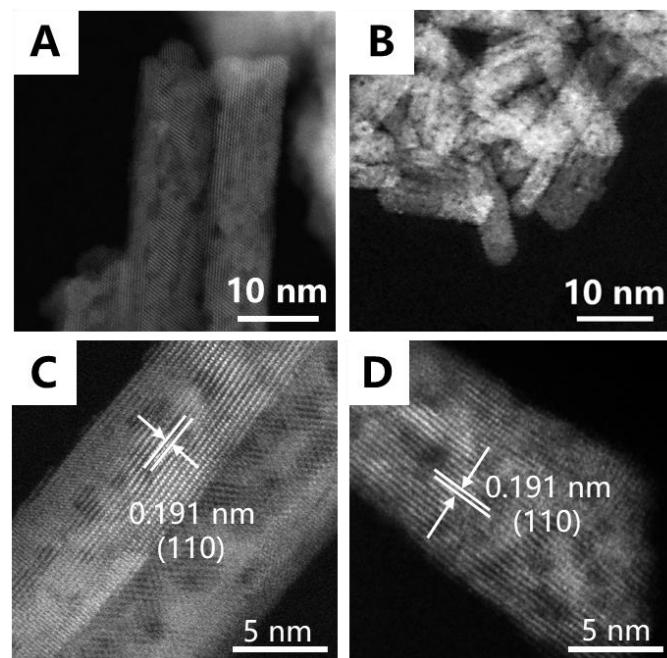
$$Sel. (PhCOOH) = \frac{n_{PhCOOH}}{n_{PhCOOH} + n_{PhCH_2OH}} \times 100\% \quad (2)$$

$$Sel. (PhCH_2OH) = \frac{n_{PhCH_2OH}}{n_{PhCOOH} + n_{PhCH_2OH}} \times 100\% \quad (3)$$

Where n_{PhCOOH}, n_{PhCH₂OH} represented the moles of generated PhCOOH, PhCH₂OH, respectively.

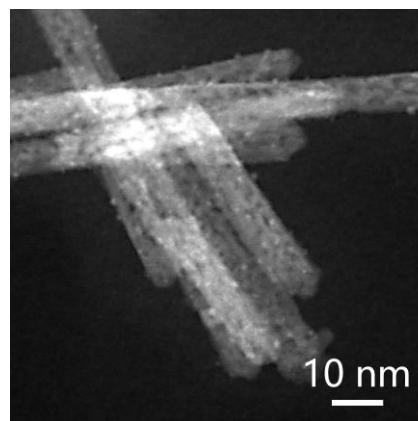

The yield of benzoic acid was calculated by:

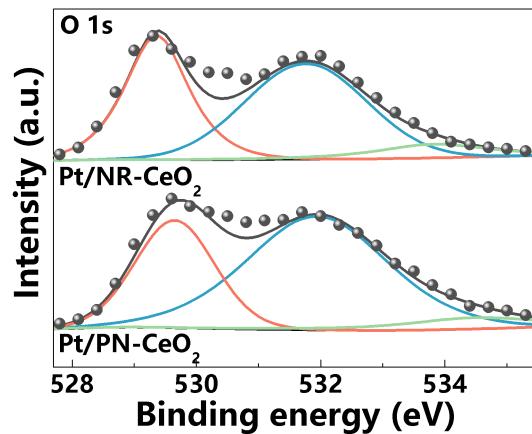
$$Yield (PhCOOH) = Conv. (PhCOOH) \times Sel. (PhCOOH) \quad (4)$$

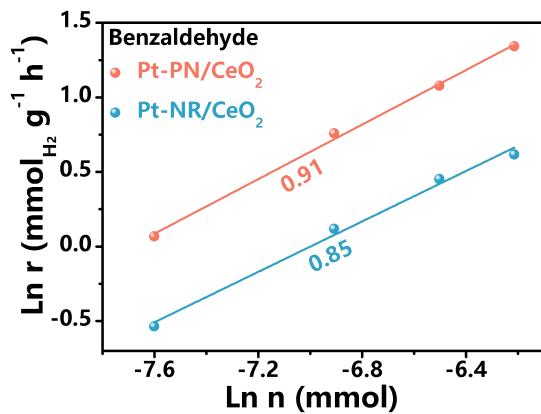

The yield of H₂ was calculated by:

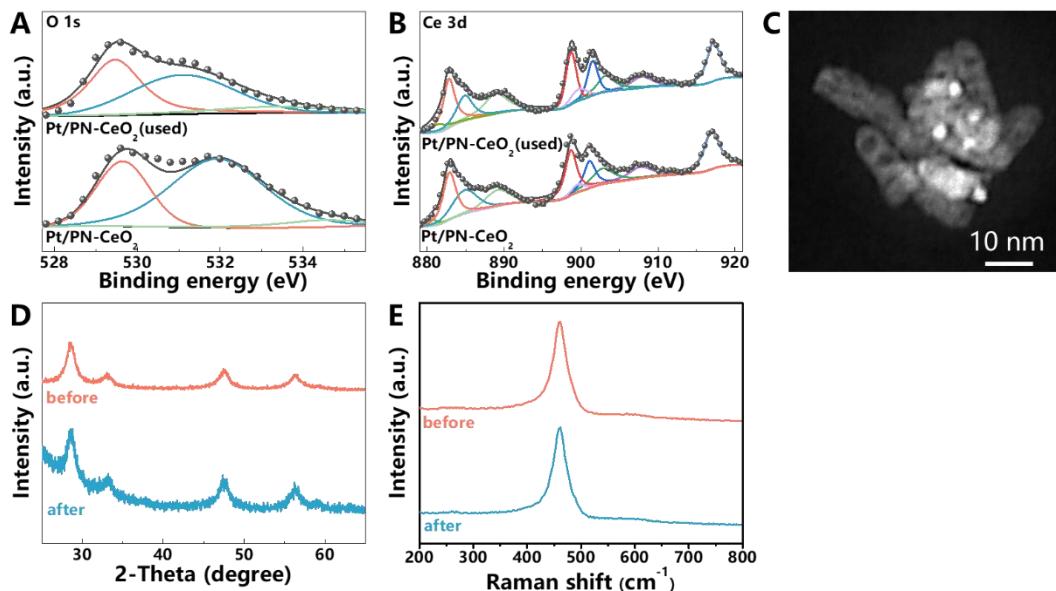
$$Yield (H_2) = \frac{\text{amount of generated } H_2 \text{ (mol)}}{\text{theoretical generated } H_2 \text{ (mol)}} \times 100\% \quad (5)$$

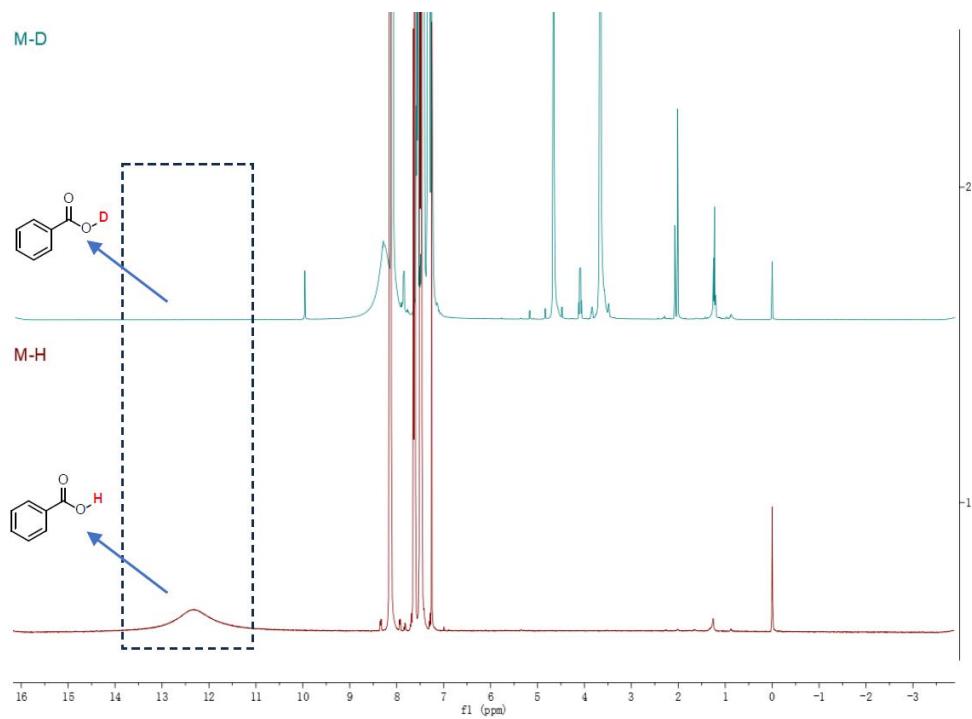

Where the theoretical amount of H₂ was equal to the initial moles of PhCHO.

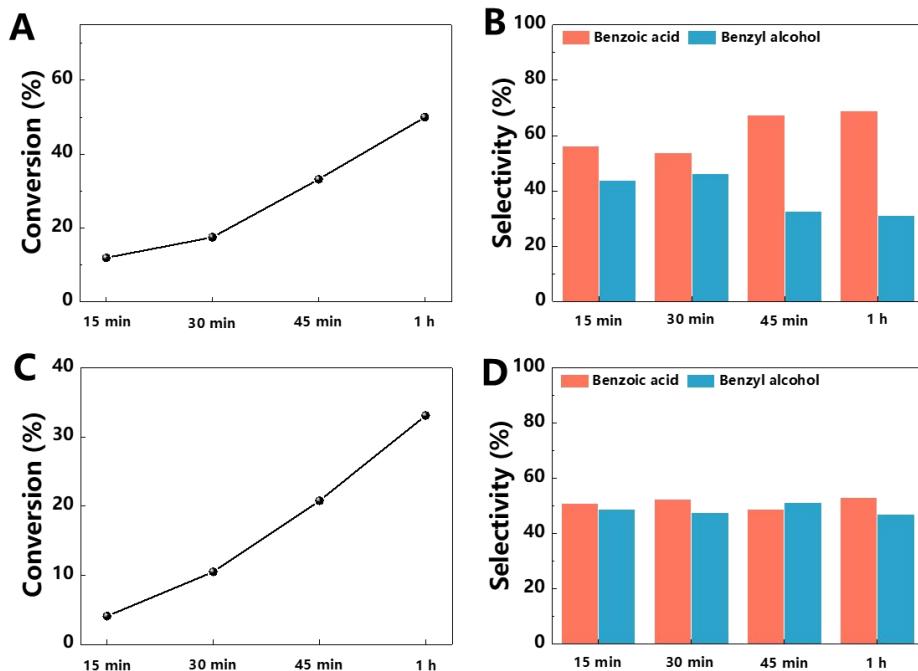

Supplementary Figure 1. XRD patterns of the PN-CeO₂, NR-CeO₂, Pt/PN-CeO₂ and Pt/NR-CeO₂ catalysts.

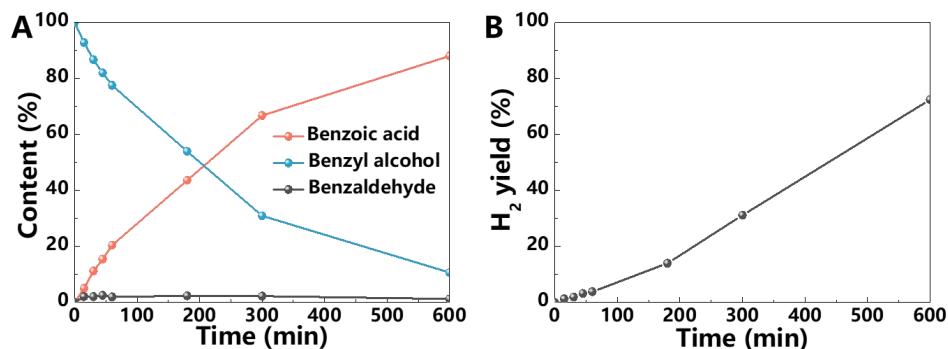

Supplementary Figure 2. Dark-field TEM images of (A) NR-CeO₂ and (B) PN-CeO₂; High-resolution dark-field TEM images of (C) NR-CeO₂ and (D) PN-CeO₂.


Supplementary Figure 3. XPS analysis of (A) Ce 3d and (B) O 1s of NR-CeO₂ and PN-CeO₂.


Supplementary Figure 4. Dark-field TEM of Pt/NR-CeO₂.


Supplementary Figure 5. XPS analysis of O 1s of the Pt/PN-CeO₂ and Pt/NR-CeO₂ catalysts.


Supplementary Figure 6. $\ln r$, derived from the hydrogen generation rate ($\text{mol H}_2 \text{ g}_{\text{cat}}^{-1} \text{ h}^{-1}$), as a function of $\ln n_{\text{PhCHO}}$ over various catalysts. Reaction conditions: Different concentration of PhCHO and H_2O , 1, 4-dioxane (1 mL), NaOH (2.5 mmol), 0.5 MPa N_2 , 180°C and 10 h.


Supplementary Figure 7. XPS analysis of (A) O 1s and (B) Ce 3d peaks for the used Pt/PN-CeO₂ catalysts. (C) TEM image and (D) XRD patterns of the used Pt/PN-CeO₂ catalysts; (E) Raman spectra of Pt/PN-CeO₂ before and after catalytic reactions.

Supplementary Figure 8. ^1H NMR of liquid product in the $\text{H}(\text{D})_2\text{O}$ /benzaldehyde systems with Pt/PN- CeO_2 as catalysts. Reaction conditions: PhCHO (1 mmol), $\text{H}_2\text{O}/\text{D}_2\text{O}$ (0.5 mL), 1, 4-dioxane (1 mL), NaOH (2.5 mmol), catalysts (30 mg), 0.5 MPa N_2 , 180°C and 10 h.

Supplementary Figure 9. (A and B) Catalytic performance of Pt/PN-CeO₂ for the AWS of benzaldehyde. Reaction conditions: PhCHO (1 mmol), H₂O (0.5 mL), 1, 4-dioxane (1 mL), NaOH (2.5 mmol), catalysts (30 mg), 0.5 MPa N₂, 180°C and 10 h. (C and D) The disproportionation of benzaldehyde. Reaction conditions: PhCHO (1 mmol), H₂O (0.5 mL), 1, 4-dioxane (1 mL), NaOH (2.5 mmol), 0.5 MPa N₂, 180°C and 10 h.

Supplementary Figure 10. (A) Distributions of reactants and products of the benzyl alcohol dehydrogenation catalyzed by Pt/PN-CeO₂ at intervals during a period of 10 h; (B) H₂ evolution profile as a function of reaction time. Reaction conditions: PhCH₂OH (1 mmol), H₂O (0.5 mL), 1, 4-dioxane (1 mL), NaOH (2.5 mmol), catalysts (30 mg), 0.5 MPa N₂, 180°C and 10 h.

Supplementary Table 1. Optimization of amount of H₂O for AWS of benzaldehyde^a

Entry	Cat. (2% loading)	H ₂ O (eq.)	Conv. (%)	Sel. (%) Benzoic acid	Yield (%) H ₂
1	Pt-PN/CeO ₂	5	80.32	66.68	17.42
2	Pt-PN/CeO ₂	10	78.25	86.44	42.65
3	Pt-PN/CeO ₂	28	99.81	99.56	85.89
4	Pt-PN/CeO ₂	56	78.49	86.38	58.27

^a Reaction conditions: 1 mmol of benzaldehyde, 30 mg of catalyst, 1 mL of 1, 4-dioxane, 2.5 mmol of NaOH, 180 °C, 10 h, 0.5 MPa N₂.

Supplementary Table 2. Optimization of bases for AWS of benzaldehyde^a

Entry	Cat. (2% loading)	Base (2.5 eq.)	Conv. (%)	Sel. (%) Benzoic acid	Yield (%) H ₂
1	Pt-PN/CeO ₂	NaOH	99.81	99.56	85.89
2	Pt-PN/CeO ₂	KOH	87.34	86.50	35.91
3	Pt-PN/CeO ₂	Na ₃ PO ₄	26.83	87.92	10.85
4	Pt-PN/CeO ₂	Na ₂ CO ₃	77.19	86.29	40.67
5	Pt-PN/CeO ₂	DBU	2.67	24.91	0
6	Pt-PN/CeO ₂	DMAP	58.02	99.82	0

^a Reaction conditions: 1 mmol of benzaldehyde, 30 mg of catalyst, 1 mL of 1, 4-dioxane, 0.5 mL of H₂O, 2.5 mmol of base, 180 °C, 10 h, 0.5 MPa N₂.

Supplementary Table 3. Optimization of amount of NaOH for AWS of benzaldehyde^a

Entry	Cat. (2% loading)	NaOH (eq.)	Conv. (%)	Sel. (%) Benzoic acid	Yield (%) H ₂
1	Pt-PN/CeO ₂	1	46.64	83.27	37.46
2	Pt-PN/CeO ₂	2.5	99.81	99.56	85.89
3	Pt-PN/CeO ₂	5	81.10	86.19	41.73

^a Reaction conditions: 1 mmol of benzaldehyde, 30 mg of catalyst, 1 mL of 1, 4-dioxane, 0.5 mL of H₂O, 180 °C, 10 h, 0.5 MPa N₂.

Supplementary Table 4. Screen of the deposited metals for AWS of benzaldehyde^a

Entry	Cat. (2% loading)	NaOH (eq.)	Conv. (%)	Sel. (%) Benzoic acid	Yield (%) H ₂
1	Ir-PN/CeO ₂	2.5	80.84	95.36	78.65
2	Rh-PN/CeO ₂	2.5	86.30	88.97	70.28
3	Au-PN/CeO ₂	2.5	76.94	66.32	41.73
4	Pd-PN/CeO ₂	2.5	78.10	56.53	27.58
5	Ru-PN/CeO ₂	2.5	72.59	76.95	58.12
6	Pt-PN/CeO ₂	2.5	99.81	99.56	85.89
7	Pt-NR/CeO ₂	2.5	79.04	76.31	39.12

^a Reaction conditions: 1 mmol of benzaldehyde, 30 mg of catalyst, 1 mL of 1, 4-dioxane, 0.5 mL of H₂O, 2.5 mmol of NaOH, 180 °C, 10 h, 0.5 MPa N₂.