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Abstract

Primary liver cancers constitute the fourth most deadly group of cancers. Their poor prognosis is due in part to 
the pre-existence and/or development, often during treatment, of powerful mechanisms accounting for the poor 
response of cancer cells to antitumor drugs. These include both impaired gene expression and the appearance 
of spliced variants, polymorphisms and mutations, affecting the function of genes leading to the reduction in 
intracellular concentrations of active agents, changes in molecular targets and survival pathways, altered tumor 
microenvironment and phenotypic transition. The present review summarizes available information regarding 
the role of germline and somatic mutations affecting drug transporters, enzymes involved in drug metabolism, 
organelles and signaling molecules related to liver cancer chemoresistance. A more complete picture of the actual 
complexity of this problem is urgently needed for carrying out further pharmacogenomic studies aimed to improve 
the management of patients suffering from hepatocellular carcinoma or cholangiocarcinoma.

Keywords: Anticancer drug, chemoresistance, chemotherapy, cholangiocarcinoma, germline mutation, hepatoma, 
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INTRODUCTION
Primary liver cancers (PLCs) are an important proportion of total malignant neoplasias, constituting the 
fourth cause of cancer-related death worldwide. According to data from Global Cancer Observatory, there 



are more than 840,000 new cases of PLCs diagnosed each year and, due to their late diagnosis and poor 
prognosis, this is accompanied by high mortality, which accounts for approximately 8% of deaths due to 
cancer.

The most frequent PLC is hepatocellular carcinoma (HCC). This is usually diagnosed by imaging techniques 
and determination of serum tumor markers, mainly alpha-fetoprotein, followed by confirmatory histological 
study of the biopsy[1]. HCC etiopathogenetic is often difficult to define, with different potentially involved 
factors, such as genetic alterations (chromosomal and gene mutations), epigenetic changes, and risk factors 
like cirrhosis, metabolic diseases such as NASH, dietary aflatoxin B1 in Asian countries or viral hepatitis[2-4]. 
The best curative option for early stages is surgical resection, liver transplant or radiofrequency ablation. 
Unfortunately, HCC is often diagnosed at intermediate or advanced stages. For these patients, the first-line 
treatment is transarterial chemoembolization (TACE) in the intermediate stage and systemic chemotherapy 
in the case of advanced HCC[1,5]. The response to conventional chemotherapeutic agents, for instance cisplatin, 
interferon, 5-fluorouracil and doxorubicin in the so-called PIAF regimen, is often very poor due to intrinsic 
or acquired chemoresistance. Among new targeted drugs, sorafenib, an inhibitor of several tyrosine kinase 
receptors (TKR), is currently used as the first-line treatment in patients with advanced HCC[6]. Nevertheless, 
the benefit in terms of median overall survival (OS) is only of 2.8 months[2,5,6]. Regorafenib, another tyrosine 
kinase inhibitor (TKI) also approved by FDA, has a similar effect to sorafenib and is now being used as a 
second-line treatment for patients who cannot tolerate sorafenib treatment or undergo tumor progression 
during sorafenib therapy[7]. Recently, other TKIs have been approved for being used against advanced HCC 
resistant to sorafenib, such as nivolumab, cabozantinib and lenvatinib[8].

Cholangiocarcinoma (CCA), the second most frequent type of PLC (10%-15% of all PLCs) is a heterogeneous 
group of malignancies derived from the biliary epithelium. Depending on the anatomical location, CCA 
is classified into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) types. CCA etiopathogenesis 
has been associated with certain risk factors, such as advanced age, obesity, alcohol consumption, chronic 
biliary diseases (e.g., primary sclerosing cholangitis and liver cirrhosis), chronic infection by liver flukes 
(e.g., Clonorchis sinensis and Opisthorchis viverrini), viral hepatitis, congenital diseases (e.g., Caroli disease), 
drugs or chemicals (e.g., smoking, thorotrast and dioxin). The diagnosis of CCA is usually based on the 
combination of imaging techniques, because specific histological and serum biochemical markers are 
still under investigation[9,10]. Surgical resection is the best curative therapy for CCA but this option is only 
possible in a few cases. For the rest of CCA patients with unresectable or metastatic cancer, conventional 
systemic chemotherapy (gemcitabine combined with cisplatin as first-line treatment or gemcitabine alone) 
or locoregional therapy, such as TACE, transarterial radioembolization or radiofrequency ablation, could 
be an alternative. The use of targeted therapies based on either TKIs, such as erlotinib and lapatinib, or 
antibodies, such as bevacizumab, cetuximab, and panitimumab has resulted of little benefit[11].

Despite the efforts in the development of novel treatments to improve PLCs outcome, advances have been 
modest. One of the most important challenges in PLC pharmacology is to overcome the poor response of 
these tumors to anticancer drugs, which is due in part to powerful mechanisms of chemoresistance (MOC). 
These include not only impaired gene expression, but also the existence of genetic variants affecting the 
function of proteins involved in MOC. Lower intracellular levels of active agents can be mediated by changes 
in the transportome resulting in impaired drug uptake (MOC-1a), enhanced drug export (MOC-1b), or 
alterations in drug metabolism that could lead to impaired prodrug activation or increased proportion of 
inactive metabolites (MOC-2). Additionally, alterations in: i) target genes of antitumor drugs, ii) the activity 
of mechanisms involved in DNA repair and iii) unbalance between survival and apoptosis factors, are 
involved in chemoresistance. These processes are classified into MOC-3, MOC-4 and MOC-5, respectively. 
Finally, the role of changes related to tumor environment (MOC-6) and epithelial-mesenchymal transition 
(EMT, MOC-7) in PLC chemoresistance is still poorly understood [Figure 1][12].
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Given the complexity and heterogeneity of PLCs, the use of personalized diagnosis based on the analysis of 
genetic variants is becoming an urgent need to establish an optimized treatment for each patient. Therefore, 
the clinical relevance of pharmacogenetic studies is increasing. The mutational signature has identified 
the main genes with the most relevant alterations both in HCC and CCA. This includes oncogenes and 
tumor suppressor genes involved in signaling pathways related to survival, proliferation, differentiation 
and DNA repair [Figure 2]. In this review, we have summarized current knowledge regarding mutations 
identified in HCC and CCA, and their role in multidrug resistance (MDR) phenotype and patient outcome. 
We have distinguished between somatic mutation, i.e., acquired by tumor cells during carcinogenesis, and 
germline mutations, i.e., inherited genetic alterations. For the nomenclature of the mutations that appear in 
this review, the updated recommendations of the Sequence Variant Description Working Group[13], which 
operates under the auspices of three international organizations: the Human Genome Variation Society, 
the Human Varioma Project and the Human Genome Organization (HUGO), have been followed. Single-
nucleotide polymorphisms (SNP) have been considered substitutions of a single nucleotide that occur within 
a population with a frequency higher than 1%, whereas a single-nucleotide variant, without any limitations 
of frequency, that may arise in cancer cells is called a single-nucleotide alteration (SNA).
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Figure 1. Scheme of mechanisms of chemoresistance (MOC): reduction in intracellular concentration of active drugs (MOC-1 and 
MOC-2), changes in molecular targets (MOC-3), enhanced DNA repair mechanisms (MOC-4), altered balance between survival and 
apoptosis pathways (MOC-5), tumor microenvironment (MOC-6) and epithelial-mesenchymal transition (MOC-7)

Figure 2. Top 20 most frequently mutated genes in A: hepatocellular carcinoma (HCC); and B: cholangiocarcinoma (CCA). Adapted from 
COSMIC database (https://cancer.sanger.ac.uk/cosmic)



CHANGES IN INTRACELLULAR CONCENTRATIONS OF ACTIVE ANTICANCER AGENTS
Many anticancer drugs perform their therapeutic action inside tumor cells. For this reason, mechanisms 
reducing their intracellular concentrations impair the effectiveness of the treatment. In this sense, changes in 
the activity of transporters accounting for drug uptake or efflux could determine the capability of anticancer 
drugs to reach their molecular targets. Moreover, some drugs are administered as prodrugs, which means 
that they need to be metabolized intracellularly to generate active compounds. In contrast, other drugs 
are rapidly biotransformed into inactive metabolites. Thus, changes in the expression and activity of drug-
metabolizing enzymes can determine the overall response to chemotherapy.

Mutations affecting the transportome (MOC-1)
Two main superfamilies of transporters are involved in MOC-1: Solute carrier (SLC) proteins and ATP-
binding cassette (ABC) proteins. Members of the first group are involved in the uptake of a wide range of 
molecules, while several ABC pumps use the energy released by the ATP hydrolysis to export their substrates 
from the cells.

Genetic variants in genes involved in drug uptake (MOC-1a)
Among drug uptake transporters, those encoded by SLCO, SLC22A and SLC31A gene families have been 
extensively described as main players in the transport of anticancer drugs used against HCC and CCA, such 
as platinum derivatives and TKIs. Moreover, SLC28A and SLC29A gene families, which encode transporters 
able to carry out concentrative (CNT) and equilibrative (ENT) nucleoside uptake, are involved in the response 
to nucleoside and pyrimidine base analogs, such as gemcitabine and 5-FU[14]. Accordingly, mutations affecting 
these genes could modify the response of HCC and CCA to their substrates. Until now, most investigations 
have been focused on the association between gene expression and drug resistance. There is also information 
on the role of germline mutations in antitumor drug pharmacokinetics. In contrast, there is only a few 
studies regarding somatic mutations affecting SLC transporters in HCC and CCA. Available information 
can be obtained from COSMIC (https://cancer.sanger.ac.uk/cosmic) and TCGA (https://cancergenome.nih.
gov/) databases. Table 1 provides a summary of mutations affecting SLCO, SLC22A, SLC28A, SLC29A and 
SLC31A genes in HCC and CCA.

Germline pharmacogenetics: Among the members of SLCO gene family, OATP1B1 (SLCO1B1) and OATP1B3 
(SLCO1B3), which have redundant substrate specificity, have been characterized as transporters of TKIs, 
including sorafenib[15]. Several in vivo and in vitro studies have described SNPs or haplotypes that result 
in altered expression, localization and activity of OATPs. Most research has been focused on germline 
polymorphisms of OATP1B1 and OATP1B3 affecting pharmacokinetics and response of statins and paclitaxel, 
respectively[16]. Two germline mutations in OATP1B1, c.388A>G (p.Asn130Asp) and c.521T>C (p.Val174Ala), 
have been associated with side effects after treatment of HCC patients with sorafenib. However, none of 
the investigated polymorphisms has been associated with the survival of these patients[17]. In patients with 
unresectable liver metastasis from colorectal cancer, genetic variants of OATP1B3 (c.334T>G; p.Ser112Ala 
and c.699G>A; p.Met233Ile) and OCT1 (SLC22A1, c.1260_1262delGAT; p.Met420del) have been linked to 
neutropenia and diarrhea, respectively, when they were treated with hepatic artery infusion of irinotecan, 
oxaliplatin and 5-FU, and intravenous cetuximab[18]. Several OCT3 (SLC22A3) variants have been studied, 
but none of them have been related neither to HCC nor to CCA[19,20].

On the other hand, germline mutations in SLC28A and SLC29A genes affecting gemcitabine effectiveness 
have been identified in breast cancer[21] and non-small-cell lung cancer[22,23]. Unfortunately, there are no 
similar studies in PLCs.

CTR1 (SLC31A1) is a copper transporter involved in the uptake of platinum derivatives. The study of the 
relationship between CTR1 polymorphisms and the response of CCA to the therapy with gemcitabine plus 
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platinum did not reveal a clear association between SNPs and the treatment outcome, which could be due to 
the advanced stage of the disease in patients included in the cohort[25]. In contrast, the same study proposed 
that the combination of SLC31A1 c.-35-14361C>A with other SNP in ERCC1 (see below) could be a good 
predictor of the response to gemcitabine plus platinum treatment[25]. Furthermore, a significant relationship 
between two SLC31A1 intron variants, platinum resistance and clinical outcome has been described in 
Chinese non-small-cell lung carcinoma patients[26].

Gene Protein Genetic 
mutations G/S Region Protein 

mutations
Functional 

consequence Clinical consequences Studies References

SLCO1B1 OATP1B1 c.521T>C G c Val174Ala ND Thrombocytopenia HCC patients [17]
c.388A>G G c Asn130Asp ND Diarrhea HCC patients [17]
c.1039T>G S c Leu347Val Moderate ND TCGA-LIHC TCGA
c.152C>A S c Ser51Tyr Moderate Pathogenic TCGA-LIHC TCGA

SLCO1B3 OATP1B3 c.334T>G G c Ser112Ala ND Neutropenia Unresectable 
liver metastasis

[18]

c.699G>A G c Met233Ile ND Neutropenia Unresectable 
liver metastasis

[18]

c.391C>A S c Pro131Thr Moderate ND TCGA-LIHC TCGA
c.10C>A S c His4Asn Moderate ND TCGA-LIHC TCGA
c.166G>A S c Glu56Lys Moderate Pathogenic TCGA-LIHC TCGA
c.*12T>C S nc 3‘ UTR Modifier ND TCGA-LIHC TCGA

SLC22A1 OCT1 c.1260delGAT G c Met420del High Diarrhea Unresectable 
liver metastasis

[18]

c.262T>C S c Cys88Arg Moderate Lower sorafenib 
transport

HCC and CCA 
patients

[24]

c.566C>T S c Ser189Leu Moderate Lower sorafenib 
transport

HCC and CCA 
patients

[24]

c.659G>T S c Gly220Val Moderate Lower sorafenib 
transport

HCC and CCA 
patients

[24]

c.859C>G S c Arg287Gly Moderate Lower sorafenib 
transport

HCC and CCA 
patients

[24]

c.262delT S c Cys88Ala 
fs*16

High Lower sorafenib 
transport

HCC and CCA 
patients

[24]

c.181delCGinsT S c Arg61Ser 
fs*10

High Lower sorafenib 
transport

HCC and CCA 
patients

[24]

SLC22A2 OCT2 c.470A>G S c Asn157Ser Moderate ND TCGA-LIHC TCGA
SLC22A3 OCT3 c.442T>A S c Cys148Ser Moderate ND TCGA-LIHC TCGA
SLC22A4 OCTN1 c.*34C>A S nc 3‘ UTR Modifier ND TCGA-LIHC TCGA
SLC22A5 OCTN2 c.765C>G S c Asp255Glu Moderate ND TCGA-LIHC TCGA

c.680G>A S c Arg227His Moderate Pathogenic TCGA-LIHC TCGA
c.1564G>A S c Asp522Asn Moderate ND TCGA-CHOL TCGA

SLC28A1 CNT1 c.461+367T>A S nc Intron Modifier ND TCGA-LIHC TCGA
c.461+452G>T S nc Intron Modifier ND TCGA-LIHC TCGA

SLC28A3 CNT3 c.1105T>C S c Ser369Pro Moderate Pathogenic TCGA-LIHC TCGA
c.-26C>T S nc 5‘ UTR Modifier ND TCGA-LIHC TCGA

SLC29A1 ENT1 c.149C>A S c Ser50Tyr Moderate ND TCGA-LIHC TCGA
SLC29A2 ENT2 c.658C>T S c Arg220Cys Moderate Pathogenic TCGA-LIHC TCGA

c.-143T>A S nc 5‘ UTR Modifier ND TCGA-LIHC TCGA
SLC29A3 ENT3 c.548G>C S c Ser183Thr Modifier ND TCGA-LIHC TCGA
SLC31A1 CTR1 c.-35-14361C>A G nc Intron ND Response to 

gemcitabine plus 
platinum treatment

CCA and 
gallbladder 
cancer patients

[25]

Table 1. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions of SLC genes in primary 
liver cancer

Data obtained from referred literature and TCGA database. Functional consequences are based on VEP (Variant Effect Predictor; 
https://www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact on the protein, which 
is likely to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of 
the encoded protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be 
involved in transcription or splicing changes. CCA: cholangiocarcinoma; HCC: hepatocellular carcinoma; ND: not described; TCGA: the 
cancer genome atlas; TCGA-LIHC: the cancer genome atlas - liver hepatocellular carcinoma; TCGA-CHOL: the cancer genome atlas - 
cholangiocarcinoma
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Somatic pharmacogenetics: Although downregulation of OATP1B1 and OATP1B3 in HCC, CCA and 
advanced metastatic liver tumors has been reported[27], no information on somatic mutations affecting these 
transporters in PLCs is available. Regarding SLC22A genes, several variants of OCT1 have been identified 
in PLCs, including SNAs and splicing variants[24]. Among them, several inactivating variants, such as 
c.262T>C (p.Cys88Arg), c.566C>T (p.Ser189Leu), c.659G>T (p.Gly220Val) and c.859C>G (p.Arg287Gly), were 
detected with a higher frequency in HCC and CCA than in the adjacent non-tumor tissue. In vitro studies 
showed that these and other OCT1 mutations found in PLCs, such as c.262delT (p.Cys88Alafs*16) and 
c.181delCGinsT (p.Arg61Serfs*10), result in lower sorafenib uptake and hence poorer induced cytotoxicity. 
Short non-functional SLC22A1 mRNA variants have also been detected in other malignancies, such as 
glioma[28] and chronic myeloid[29-31] and lymphocytic[32] leukemia. Moreover, not only mRNA abundance but 
also the correct localization of OCT1 at the plasma membrane is important for the response of HCC patients 
to sorafenib[33]. The reduction in SLC22A1 expression has been associated with advanced tumor stages and 
shorter survival of patients with HCC[34] or CCA[35]. 

Evidence for reduced OCT3 expression in HCC and CCA has also been found. In vitro experiments in 
cisplatin resistant hepatoma cells have shown reduced OCT3 expression in these cells, which resulted in 
lower cisplatin uptake, whereas induced OCT3 overexpression restored the sensitivity of these cells to 
cisplatin[36]. Whether, in addition to changes in transcription, there are associated somatic mutations is not 
known.

Some studies have described a correlation between low SLC29A1 expression and poor prognosis in HCC 
patients[37], whereas up-regulation of SLC29A2 has been associated with advanced stages, vascular invasion 
and poor survival in these patients[38]. However, no further research on somatic mutations affecting these 
transporters has been reported.

Genetic variants in genes involved in drug export (MOC-1b)
ABC transporters mediate the active efflux of a large variety of compounds, including antitumor drugs. 
Thus, a high expression/activity of these pumps induces a decrease in intracellular drug concentrations that 
plays an important role in the MDR phenotype of PLCs[39]. Several mutations affecting these transporters 
may determine the response of HCC and CCA to their substrates [Table 2]. 

Germline pharmacogenetics: Concerning germline mutations, only those affecting ABCG2 (c.34G>A; 
p.Val12Met and the intron variant g.89078924T>C) deserve to be mentioned. Both in vitro[40] and in vivo[41] 

studies have demonstrated the ability of the breast cancer resistance protein (BCRP) encoded by ABCG2 to 
export sorafenib with higher affinity than MDR1[42]. Hence, when present in homozygosis, these mutations 
have been associated with lower exposure of extratumor tissues and a better response to sorafenib[43]. 

Somatic pharmacogenetics: MDR1 (ABCB1) also known as P-glycoprotein, is involved in the pharmacokinetics 
of many drugs[44], including sorafenib[42], which is consistent with the fact that MDR1 expression has been 
inversely correlated with HCC response to pharmacological treatment[45,46]. Interestingly, MDR1 has been 
found highly expressed in CCA biopsies[47] and cell lines[48]. Regarding its genetic variability, more than 
60 SNAs for ABCB1 have been described[49]. The presence of the synonymous SNP c.3435C>T (p.Ile1145=) 
in heterozygous patients has been associated with increased levels of MDR1 and higher risk of HCC 
recurrence[50]. This mutation has also been related to a lower exposure to sorafenib in HCC patients[43,51]. 

Proteins encoded by ABCC genes, also known as multidrug resistance-associated proteins, are involved 
in PLC chemoresistance[52-56]. The presence of the polymorphism c.-1666G>A in MRP1 (ABCC1) has been 
correlated with low promoter transcriptional activity[57]. The opposite occurs in the case of the variant c.-
260G>C[58]. Moreover, poor outcome and shorter survival have been described in patients with PLC carrying 
the c.-1666G>A variant[57]. 
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Gene Protein Genetic mutations G/S Region Protein mutations Functional 
consequences

Clinical 
consequences Studies References

ABCB1 MDR1 c.1537A>T S c Ile513Phe Moderate ND TCGA-LIHC TCGA
c.2621T>C S c Val874Ala Moderate ND TCGA-LIHC TCGA
c.20G>A S c Arg7His Moderate ND TCGA-LIHC TCGA
c.246delA S c Gly83Efs*3 High ND TCGA-LIHC TCGA
c.466A>T S c Met156Leu Moderate ND TCGA-LIHC TCGA
c.1827A>T S c Lys609Asn Moderate ND TCGA-LIHC TCGA
c.28887T>G S c Leu963Trp Moderate ND TCGA-LIHC TCGA
c.590T>A S c Met197Lys Moderate ND TCGA-LIHC TCGA
c.3435C>T S c Ile1145= ND Higher risk of 

HCC recurrence
HCC 
patients

[50]

ABCC1 MRP1 c.2512A>G S c Ile838Val Moderate ND TCGA-LIHC TCGA
c.854C>A S c Pro285Gln Moderate ND TCGA-LIHC TCGA
c.2296G>A S c Val766Met Moderate ND TCGA-

CHOL
TCGA

c.2281A>T S c Ile761Phe Moderate 
Moderate 

ND TCGA-LIHC TCGA

c.2195T>A S c Leu732Gln Moderate ND TCGA-LIHC TCGA
c.-1666G>A S nc Promoter ND Lower expression HCC 

patients
[57]

c.-260G>C S nc Promoter ND Higher expression HepG2 and 
Hep3B cells

[58]

ABCC2 MRP2 c.3737T>A S c Leu1246His Moderate ND TCGA-LIHC TCGA
c.71C>A S c Pro24Gln Moderate ND TCGA-

CHOL 
TCGA

c.1781G>A S c Ser594Asn Moderate ND TCGA-LIHC TCGA
c.2810A>G S c Asn937Ser Moderate ND TCGA-LIHC TCGA
c.715G>T S c Val239Leu Moderate ND TCGA-LIHC TCGA
c.1249G>A S c Val471Ile ND Sorafenib efflux HEK cells [59]
c.3972C>T S c Ile1324= ND Lower expression Patients 

with CCA
[60] 

c.-58A>C S nc 5‘ UTR Modifier ND TCGA-LIHC TCGA
c.-24C>T S nc 5’ UTR ND Higher expression Luciferase 

assay
[61] 

ABCC3 MRP3 c.1666_1671dupTACGTG S c Tyr556_Val557 Moderate ND TCGA-LIHC TCGA
c.614A>C S c Asn205Thr Moderate ND TCGA-LIHC TCGA
c.423G>T S c Trp141Cys Moderate ND TCGA-LIHC TCGA
c.422G>T S c Trp141Leu Moderate ND TCGA-LIHC TCGA
c.800C>A S c Thr267Lys Moderate ND TCGA-LIHC TCGA
c.1558G>A S c Gly520Ser Moderate ND TCGA-LIHC TCGA
c.2120A>G S c Glu707Gly Moderate ND TCGA-LIHC TCGA
c.1936A>C S c Ser646Arg Moderate ND TCGA-LIHC TCGA
c.-211C>T S nc 5’ UTR ND Lower expression 

Same expression
Healthy 
liver 

[62]
[63]

c.*179-9_*179-7delTCC S nc Intron Modifier ND TCGA-LIHC TCGA
ABCC4 MRP4 c.1024C>A S c Leu342Ile Moderate ND TCGA-LIHC TCGA

c.994G>A S c Val332Met Moderate ND TCGA-LIHC TCGA
c.382T>G S c Ser128Ala Moderate ND TCGA-LIHC TCGA
c.2174A>T S c Gln725Leu Moderate ND TCGA-LIHC TCGA
c.1037T>A S c Ile346Asn Moderate ND TCGA-LIHC TCGA
c.1785G>C S c Gln595His Moderate ND TCGA-LIHC TCGA

ABCC5 MRP5 c.1745A>T S c Asp582Val Moderate ND TCGA-LIHC TCGA
c.3724C>T S c Arg1242Cys Moderate ND TCGA-LIHC TCGA
c.4145T>C S c Leu1382Phe Moderate ND TCGA-LIHC TCGA

ABCG2 BCRP c.34G>A G c Val12Met ND Altered sorafenib 
pharmacokinetics

HCC 
patients

[43]

g.89078924T>C G c Intron ND Altered sorafenib 
pharmacokinetics

HCC 
patients

[43]

Table 2. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions of ABC genes in primary 
liver cancer
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The best known MRP2 (ABCC2) variants are c.-24C>T, c.1249G>A (p.Val471Ile) and c.3972C>T (p.Ile1324=). 
These frequent variants have been associated with higher chemoresistance and reduced survival rate in many 
different tumors, including HCC and CCA[61,65-67]. Some combinations of these variants in homozygosis are 
more sensitive to miR-379-induced ABCC2 mRNA down-regulation, leading to lower MRP2 expression[68]. 
Moreover, expression of the c.1249G>A variant has been associated to enhanced MRP2-mediated sorafenib 
efflux[59,69]. 

Owing to its high expression levels, MRP3 (ABCC3) plays a key role in the MDR phenotype of CCA[48,70] 

and is also involved in the poor response of HCC to sorafenib[71]. The SNP c.-211C>T, which is also present 
in healthy liver, alters ABCC3 promoter activity although its functional repercussion is controversial[62,63]. 
Regarding MRP4 (ABCC4) and MRP5 (ABCC5), some polymorphisms that modify their stability and 
substrate specificity have been described[72-74]. Nevertheless, their relationship with drug resistance in PLCs 
remains unknown.

A role of BCRP in HCC chemoresistance has been reported[75], whereas this is not clearly elucidated in the 
case of CCA[76]. In healthy liver tissue, the expression of c.421C>A (p.Gln141Lys) variant correlates with 
low BCRP protein levels[77]. In addition, several SNPs that modify enhancer activity at the ABCG2 gene 
locus have been reported[64]. Four of these variants (g.89073197A>G, g.88924371A>G, g.89189602G>A and 
ABCG2RE1*2, which is a combination of g.88923906G>A, g.88924176C>T and g.88924371A>G) decreased 
the promoter activity and hence reduced gene expression, contrary to g.89026428A>C that is associated with 
increased BCRP activity. Moreover, other genomic variants (g.89073197A>G and g.88924371A>G) increase 
the ability of ABCG2 gene to bind to nuclear proteins in human hepatoma HepG2 cells[64].

Mutations affecting drug metabolism (MOC-2)
Changes in drug metabolism, either by reduction in the activation of prodrugs or increased inactivation of 
active agents, can contribute to chemoresistance. The enzymes involved in MOC-2 participate in either phase 
I reactions (oxidoreduction of substrates) or in phase II (conjugation with polyatomic groups) processes[39]. 
As many anticancer agents are administered as prodrugs, they require metabolic activation by phase I 
enzymes. Thus, the presence of variants in genes encoding these enzymes is relevant in cancer therapy, 
because they may reduce the efficacy of several antitumor drugs and increase their adverse effects[78] . In 

c.734C>G S c Phe245Arg Moderate ND TCGA-LIHC TCGA

c.1500G>T S c Lys500Asn Moderate ND TCGA-
CHOL

TCGA

c.745A>G S nc Ile249Val Moderate ND TCGA-LIHC TCGA

g.89073197A>G S nc Enhancer region ND Lower expression HepG2 
cells

[64]

g.88924371A>G S nc Enhancer region ND Lower expression HepG2 
cells

[64]

g.89189602G>A S nc Enhancer region ND Lower expression HepG2 
cells

[64]

ABCG2RE1*2 S nc Enhancer region ND Lower expression HepG2 
cells

[64]

g.89026428A>C S nc Enhancer region ND Higher expression HepG2 
cells

[64]

Data obtained from referred literature and TCGA database. Functional consequences are based on VEP (Variant Effect Predictor; 
https://www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which 
is likely to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of 
the encoded protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be 
involved in transcription or splicing changes. CCA: cholangiocarcinoma; HCC: hepatocellular carcinoma; ND: not described; TCGA: the 
cancer genome atlas; TCGA-LIHC: the cancer genome atlas - liver hepatocellular carcinoma; TCGA-CHOL: the cancer genome atlas - 
cholangiocarcinoma
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addition, inactivation by phase II enzymes of anticancer drugs, such as TKIs, is an important systemic and 
intratumor mechanism involved in determining the response to pharmacological treatment[80]. Available 
information regarding the presence of germline and somatic mutations in PLC affecting genes encoding 
phase I and II enzymes is summarized in Tables 3 and 4, respectively.    

Phase I Enzymes
Somatic pharmacogenetics: Cytochrome P450 (CYP) includes a large group of enzymes located in 
mitochondrial membranes or in the endoplasmic reticulum that play a crucial role in metabolism[82]. In 
humans, the most important CYPs regarding drug metabolism are CYP1A2, CYP2A6, CYP2B6, CYP2C6, 
CYP2D6, CYP2E6, CYP2C8, CYP2C9 and CYP3A4/5, which are responsible for 90% of the metabolic 
inactivation of drugs currently used[83]. CYPs are abundantly expressed in HCC, which is consistent with the 
fact that drugs are more rapidly metabolized in the tumor than in the surrounding liver tissue[84]. Therefore, 
changes in CYP activity can contribute to HCC chemoresistance[85]. For instance, CYP2A6 activates the 
prodrug tegafur/uracil to 5-FU. An investigation on polymorphisms affecting CYP2A6 in Japanese patients 
with HCC has reported a frequency of 0.233 for the CYP2A6*4 genetic variant, which results in CYP2A6 gene 
deletion, in heterozygosis, whereas the homozygous genotype was found in 5 out of 58 HCC patients[86]. Other 
study has described that the allelic frequency of the mutant homozygote CYP2D6 c.100C>T (p.Pro34Ser) 
variant is significantly reduced in HCC patients[79]. The authors reported an increased intrinsic clearance 
of drugs, such as linifanib (ABT-869) and banoxantrone (AQ4N), when the CYP2C9 variant c.1075A>C 

Gene Protein Genetic mutations G/S Region Protein 
mutations

Functional 
consequences

Clinical 
consequences Studies References

DPYD DPD c.1700G >T S c Gly567Val Moderate Pathogenic TCGA-LIHC TCGA
c.589C>T S c Pro197Ser Moderate Pathogenic TCGA-LIHC TCGA
c.491A>C S c Lys164Thr Moderate ND TCGA-LIHC TCGA
c.*102A>C S nc 3’ UTR Modifier ND TCGA-LIHC TCGA
c.483+820G>C S nc Intron Modifier ND TCGA-LIHC TCGA

DPYS DHP c.650A>T S c His217Leu Moderate ND TCGA-LIHC TCGA
CYP2D6 CYP2D6 c.100C>T S c Pro34Ser High Increased HCC 

susceptibility
Cirrhotic / 
Fibrotic HCC 
patients

[79]

CYP2C9 CYP2C9 c.1075A>C S c Ile359Leu High ND Cirrhotic / 
Fibrotic HCC 
patients

[79]

CYP2A6 CYP2A6 c.715C>G S c Gln239Glu Moderate ND TCGA-LIHC TCGA
c.323A>G S c Asp108Gly Moderate Neutral TCGA-LIHC TCGA
c.*527C>G S nc 3’ UTR Modifier ND TCGA-LIHC TCGA
c.*135A>G S nc 3’ UTR Modifier ND TCGA-LIHC TCGA
c.194+409A>G S Intron Modifier ND TCGA-LIHC TCGA

CYP3A4 CYP3A4 c.-59A>G S nc 5‘ UTR Modifier ND TCGA-LIHC TCGA
CES2 CES c.278C>G S c Ser93* High ND TCGA-LIHC TCGA

c.1524G>A S c Trp508* High Neutral TCGA-LIHC TCGA
c.153G>T S c Gln51His Moderate ND TCGA-LIHC TCGA

EH EH c.337T>C S c Tyr113His Low Increase risk of 
HCC

HCC patients [81]

c.416A>G S c His139Arg High ND HCC patients [81]
NQO1 NQO1 c.127T>G S c Tyr43Asp Moderate ND TCGA-LIHC TCGA

Table 3. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions of genes coding phase I 
enzyme in primary liver cancer

Data obtained from TCGA database and referred literature. Functional consequences are based on VEP (Variant Effect Predictor; https://
www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which is likely 
to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the encoded 
protein; Low means that the variant has low probability to cause a disruptive change in the encoded protein; Modifier is usually referred 
to non-coding variants, whose impact is difficult to determine, although they can be involved in transcription or splicing changes. HCC: 
hepatocellular carcinoma; ND: not described; TCGA: the cancer genome atlas; TCGA-LIHC: the cancer genome atlas - liver hepatocellular 
carcinoma
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(p.Ile359Leu) was expressed in HCC[79]. CYP3A4 is the major enzyme involved in metabolism of drugs, 
which includes sorafenib, gefitinib and paclitaxel. However, CYP3A4 is usually very poorly expressed in 
tumors and cell lines of different origin[88]. Thus, CYP3A4 activity has been found markedly decreased in 
tumors of 96 patients with HBV-positive HCC, as compared with the adjacent non-tumor tissue[85].

Epoxide hydrolase (EH) metabolizes epoxy eicosatrienoinc acids (EETs) and other lipid epoxides and is 
involved in a variety of biological activities, such angiogenesis and cancer metastasis[89]. The microsomal 
form of EH (mEH) has been characterized and two SNPs in the coding region, c.337T>C (p.Tyr113His) and 
c.416A>G (p.His139Arg) have been identified. Both variants have lower enzyme activity compared to the 
wild-type protein[90,91]. The relationship between these variants and HCC is poorly understood[92]. In a meta-
analysis involving 1,696 HCC cases, the His113-mEH allele was significantly associated with increased risk 
of HCC, whereas the Arg139-mEH genotype had no association with HCC development[80].

Dihydropyrimidine dehydrogenase (DPD, gene symbol DPYD), which is highly expressed in human liver, 
is involved in the first step of pyrimidines breakdown. DPD converts thymine to 5,6-dihydrothymine and 
uracil to 5,6-dihydrouracil. Accordingly, this catalytic activity can modify the effectiveness of 5-FU[93]. 
Thus, intratumor levels of this drug can vary among patients, despite of receiving the same dose[94]. DPD 
polymorphisms play a key role in this differential response[86]. Although more than 200 polymorphisms 
have been identified, in vitro studies have shown that only few of them have a deleterious impact on DPD 

Table 4. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions in genes coding phase II 
enzymes in primary liver cancer

Gene Protein Genetic mutations G/S Region Protein 
mutations

Functional 
consequences

Clinical
consecuences Studies References

DCK DCK c.*823C>T S nc 3’ UTR Modifier ND TCGA-LIHC TCGA
c.*157G>T S nc 3’ UTR Modifier ND TCGA-LIHC TCGA

CDA CDA c.208G>A G c Ala70Thr High Neutropenia 
and decreased 
clearance of 
gemcitabine

Several types 
of cancer

[87]

c.271A>G S c Met91Val Moderate Neutral TCGA-LIHC TCGA
c.267-1G>A S c Splice acceptor High Pathogenic TCGA-LIHC TCGA
c.157T>C S c Cys53Arg Moderate ND TCGA-LIHC TCGA

MET MET c.65G>T S c Ser22Ile Moderate ND TCGA-LIHC TCGA
c.3713A>T
c.3767A>T

S c His1238Leu
His1256Leu

Moderate
Moderate

ND
ND

TCGA-LIHC
TCGA-LIHC

TCGA
TCGA

SULT1A1 SULT1A1 c.-265_-
258delGTGAGGGG

S nc 5’ UTR Modifier ND TCGA-CHOL TCGA

c.-4-460_-4-
453delGTGAGGGG

S nc Intron Modifier ND TCGA-CHOL TCGA

UGT2B7 UGT2B7 c.311C>A S c Thr104Lys Moderate Neutral TCGA-LIHC TCGA
c.22G>T S c Val8Leu Moderate ND TCGA-LIHC TCGA
c.282_283delTA S c Lys95Glufs*26 High ND TCGA-LIHC TCGA
c.589_591delGTT S c Val197del Moderate ND TCGA-LIHC TCGA

UGT1A1 UGT1A1 c.725T>A S c Val242Glu Moderate ND TCGA-LIHC TCGA

UGT1A3 UGT1A3 c.779A>G S c Asp260Gly Moderate ND TCGA-LIHC TCGA
c.457C>T S c Pro153Ser Modifier ND TCGA-LIHC TCGA
c.867+13031C>T S c Intron Modifier ND TCGA-LIHC TCGA
c.867+17971A>G S c Intron Moderate ND TCGA-LIHC TCGA

UGT1A9 UGT1A9 c.668T>A S c Phe223Tyr Moderate Neutral TCGA-LIHC TCGA

Data obtained from TCGA database (https://cancergenome.nih.gov/) and referred literature. Functional consequences are based on VEP 
(Variant Effect Predictor; https://www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive 
impact in the protein, which is likely to cause loss of function; Moderate means that the variant may be not disruptive, but results in a 
decrease effectiveness of the encoded protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, 
although they can be involved in transcription or splicing changes. ND: not described; TCGA: the cancer genome atlas; TCGA-LIHC: the 
cancer genome atlas - liver hepatocellular carcinoma; TCGA-CHOL: the cancer genome atlas - cholangiocarcinoma
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enzymatic activity[95]. Mutations related to this gene are described in Table 3. A second enzyme involved 
in 5-FU catabolism is dihydropyrimidinase (DHP gene symbol DPYS), which catalyzes the conversion of 
dihydro-5,6-fluorouracil to fluoro-β-ureidopropionate. DHP deficiency caused by heterozygous missense 
and nonsense polymorphisms in DPYS gene may increase 5-FU toxicity[96].

NAD(P)H quinone oxidoreductase 1 (NQO1) catalyzes the reduction of quinones and nitro derivatives using 
NADP or NADPH as cofactors. NQO1 expression leads to a favorable position for the development of tumor 
cells by protecting them from oxidative stress and chemotherapeutic agents, resulting in cancer progression 
and chemoresistance, as has been described for HCC[97]. In CCA, NQO1 plays a role in modulating sensitivity 
of cancer cells to gemcitabine when given in combination with dicoumarol, which enhances gemcitabine 
cytotoxicity in CCA cells with high NQO1 activity[98]. The most prominent and frequent variant of NQO1 
is c.609C>T (p.Pro187Ser), which has been associated to an increased risk of colorectal cancer and colorectal 
adenoma[99] and poor OS in non-small-cell lung cancer[100].

Phase II Enzymes
Germline pharmacogenetics: Cytidine deaminase (CDA) is the major enzyme of gemcitabine inactivation. 
This enzyme catalyzes the irreversible hydrolytic deamination of cytidine and deoxycytidine to uridine and 
deoxyuridine, respectively. CDA, which is poorly expressed in liver tissue[101], presents several SNPs that 
have been associated with higher expression and enzymatic activity of CDA and poorer disease outcome 
in patients treated with gemcitabine. Among the most studied variants are two non-synonymous SNPs, 
c.79A>C (p.Lys27Gln) and c.208G>A (p.Ala70Thr), and three SNPs in the CDA promoter region that possibly 
affect CDA expression, c.-451G>A, c.-92A>G and c.-31delC. Another well-studied variant is the synonymous 
SNP c.435C>T (p.Thr145=), located at exon 4[102].

Somatic pharmacogenetics: The somatic mutation c.208G>A (p.Ala70Thr) decreases the activity of CDA in 
pancreas, lung and mesothelium cancer, which has clinical impact in patients treated with gemcitabine, 
cisplatin and 5-FU[87,91]. Moreover, c.208G>A has been associated with a reduced clearance of gemcitabine and 
increased neutropenia when patients were co-treated with gemcitabine and 5-FU or platinum-containing 
drugs[87]. The impact of c.79A>C and c.435C>T in the clinical outcome of 126 advanced non-small-cell lung 
cancer patients treated with gemcitabine–platinum-regimens has been evaluated[103]. The results indicated 
that patients with the AC genotype had significantly longer time to progression and OS than patients with 
CC genotype. 

Deoxycytidine kinase (DCK) catalyzes the first rate-limiting phosphorylation step in the activation of 
deoxycytidine analogs. The combination of three mutations, c.511G>A (p.Glu171Lys), c.739G>A, (p.Glu247Lys) 
and c.745G>A (p.Leu249Met) in DCK sensitizes a panel of cancer cell lines to treatment with gemcitabine[104].

Several SNPs have been suggested to affect glutathione S-transferases function and favor carcinogenesis. The 
SNP c.-67C>T in the GSTA1 promoter, when expressed in hepatocytes, reduces GSTA1 expression. Moreover, 
the TT genotype is more frequent in HCC than in healthy controls. In addition, GSTA1 expression is lower 
in HCC than in healthy livers[105]. 

Sulfotransferases (SULT) catalyze the addition of a sulfonate moiety. Three human SULT families have been 
identified: SULT1, SULT2 and SULT4[106]. SULT1A1 metabolizes brivanib, a drug used in phase III trials as 
the first-line treatment of HCC[107]. SULT1A1 is up-regulated in patients with HCC secondary to chronic 
HBV infection[108]. Table 4 shows the mutations in SULT1A1 observed in PLC. In order to elucidate the role 
of these mutations in the chemoresistance of these tumors, further investigations are required.

Uridine 5’-diphospho glucuronosyl transferases (UGT) are a group of phase II drug-metabolizing enzymes 
that catalyze the glucuronidation of xenobiotics and endogenous compounds[39]. A reduction in the activity of 
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UGT1As and UGT2B7 has been observed in HBV-positive HCC[109]. In addition, down-regulation of UGT1A9 
has been related to lower sorafenib metabolism in microsomes of HCC cells[110]. UGT2B7 is a p53 target gene 
in liver cells that could promote intratumor or systemic metabolism and clearance of cytotoxic agents and 
other drugs administered together. Thus, UGT2B7 may be related to reduced efficacy of cancer therapy[111]. 
A novel class of human UGT isoforms, namely i2s, has been described. In comparison to isoforms 1 (i1s), 
i2s isoforms utilize the shorter exon 5b instead of incorporating the usual C-terminus exon 5a, which causes 
a premature arrest of translation and subsequent loss of the transmembrane domain. Therefore, UGT i2s 
isoforms are located at the lumen and cytoplasm rather than at the membrane of the endoplasmic reticulum, 
which results in the lack of glucuronidation activity but acting in a dominant-negative manner. Increased 
i2 isoforms expression in PLCs has been found[112]. Somatic mutations affecting UGTs described in TCGA 
database are listed in Table 4.

MOLECULAR TARGETS AND SURVIVAL PATHWAYS
Three major types of molecular alterations have been reported to be at the origin of hepatocarcinogenesis: i) 
Aberrant cell proliferation and survival due to a constitutive activation of signaling pathways, such as EGFR-
Ras-MAPK, PI3K-AKT-mTOR, HGF/MET, Wnt-β-catenin and others; ii) Deregulation of proapoptotic 
machinery elements, such as p53 and Bcl2; and iii) Stimulation of neo-angiogenesis, which is crucial for 
tumor development[2]. Mutations in genes involved in these pathways are expected to determine the response 
to drugs acting on these targets. 

Molecular targets of chemotherapeutic agents (MOC-3)
Mutations or changes in the expression levels of target genes could prevent efficient drug-target interaction 
leading to treatment failure[113]. Although TKIs are useful in the treatment of many tumors, their efficacy is 
often hampered by changes in their targets. For instance, the multikinase inhibitor sorafenib reduces tumor 
cell proliferation and angiogenesis in HCC, which is due in part to its interaction with receptors for several 
growth factors, such as EGF (EGFR), VEGF (VEGFR) and PDGF (PDGFR)[6].

Germline pharmacogenetics
Although somatic mutations are the most frequent changes among the targets of antitumor drugs, some 
target genes belonging to the VEGF family are also affected by germline mutations. This is the case of KDR 
gene (also known as VEGFR or VEGFR2), in which the germline SNP c.1416A>T (p.Gln472His), has been 
described in an East Asian HCC cohort. In this case, patients with two wild-type alleles and heterozygous 
(AT) genotype have decreased progression-free survival (PFS) and OS compared with homozygous patients 
for the mutant allele (TT)[114]. This polymorphism has also been associated with toxicity and adverse reactions 
to sorafenib, including increasing risk of hypertension and hand-foot skin reactions in TT patients[115]. 
Moreover, this mutation has been linked to the response to capecitabine/oxaliplatin and cyclophosphamide 
in colorectal[116] and prostatic[117] tumors, respectively. In addition, the germline polymorphism c.-94C>G 
at the 5’UTR region of the VEGFA gene has been associated with the outcome of prostatic and colorectal 
cancer patients[116]. In HCC, homozygous genotype for the G allele has been related to lower PFS and OS than 
homozygous patients for C allele and heterozygous genotypes[118].

Somatic pharmacogenetics
Acquired resistance to TKI treatment can be due to somatic mutations in a wide variety of target genes. 
Exome sequencing analysis of 243 HCCs revealed 161 mutated genes which could be classified into 11 
recurrent pathways. The most frequently altered pathways were PI3K-AKT-mTOR (51%) and MAPK (43%). 
Although target genes of TKIs (EGFR, VEGFR1, KDR, VEGFC, VEGFA and BRAF) were affected by less than 
1% of all mutations, these alterations were predicted to have functional consequences[119]. Table 5 summarizes 
mutations described in HCC and CCA. Some of these mutations, for instance affecting EGFR, VEGFR1 
and VEGFC, are predicted to alter the function of these proteins[119]. An EGFR polymorphism, c.2369C>T 

Alonso-Peña et al . Cancer Drug Resist  2019;2:680-709  I  http://dx.doi.org/10.20517/cdr.2019.006                                            Page 691 



Gene Protein Genetic mutation G/S Region Protein 
mutation

Functional 
consequences

Clinical 
consequences Studies Ref.

BRAF BRAF c.1799A>T S c Val600Glu Moderate Decreased OS CCA patients [120]
ND Biliary Adenoma [121]

c.1910T>A S c Val637Glu Activation of 
MAPK and 
AKT pathways

Enhanced 
proliferation

HCC in vivo [122,123]

EGFR EGFR c.2464G>A S c Ala822Pro Moderate ND HCC patients [119]
c.67C>T S c Arg23Trp ND Benign HCC patients [119]
c.374A>G S c Tyr125Cys ND ND HCC patients dbEMT
c.2165_2173
dupCCAGCGTGG

S c Ala722_
Val724dup

Moderate ND TCGA-LIHC TCGA

c.2095A>G S c Ile699Val Moderate Pathogenic TCGA-LIHC TCGA
c.3313A>T S c Thr1105Ser Moderate Neutral TCGA-LIHC TCGA
c.1097C>G S c Pro366Arg Moderate Pathogenic TCGA-LIHC TCGA
c.926_945
delCGAATATTA 
AACACTTCAAA

S c Thr309fs*17 High ND TCGA-LIHC TCGA

c.3349A>T S c Ser1117Cys Moderate ND TCGA-LIHC TCGA
c.1881-2577C>T S nc Intron Modifier ND TCGA-LIHC TCGA
c.1072+33G>T S nc Intron Modifier No significant TCGA-LIHC TCGA

FLT1 VEGFR1 c.2306G>A S c Ala769Val Moderate ND HCC patients [119]
c.2196_2198delTGA S c Ser733* High ND HCC patients [119]
c.2110C>T S c Glu704Lys Moderate ND HCC patients [119]
c.1796C>G S c Thr599Arg Moderate Pathogenic TCGA-LIHC TCGA
c.2021delG S c Ser674fs*12 Modifier ND TCGA-LIHC TCGA
c.166dupG S c Glu56fs*5 High ND TCGA-CHOL TCGA
c.1988A>C S c Lys663Thr Modifier ND TCGA-LIHC TCGA
c.679A>T S c Asn227Tyr Moderate Pathogenic TCGA-LIHC TCGA
c.1997A>T S c Asn666Ile Moderate ND TCGA-LIHC TCGA
c.3636-1G>C S nc Splice acceptor High Pathogenic TCGA-LIHC TCGA

KDR VEGFR2 c.1416A>T G c Gln472His ND Increased PFS 
and OS

HCC patients [114]

c.713A>G S c Val238Ala ND Benign HCC patients [119]
c.2935G>A S c Glu979Lys Moderate ND TCGA-CHOL TCGA
c.1054G>T S c Ala352Ser Moderate Pathogenic TCGA-LIHC TCGA
c.1772T>G S c Leu591Arg Moderate Neutral TCGA-LIHC TCGA
c.3944A>G S c Asp1315Gly Moderate Pathogenic TCGA-LIHC TCGA
c.1297G>T S c Asp433Tyr Moderate ND TCGA-LIHC TCGA
c.3957C>A S c Tyr1319* High Pathogenic TCGA-LIHC TCGA
c.3152G>A S c Arg1051Gln Moderate Pathogenic TCGA-CHOL TCGA
c.1368C>G S c Ile456Met Moderate Pathogenic TCGA-LIHC TCGA
c.2398G>C S c Gly800Arg Moderate Pathogenic TCGA-LIHC TCGA
c.*172G>A S nc 3‘UTR Modifier ND TCGA-LIHC TCGA

VEGFA VEGFA c.-94C>G G nc 5’UTR ND Decreased 
PFS and OS

HCC patients [118]

c.332_346del
GCCCGGGCC 
TCGGGC

S c Ala112_
Gly116del

Moderate ND TCGA-LIHC TCGA

c.*285A>G S nc 3‘UTR Modifier ND TCGA-CHOL TCGA
c.308+1G>C S nc Splice donor High ND TCGA-LIHC TCGA

VEGFC VEGFC c.986C>T S c Gly329Glu Moderate ND HCC patients [119]
c.367C>A S c Asp123Tyr Moderate ND HCC patients [119]
c.235T>C S c Lys79Glu Moderate ND HCC patients [119]
c.842G>A S c Gly281Glu Moderate ND TCGA-LIHC TCGA
c.938A>G S c Asn313Ser Moderate ND TCGA-LIHC TCGA
c.341A>T S c Tyr114Phe Moderate ND TCGA-LIHC TCGA
c.1037C>G S c Thr346Ser Moderate ND TCGA-LIHC TCGA
c.1253T>G S c Met418Arg Moderate ND TCGA-LIHC TCGA
c.820G>C S c Asp274His Moderate ND TCGA-CHOL TCGA

Table 5. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions in target genes of 
anticancer drugs in primary liver cancer 
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(p.Thr790Met), has been described in non-small-cell lung cancer, and prevents gefitinib- and erlotinib-
induced TKR inhibition[124,125]. Somatic mutations in ESR1, TYMS and EGFR genes related to drug resistance 
have also been reported in PLC[91]. A variant in an intron of VEGFC (g.177608775T>C) has been associated 
with sorafenib efficacy in HCC patients. CC genotype of this mutation is accompanied by a decrease in PFS 
and OS as compared with patients bearing CT or TT genotype[116]. In iCCA, EGFR amplification has been 
associated with the response to gefitinib (anti-EGFR therapy)[126].

Concerning BRAF, which is another major target of sorafenib, the missense mutation c.1799T>A (p.Val600Glu) 
must be highlighted. This mutation has been found in many malignant tumors, such as melanoma, thyroid 
cancer[123], colorectal cancer[127], but also HCC[119] and iCCA[120]. In patients with iCCA, OS was lower in those 
with mutated BRAF (7.4% of cases) than in wild-type cases. The murine ortholog of this mutation in mouse 
(c.1910T>A; p.Val637Glu), is a frequent feature in mouse liver cancer. In diethylnitrosamine-induced mouse 
hepatocarcinogenesis, c.1910T>A mutation correlated with Erk1/Akt hyperphosphorylation, suggesting an 
activation of MAPK and AKT pathways that results in stimulated cell proliferation[120,123]. Nevertheless, a 
relationship between these mutations and the response to TKIs has not been well characterized.  

DNA repair mechanisms (MOC-4) 
Cancer cells can repair genome perturbations that are induced by antitumor-drugs through diverse 
mechanisms that depend on the type of damage suffered by DNA[113]. DNA repairing machinery includes 
direct reversal of lesions by enzymes, such as O-6-methylguanine-DNA methyltransferase (MGMT), 
nucleotide and base excision repair (NER and BER, respectively), DNA mismatch repair (MMR), homologous 
recombination (HR) and non-homologous end joining (NHEJ). Deregulated expression and the appearance 
of mutations in genes of the repair machinery have been observed in a variety of tumors. Since many cytotoxic 
drugs used in the treatment of PLC act through alterations in DNA structure of cancer cells, MOC-4 play 
an important role in the response of these tumors to chemotherapy. Table 6 provides a summary of both 
germline and somatic mutations affecting DNA repair genes in HCC and CCA.

Germline pharmacogenetics
NER is the most important pathway involved in the elimination of bulky adducts induced by UV irradiation 
and alkylating agents, such as platinum derivatives. More than 25 polypeptides participate in NER[128]. 
Germline variants in NER elements have been found in several cancers and some studies have related these 
alterations to the lack of response to platinum-based chemotherapy[129,130]. However, mutations in these genes 
are rarely found in HCC.

BER pathway also plays an essential role in DNA damage repair induced by alkylating agents and irradiation. 
APE1 is an endonuclease involved in this process that recognizes and cleaves abasic (apurinic/apyrimidinic) 
sites, where XRCC1 forms a complex with a DNA ligase to repair the gaps that have resulted from base 
excision. In HCC patients, two genetic polymorphisms in XRCC1 (c.580C>T; p.Arg194Trp) and APE1 
(c.444T>G; p.Asp148Glu) have been associated with resistance to cisplatin[131].

c.-17C>A S nc 5’UTR Modifier ND TCGA-LIHC TCGA
g.177608775T>C S nc Intron ND Decreased 

PFS and OS
HCC patients [118]

Data obtained from referred literature, dbEMT, and TCGA database. Functional consequences are based on VEP (Variant Effect Predictor; 
https://www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which 
is likely to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the 
encoded protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be involved 
in transcription or splicing changes. OS: overall survival; PFS: progression-free survival; CCA: cholangiocarcinoma; HCC: hepatocellular 
carcinoma; IHCA: Inflammatory hepatocellular adenomas; ND: not described; TCGA: the cancer genome atlas; TCGA-LIHC: the cancer 
genome atlas - liver hepatocellular carcinoma; TCGA-CHOL: the cancer genome atlas - cholangiocarcinoma
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Germline mutations in several genes belonging to DNA repair pathways are more common in CCA. 
Variants in BRCA and RAD51 genes (HR pathway) and in MHL1 and MSH2 genes (MRR repair pathway) 
have been found in 11% of CCA analyzed[133], although a relationship between these mutations and treatment 
response or OS has been rarely reported. In a multicenter retrospective study of CCA patients, improved 
OS in patients harboring pathogenic BRCA1/2 mutations treated with platinum-based therapy and/or PARP 
inhibitors (PARPi) have been described[132]. This suggests that CCA patients could benefit from targeted 
therapy, such as PARPi administration, as occurs in other BRCA-associated tumors[134]. 

Somatic pharmacogenetics
Somatic mutations in NER genes are rarely found in HCC. ERCC1, one of the key components in this repair 
mechanism, is mutated at low frequency (< 1%). In a cohort of 372 HCC samples collected by TCGA only 
two ERCC1 mutations (c.133A>G; p.Ser45Gly and c.43G>T; p.Gly15Trp) were found in two tumors, even 
though the functional consequences are unknown. However, this gene is frequently overexpressed in HCC 
tumors, being associated with cisplatin resistance[135]. Another essential NER protein, responsible for DNA 
damage recognition, is XPC, which is also overexpressed in HCC and could be related to chemoresistance[136]. 
Nevertheless, XPC mutations with clinical relevance have not been reported in HCC. The XPD (or ERCC2) 
gene encodes a DNA helicase also involved in this pathway. Four non-synonymous mutations were found in 
XPD in the TCGA HCC cohort. The biological effect of these mutations and their impact on HCC patients 
regarding their response to chemotherapeutic drugs and OS is not known. However, in bladder cancer, non-
synonymous mutations in XPD have been associated with sensitivity to cisplatin[137].

Mechanisms involved in the repairing of double-strand breaks, such as HR and NHEJ, are also important in 
the response to anticancer drugs[138]. XRCC4-like factor (XLF) is a core member of NHEJ pathway required 

Gene Protein Genetic 
mutation G/S Region Protein 

mutation
Functional 

consequences Clinical consequences Studies References

APEX1 APE1 c.444T>G G c Asp148Glu ND Cisplatin resistance HCC patients [131]
BRCA1 BRCA1 c.185delT G c High Better OS. Therapy response CCA patients [132]

c.5503C>T S c Arg1835* Moderate Better OS. Therapy response CCA patients [132]
c.1961delA S c Lys654fs*47 ND Better OS. Therapy response CCA patients [132]
c.5153G>T S c Trp1718Leu Moderate Better OS. Therapy response CCA patients [132]
c.2293G>A S c Glu765Lys ND Better OS. Therapy response CCA patients [132]

S c Asp825fs*21 ND Better OS. Therapy response CCA patients [132]
BRCA2 BRCA2 c. 6503delT G c High Better OS. Therapy response CCA patients [132]

c. 6174delT G c High Better OS. Therapy response CCA patients [132]
c.9976A>T S c Lys3326* Moderate Better OS. Therapy response CCA patients [132]

S c Leu2368fs*8 ND Better OS. Therapy response CCA patients [132]
S c Asn991fs*3 ND Better OS. Therapy response CCA patients [132]

c.9154C>T S c Arg3052Trp Moderate Better OS. Therapy response CCA patients [132]
c.9257G>C S c Gly3086Ala ND Better OS. Therapy response CCA patients [132]

ERCC1 ERCC1 c.133A>G S c Ser45Gly ND ND HCC patients cBioportal
c.43G>T S c Gly15Trp ND ND HCC patients cBioportal

ERCC2/
XPD

ERCC2/
XPD

c.1450A>G S c Thr484Ala ND ND HCC patients cBioportal
c.215A>T S c Tyr72Phe ND ND HCC patients cBioportal
c.1853T>G S c Val618Gly ND ND HCC patients cBioportal
c.1378A>G S c Thr460Ala ND ND HCC patients cBioportal

NHEJ1 NHEJ1/XLF c.518C>T S c Thr173Met ND ND HCC patients cBioportal
XRCC1 XRCC1 c.580C>T G c Arg194Trp ND Cisplatin resistance HCC patients [131]

Table 6. Germline (G) and somatic (S) mutations affecting coding (c) and non-coding (nc) regions of repair genes in primary 
liver cancer

Data obtained from cBioportal and referred literature. Functional consequences are based on VEP (Variant Effect Predictor; https://
www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which is likely 
to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the encoded 
protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be involved in 
transcription or splicing changes. CCA: cholangiocarcinoma; HCC: hepatocellular carcinoma; OS: overall survival; ND: not determined
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for the double stranded end joining. Somatic mutations in XLF gene occur at a very low frequency in HCC 
tumors. However, both in vitro and in vivo experiments have demonstrated that XLF knockdown confers 
sensitivity to drug chemotherapy, suggesting that XLF-mediated increase in NHEJ activity can play a role 
among mechanisms of chemoresistance in HCC[139].

The frequency of somatic mutations in DNA repair genes with clinical impact in CCA is unknown. 
Nevertheless, the multicenter retrospective study of CCA patients mentioned above also reported enhanced 
OS of CCA patients harboring somatic mutations suspected to be pathogenic in BRCA1/2 when treated with 
platinum-based therapy[132]

Survival pathways and apoptosis (MOC-5)
Most pharmacological regimens currently used in the clinical treatment of cancer are based on the 
activation of apoptosis in cancer cells. Therefore, impairment of the involved machinery not only results in 
an uncontrolled cell growth, but also confers resistance to chemotherapy. The lack of response to anticancer 
drugs may be caused by deregulated expression and the appearance of loss-of-function mutations in pro-
apoptotic factors (MOC-5a) or be due to an aberrant activation of anti-apoptotic proteins (MOC-5b)[39]. 
Somatic mutations affecting MOC-5a and MOC-5b genes in PLC are listed in Tables 7 and 8, respectively. 

Alteration in the expression and/or function of pro-apoptotic factors (MOC-5a)
The TP53 gene encodes p53, which plays a key role as a tumor suppressor in several processes in response 
to cellular stress signals, regulating the transcription of many genes involved in cell cycle arrest, apoptosis, 
senescence, DNA repair and maintenance of genomic stability, among others. TP53 is one of the most 
frequently mutated genes in HCC (25%-30%)[140]. Most of these mutations affect the DNA-binding domain 
of the protein, reducing its binding affinity to specific sequences of target genes. Cells harboring non-
functional protein are less likely to induce apoptosis and, therefore, more resistant to DNA damage caused 
by chemotherapy[141], which has clinical consequences in HCC patients[142]. A very common TP53 missense 
mutation in HCC is c.747G>T (p.Arg249Ser), whose incidence has been related to exposure to aflatoxin[143]. 
In a study carried out in 409 HCC patients, c.747G>T (p.Arg249Ser) and c.469G>T (p.Val157Phe) mutations 
have been associated with poorer prognosis[143]. Another p53 mutation, c.743G>A (p.Arg248Gln), induces 
resistance to doxorubicin and paclitaxel in HCC. Cells harboring that mutation display enhanced expression 
of MDR1[144], which is a known to be able to export both drugs.

Transcription factors related to p53, such as p63 and p73 are expressed as several isoforms due to alternative 
splicing. Although TAp63 and TAp73 isoforms are considered as tumor suppressors with pro-apoptotic 
activity[145,146], N-terminal truncated isoforms, ∆Np63 and ∆Np73, display anti-apoptotic activity and 
stimulate proliferation. TAp63 and TAp73 down-regulation, and ∆Np63 and ∆Np73 overexpression have 
been found in HCC and they are related to shorter OS and tumor recurrence[147]. In addition, in vitro studies 
in HCC cells revealed that ΔNp63 isoform confers resistance to doxorubicin and mitoxantrone through the 
inhibition of factors involved in mitochondrial apoptosis pathways[148].

TP53 is also frequently mutated in CCA[149]. High expression of the truncated ∆N isoform ∆133p53, observed 
in CCA tissues, has been correlated with poor clinical outcome in patients suffering from this PLC[150]. 
Moreover, ∆133p53 isoform expression is increased in 5-FU-resistant CCA cells[151]. On the other hand, the 
presence of mutations in TP53 and CDKN2A genes has been associated with poor prognosis in advanced 
CCA patients receiving a combination of gemcitabine and platinum-derived drugs as first-line therapy[152].

Low levels of the pro-apoptotic factor TAp73 contribute to chemoresistance in CCA. Thus, TP73 expression 
is decreased in 5-FU-resistance CCA cell lines[153]. Deregulation of other pro-apoptotic proteins influences 
the response to anticancer drugs commonly used in CCA treatment. For example, decreased expression of 
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Bax, which participates in the intrinsic apoptotic pathway, has been reported in gemcitabine-resistant cell 
lines[156]. However, Bax mutations have not been described in CCA samples.

Somatic mutations in several genes involved in the cell cycle regulation, including CDKN2A y RB1, have 
been identified. The presence of inactivating mutations in CDKN2A, a cyclin-dependent kinase inhibitor, 
has been associated with poorer prognosis in HCC[119]. In the case of RB1, a relationship between mutations 
in this gene and early recurrence of HCC after resection has been found[155]. Damaging mutations appearing 
in genes coding for other checkpoint proteins, which might be involved in carcinogenesis, have been 

Gene Protein Genetic 
mutation G/S Region Protein mutation Functional 

consequences
Clinical 

consequences Studies References

CASP8 Caspase-8 c.1225_1226 
delTG

S c Val410Phefs*28. Loss of function Probably 
chemoresistance

HCC patients [154]

CDKN2A CDKN2A c.248G>A S c His83Tyr Moderate Poor prognosis HCC patients [119]
g.21971148_ 
21971155del

S c Ala68Glufs*49 High Poor prognosis HCC patients [119]

c.263C>A S c Glu88* High Poor prognosis HCC patients [119]
g.21974672del S c Gly52Valfs*77 High Poor prognosis HCC patients [119]
g.21974711_ 
21974728del

S c Glu33_Asn 
39delinsAsp

High Poor prognosis HCC patients [119]

c.72C>G S c Arg24Pro Moderate Poor prognosis HCC patients [119]
c.36G>T S c Ser12* High Poor prognosis HCC patients [119]

RB1 RB1 c.381A>T S c Ser127_splice ND Early recurrence 
after resection

HCC patients [155]

c.508G>T S c Glu170* Loss of function Early recurrence 
after resection

HCC patients [155]

c.646delT S c Phe216fs ND Early recurrence 
after resection

HCC patients [155]

c.763C>T S c Arg255* Loss of function Early recurrence 
after resection

HCC patients [155]

c.979A>T S c Lys327* Loss of function Early recurrence 
after resection

HCC patients [155]

c.1421G>A S c Ser474Asn ND Early recurrence 
after resection

HCC patients [155]

c.1472T>C S c Leu491Pro ND Early recurrence 
after resection

HCC patients [155]

c.1654C>T S c Arg552* Loss of function Early recurrence 
after resection

HCC patients [155]

c.2120delC S c Ser707fs ND Early recurrence 
after resection

HCC patients [155]

TP53 p53 c.747G>T S c Arg249Ser Loss of function Poor prognosis HCC patients [143]
c.469G>T S c Val157Phe Loss of function Poor prognosis HCC patients [143]
c.743G>A S c Arg248Gln Loss of function Doxorubicin 

resistance
HCC in vitro [144]

S c 1-132del
(truncated variant 
Δ133p53)

Dominant 
negative

Poor outcome, 
5-FU resistance

CCA patients [150] 
[151]

TP63 p63 S c 1-62del
(truncated variant 
ΔNp63)

Gain of function 
(antiapoptotic-
effect)

Doxorubicin and 
mitoxantrone 
resistance. 
Shorter OS

HCC patients [147] 
[148]

TP73 p73 S c 1-72del
(truncated variant 
ΔNp73)

Gain of function 
(antiapoptotic-
effect)

Shorter OS HCC patients [147]

Table 7. Somatic (S) mutations affecting coding (c) and non-coding (nc) regions of pro-apoptotic genes in primary liver cancer

Data obtained from cBioportal database and referred literature. Functional consequences are based on VEP (Variant Effect Predictor; 
https://www.ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which 
is likely to cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the 
encoded protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be involved 
in transcription or splicing changes. CCA: cholangiocarcinoma; HCC: hepatocellular carcinoma; 5-FU: 5-fluorouracil; OS: overall survival; 
ND: not determined
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Gene Protein Genetic 
mutations G/S Region Protein mutation Functional 

consequences
Clinical 

consequences Studies References

CTNNB1 Catenine 
beta-1

c.95A>G/T
c.94G>T
c.94G>C

S c Asp32Gly/Val
Asp32Tyr
Asp32His

Gain-of-function
ND

Controversial
ND

HCC patients
HCC patients

[157,158] 
[159,160] 

dbEMT
c.98C>G/A/T/
c.97T>C/G

S c Ser33Cys/Tyr/Phe/Pro/
Ala

Gain-of-function Controversial HCC patients [157-160]

c.99_113del15

c.1202T>A 

S c Gly34_Gly38delGlyIle 
HisSerGly
Leu401His

ND

ND

ND

ND

HCC

HCC

dbEMT

dbEMT
c.110C>G/A/T /
c.109T>C/G

S c Ser37Cys/Tyr/Phe/Pro/
Ala

Gain-of-function Controversial HCC patients [157-160]

c.121A>G/ 
c.122C>T/A

S c Thr41Ala/Ile/Asn Gain-of-function Controversial HCC patients [157-160]

c.134C>G/A/T/
c.133T>C/G

S c Ser45Cys/Tyr/Phe/Pro/
Ala

Gain-of-function Controversial HCC patients [157-160]

JAK1 JAK1 c.1932G>T/
c.1933G>T 
(tandem 
mutation)

S c Gln644His/Val645Phe Gain-of-function ND HCC in vitro  
and patients

[161]

c.2108G>T S c Ser703Ile Gain-of-function ND HCC in vitro  
and patients

[161]

c.2185A>T S c Ser729Cys Gain-of-function ND HCC in vitro  
and patients

[161]

KRAS K-Ras c.35G>T/A/
c.34G>T/A

S c Gly12Val/Asp/Cys/Ser Gain-of-function Reduced 
survival

CCA patients [162,132]

mtDNA COX1 m.T6115C S c Met71Thr Loss-of-function ND HCC patients [164]
ATP8 m.G8387A S c Val8Met Loss-of-function ND HCC patients [164]
ND5 m.G13121A S c Arg262His Loss-of-function ND HCC patients [164]
ND6 m.T14180C S c Tyr165Cys Loss-of-function ND HCC patients [164]

PIK3CA PI3K 
p110α 
subunit

c.3204_320 
5insA

S c Asn1068fs*4 Gain-of-function ND HCC patients COSMIC

c.3140A>G S c His1047Arg Gain-of-function ND HCC patients COSMIC
c.1624G>A S c Glu542Lys Gain-of-function ND HCC patients COSMIC
c.1633G>A S c Glu545Lys Gain-of-function ND HCC patients COSMIC

PTEN PTEN Loss of hetero 
zygosity at 10q23

S c Lower 
expression

ND HCC patients [165,166]

TSC1 TSC1 c.2278delA S c Arg760fs Loss-of-function ND HCC patients [167]
c.965dupT S c Met322fs Loss-of-function ND HCC patients [167]

TSC2 TSC2 c.3400G>A S c Gly1134Ser Loss-of-function ND HCC patients [167]
c.4653_4655 
delAGA

S c 1551_1552del Loss-of-function ND HCC patients [167]

c.3050C>G S c Thr1017Arg Loss-of-function ND HCC patients [167]
c.2355G>T S c Gln785His Loss-of-function ND HCC patients [167]
c.4129C>T S c Gln1377* Loss-of-function ND HCC patients [167]
c.4129C>T S c Gln1377* Loss-of-function Rapamycin 

sensitivity
HCC in vitro  / 
HCC patients

[167]

c.173C>T S c Gln63* Loss-of-function Rapamycin 
sensitivity

HCC in vitro / 
HCC patients

[167]

c.482-2A>T S nc intron 5 splicing acceptor Loss-of-function ND HCC patients [167]

c.2355+1G>T S nc intron 21 splicing donor Loss-of-function ND HCC patients [167]

c.1947-2delA S nc intron 18 splicing 
acceptor

Loss-of-function ND HCC patients [167]

Table 8. Somatic (S) mutations affecting coding (c) and non-coding (nc) regions of anti-apoptotic genes in primary liver cancer

Data obtained from COSMIC database, dbEMT and referred literature. CCA: cholangiocarcinoma; HCC: hepatocellular carcinoma; ND: 
not determined
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identified[119]. However, no clinical consequences for these HCC patients have been reported. In contrast, 
a frameshift mutation in CDKN1A encoding a truncated protein which lacks the ability to interact with its 
targets has been found to confer resistance to paclitaxel in breast cancer cells[168].



Caspase 8 plays a key role in signal transduction within the extrinsic apoptotic pathway. Somatic mutations 
with loss-of-function affecting this protein have been associated with the resistance to drugs whose 
mechanism of action includes apoptosis activation[169]. In a study of 69 HCC patients, 9 of them had the 
same alteration in the caspase 8 gene (CASP8), c.1225_1226delTG, a frameshift mutation with two base-
pair deletion resulting in a defective protein with a shorter p10 protease subunit[154]. Mutations affecting p10 
subunit of procaspase-8 have been reported to promote unresponsiveness to chemotherapy in other cancers, 
such as acute myeloid leukemia[170]. Whether these mutations are also involved in HCC chemoresistance is 
not known.

Alterations in anti-apoptotic/pro-survival factors (MOC-5b)
Aberrant expression and/or activating mutations in anti-apoptotic factors as well as constitutive activation 
of pro-survival signaling pathways, such as PI3K/AKT, Ras/Raf/MAPK/ERK/MEK or JAK/STAT, lead 
to an uncontrolled cell proliferation and evasion of apoptosis in cancer cells, which contributes to tumor 
progression and reduces effectiveness of chemotherapeutic drugs. 

The PI3K/PTEN/AKT/mTOR pathway, commonly altered in HCC, is associated with poor prognosis[171]. The 
frequency of PIK3CA mutations in HCC is controversial, ranging from 0 to 36% of HCC cases depending 
on the population studied[172,173]. Some of the most recurrent PIK3CA mutations in HCC samples according 
to the data from COSMIC, such as c.3204_3205insA (p.Asn1068fs*4) and c.3140A>G (p.His1047Arg) are 
oncogenic[174,175]. Other mutations described in HCC, such as c.1624G>A (p.Glu542Lys) and c.1633G>A 
(p.Glu545Lys), affecting the PIK helical domain of the protein confer gain-of-function[175]. Although PIK3CA 
mutations have not been directly related to chemoresistance in HCC, an in vitro assay has reported PIK3CA 
overexpression in sorafenib-resistant HCC cells[176]. 

The tumor suppressor gene PTEN is the major negative regulator of PI3K/AKT/mTOR pathway. Therefore, 
alterations leading to PTEN loss-of-function could induce the activation of this pathway. Even though PTEN 
mutations are uncommon in HCC, somatic loss of heterozygosity of PTEN allele has been found in 20%-
30% of HCC cases[165,166]. Moreover, PTEN down-regulation may be also caused by epigenetic alterations[177]. 
These changes are clinically relevant because PTEN expression has been found to be decreased in sorafenib-
resistant HCC cells[176]. Therefore, activation of PI3K/AKT/mTOR pathway due to impaired PIK3CA 
and PTEN genes may play a key role among MOC accounting for the lack of response of HCC patients 
to sorafenib. At this respect, several preclinical and clinical studies have been carried out to evaluate the 
efficacy of inhibitors targeting PI3K/PTEN/Akt/mTOR pathway. Some of them have shown promising 
results[178]. For instance, inactivating mutations in TSC1/2 genes have been found both in HCC cell lines and 
clinical specimens, resulting in an impairment of mTOR signaling. However, HCC cells harboring these 
mutations were sensitive to rapamycin, an mTOR inhibitor[167]. TSC2-null HCC cell lines have also shown to 
be sensitive to everolimus, another mTOR inhibitor, and HCC patients with low expression of TSC2 treated 
with everolimus have higher OS rates[179].

Regarding JAK/STAT signaling pathway in HCC tumors, somatic mutations mainly affecting domains of 
JAK1 (pseudo-kinase and tyrosine kinase) have been identified, which lead to constitutively activated JAK/
STAT signaling[161]. Since JAK/STAT pathway is involved in acquired resistance of HCC cells to sorafenib[180], 
these findings suggest that mutations in JAK1 may lead to failure of sorafenib treatment due to compensatory 
proliferation. Thus, mutated JAK1 could be a potential target for pharmacological manipulation. Indeed, 
cells harboring c.2108G>T (p.Ser703Ile) variant were sensitive to ruxolitinib, a JAK1/2 inhibitor[181]. 

Wnt/β-catenin signaling pathway is frequently deregulated in HCC, leading to β-catenin accumulation 
in the nucleus of cancer cells[159]. Aberrant activation of this pathway is largely due to gain-of-function 
mutations in CTNNB1 gene, encoding β-catenin protein, which have been observed in 20%-40% of HCC 
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samples assayed[182]. These are somatic mutations usually located in exon 3 encoding the N-terminal 
phosphorylation sites of β-catenin. HCC sequencing studies collected in cBioportal database reveal that 
most frequent mutations occur in Ser/Thr phosphorylation residues (codons 33, 37, 41 and 45) and in codon 
32. The clinical implication of these mutations is controversial. Some studies have associated the presence 
of CNNTB1 mutations in HCC with better OS[157,158], whereas others have linked these mutations to tumor 
progression and poor prognosis[159,160].

The insulin-like growth factor (IGF) signaling cascade is also involved in cell growth and survival, and its 
activation plays an important role in the resistance of HCC to TKIs[183,184]. An in vivo assay has demonstrated 
the presence of elevated IG2F levels as one of the major mechanisms of acquired resistance to sorafenib in 
HCC[184]. In addition, it has been shown that c.747G>T (p.Arg249Ser) mutation in p53, which is very common 
in aflatoxin-induced HCC, is accompanied by enhanced expression of IGF2 and type 1 IGF receptor[185]. This 
suggests a possible link between this p53 mutation and the resistance of HCC to TKIs.

The presence of alterations in Ras/Raf/MEK/MAPK/ERK pathway may play an important role in the response 
of CCA to chemotherapy. Mutations in KRAS gene have been observed in different subtypes of CCA, mainly 
affecting codon 12, such as c.35G>T (p.Gly12Val), c.35G>A (p.Gly12Asp), c.34G>T (p.Gly12Cys) and c.34G>A 
(p.Gly12Ser), with variable incidence depending on the population under study[162,186,187]. These mutations 
have oncogenic potential, leading to constitutive stimulation of K-Ras and, consequently, activation of 
downstream signaling effectors[188]. Several studies have reported a reduced survival of CCA patients with 
mutations in K-Ras codon 12[162,189]. These mutations conferred resistance to everolimus in CCA cells[163].

Both somatic mutations and reduced copy number of mitochondrial DNA (mtDNA) have been found in a 
large proportion of HCC tumors[164,190]. Some of these mutations affect coding regions and result in amino 
acid substitution or premature stop codon in polypeptides of respiratory complexes, which presumably leads 
to mitochondrial dysfunction. In tumor cells, this impairment results in altered reactive oxygen species 
(ROS) production, which can promote activation of survival pathways or changes in the expression of anti-
apoptotic factors, eventually leading to an adverse impact on the response to chemotherapy. This is consistent 
with the finding that mtDNA depletion in HCC cells promotes resistance to 5-FU[164].

NOVEL MECHANISMS AFFECTING CHEMOTHERAPY EFFICACY
Autophagy and changes in tumor microenvironment
Recent evidences have shown that tumor microenvironmental stress-induced autophagy may contribute 
in part to the development of chemoresistance[191]. Thus, in HCC cells treated with oxaliplatin autophagy 
is activated, which favors cell survival[192]. Moreover, oxygen deficiency triggers the activation of hypoxia-
specific transcription factors, which regulates the expression of genes that increase cancer cell survival and 
drug resistance[193]. In addition, these factors are master regulators of the expression of genes involved in the 
phenotypic epithelial-mesenchymal transition (EMT), cell migration (MMP2), homing (CXCR4) and the 
establishment of the pre-metastatic niche (LOX)[193]. Somatic mutations in these genes have been described 
in HCC, although their relevance in protein function remains unknown [Table 9]. 

In the case of CCA, interleukins, like IL-6, released by immune cells present in the tumor microenvironment, 
particularly macrophages, can confer resistance to toxic compounds and promote tumor growth. Targeting 
tumor microenvironment rather than CCA cells directly may lead to novel therapeutic strategies to treat 
this cancer[194]. In the case of HCC, higher expression of IL-6 also seems to be a key player. Moreover, IL-6 
knockdown in HCC cells increased their sensitivity to sorafenib[195]. Whether several somatic mutations 
described in IL-6 gene [Table 9] have any influence in MOC-6 of PLC is poorly understood.
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EMT-associated chemoresistance
EMT is the mechanism that leads to a transient and reversible de-differentiation of epithelial cells to a 
mesenchymal phenotype[196]. Changes occurred during EMT are evidenced by the loss of epithelial markers, 
such as E-cadherin[197] and the increased expression of mesenchymal proteins such as N-cadherin, a-smooth 
muscle actin (a-SMA), fibroblast-specific protein (FSP-1) and EMT-transcription factors Snail (SNA1), Slug 
(SNA2), Twist and ZEB[196]. Among them, Snail is the most prominent inducer of EMT in HCC[198]. Although 
several somatic mutations in genes involved in EMT have been described [Table 10], the actual role in HCC 
chemoresistance of the resulting variants is not known.

In healthy biliary epithelium, E-cadherin is located at the plasma membrane of cholangiocytes, whereas in 
malignant CCA cells down-regulation and cytoplasmic internalization of E-cadherin occurs. Mutations 
and epigenetic silencing by the hypermethylation of E-cadherin gene (CDH1) are some of the mechanisms 
accounting for its down-regulation, which correlates with poor tumor differentiation and metastasis[199-204]. 
Interestingly, CCA cells exhibiting mesenchymal traits are more resistant to gemcitabine than those 
characterized by a prominent epithelial phenotype[205]. In the case of HCC, the overexpression of nestin, a 
type VI intermediate filament protein, has been associated with EMT and chemoresistance[206]. 

Alternative splicing may also affect EMT. The functional consequences of differential splicing in EMT is 
illustrated by p120 catenin, the adhesion protein cluster of differentiation 44 (CD44), and FGFR2. Many 
changes affecting alternative splicing during EMT come from the rapid down-regulation of two RNA-
binding proteins: epithelial splicing regulatory protein 1 (ESRP1) and ESRP2. Their down-regulation results 
in the generation of pro-mesenchymal protein isoforms that lead to alterations in adhesion, motility and 
signaling pathways[207-209]. 

CONCLUSION
The information summarized in the present review clearly shows that germline and somatic mutations in 
genes involved in MOC play an important role in the overall response of HCC and CCA to chemotherapy. 
Although a remarkable advance in the identification and characterization of the functional consequences of 
these mutations has been achieved in the last decade it is evident that our current knowledge of this problem 

Gene Protein G/S Region Genetic mutations Protein mutations Functional 
consequences

Clinical 
consequences Studies References

IL6 IL6 S c c.179T>A Ile60Asn Moderate Neutral TCGA-LIHC TCGA
S
S

c
nc

c.83C>T
c.20-6C>T

Ala28Val
Splice region variant

Moderate
Modifier

Neutral
Neutral

TCGA-LIHC
TCGA-LIHC

TCGA
TCGA

S nc c.243+169T>G Intron Modifier ND TCGA-LIHC TCGA
MMP2 MMP2 S c c.648G>T Lys216Asn Moderate ND TCGA-LIHC TCGA

S c c.1160C>G Pro387Arg Moderate ND TCGA-CHOL TCGA
S
S

c
nc

c.85G>A
c.-75-3345G>A

Ala29Thr
Intron

Moderate
Modifier

Pathogenic
Pathogenic

TCGA-LIHC
TCGA-LIHC

TCGA
TCGA

CXCR4 CXCR4 S
S

c
nc

c.664A>T
c.-55C>A

Ile226Phe
5’UTR

Moderate
Modifier

Pathogenic
ND

TCGA-LIHC
TCGA-LIHC

TCGA
TCGA

LOX LOX S
S
S

c
c
nc

c.1144C>T 
c.850T>A
c.*42T>A

Pro382Ser
Tyr284Asn
3’UTR

Moderate
Moderate
Modifier

Pathogenic
Pathogenic
Pathogenic

TCGA-LIHC
TCGA-LIHC
TCGA-LIHC

TCGA
TCGA
TCGA

Table 9. Somatic (S) mutations affecting coding (c) and non-coding (nc) regions of genes related to tumor microenvironment 
in primary liver cancer

Data obtained from TCGA database. Functional consequences are based on VEP (Variant Effect Predictor; https://www.ensembl.org/vep) 
impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which is likely to cause loss of function; 
Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the encoded protein; Modifier is usually 
referred to non-coding variants, whose impact is difficult to determine, although they can be involved in transcription or splicing changes. 
ND: not determined; TCGA: the cancer genome atlas; TCGA-LIHC: the cancer genome atlas - liver hepatocellular carcinoma; TCGA-
CHOL: the cancer genome atlas - cholangiocarcinoma
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is still limited. This lack of information is partly due to the fact that most studies carried out so far on PLC 
chemoresistance have been focused on determining the expression levels of genes involved in MOC as well 
as their genetic and epigenetic regulation. Therefore, further investigations in this field are needed and 
highly recommended. Available information suggests that there is high probability of identifying, among 
genetic variants, both novel biomarkers to predict the failure of the pharmacological treatment and molecular 
targets to sensitize cancer cells to anticancer drugs, and hence improve the outcome of PLC patients.  

DECLARATIONS
Authors’ contributions
Literature mining: MOC1 (MAP, RAEE), MOC2 (MSM), MOC3 (PSS), MOC4/5 (ASM), MOC6/7 (MSM)
Writing the draft: General aspects (JJGM); MOC1 (MAP, RAEE), MOC2 (MSM), MOC3 (PSS), MOC4/5 
(ASM), MOC6/7 (MSM)
Final revison: MAP, ASM, PSS, MSM, RAEE, JJGM 

Gene Protein Genetic 
mutations G/S Region Protein 

mutations
Functional 

consequences
Clinical 

consequences Studies References

VIM VIM c.1024C>A
c.1348A>G

S
S

c
c

Arg342Ser
Arg450Gly

ND
ND

ND
ND

HCC patients
HCC patients

dbEMT
dbEMT

SMAD3 SMAD3 c.425G>A ND c Arg142His ND ND HCC patients dbEMT
HIF1A HIF1A c.984G>C ND c Lys328Asn ND ND HCC patients dbEMT
TGFB1 TGFβ-1 c.528C>T ND c Asn176Asn ND ND Liver carcinoma dbEMT
ZEB1 ZEB1 c.892G>C

c.777A>T
c.1219A>G
c.824A>C

S
S
S
S

c
c
c
c

Val298Leu
Leu259Phe
Ile407Val
Lys275Thr

ND
ND
ND
ND

ND
ND
ND
ND

HCC patients
Liver carcinoma
Liver carcinoma
Liver carcinoma

dbEMT
dbEMT
dbEMT
dbEMT

ZEB2 ZEB2 c.80A>G
c.1141A>G
c.1862T>C
c.855A>G
c.2519G>T

S
ND
ND
ND
ND

c
c
c
c
c

Asn27Ser
Met381Val
Val621Ala
Thr285Thr
Ser840Ile

ND
ND
ND
ND
ND

ND
ND
ND
ND
ND

Liver Carcinoma
HCC patients
Liver carcinoma
Liver carcinoma
Liver carcinoma

dbEMT
dbEMT
dbEMT
dbEMT
dbEMT

CDH1 CDH1 c.884C>T
c.1027C>T
c.1107C>T
c.900C>G
c.1019C>T
c.1070C>T
c.925C>T
c.427C>T

S
S
S
S
S
S
S
S
S

c
c
c
c
c
c
c
c
c

Thr295Ile
Leu343Leu
Asn369Asn
Ile300Met
Thr340Met
Thr357Ile
Pro309Ser
Pro143Ser

ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND

HCC patients
Bile duct cancer
Bile duct cancer
Bile duct cancer
Bile duct cancer
HCC patients
HCC patients
HCC patients

dbEMT
dbEMT
dbEMT
dbEMT
dbEMT
dbEMT
dbEMT
dbEMT

ILK ILK c.590C>A
c.*1G>A

S
S

c
nc

Ser197Tyr
3´UTR

ND
Modifier

ND
ND

ND
TCGA-LIHC

dbEMT
TCGA

NES Nestin c.4489G>T
c.2221C>A
c.2680T>A
c.3617G>T 
c.4580G>A
c.4569G>A 
c.3770G>T
c.1176delC

S
S
S
S
S
S
S
S
S

c
c
c
c
c
c
c
c
c

Gly1497Cys
His741Asn
Ser894Thr
Gly1206Val
Gly1527Asp
Met1523Ile
Gly1257Val
Thr393fs*9

Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
High

ND
Neutral
Neutral
ND
ND
Neutral
ND
ND

TCGA-LIHC
TCGA-LIHC
TCGA-LIHC
TCGA-LIHC
TCGA-LIHC
TCGA-LIHC
TCGA-LIHC
TCGA-LIHC

TCGA
TCGA
TCGA
TCGA
TCGA
TCGA
TCGA
TCGA

SNAI1 SNAI1 c.-8C>A
c.*305A>G

S
S

nc 
nc

5´UTR
3´UTR

Modifier
Modifier

ND
ND

TCGA-LIHC
TCGA-CHOL

TCGA
TCGA

Table 10. Somatic (S) mutations affecting coding (c) and non-coding (nc) regions of genes related to epithelial-mesenchymal 
transition (EMT) in primary liver cancer

Data obtained from TCGA and dbEMT databases. Functional consequences are based on VEP (Variant Effect Predictor; https://www.
ensembl.org/vep) impact: High means that the variant is supposed to cause a high disruptive impact in the protein, which is likely to 
cause loss of function; Moderate means that the variant may be not disruptive, but results in a decrease effectiveness of the encoded 
protein; Modifier is usually referred to non-coding variants, whose impact is difficult to determine, although they can be involved in 
transcription or splicing changes. HCC: hepatocellular carcinoma; ND: non-determined; TCGA: the cancer genome atlas; TCGA-LIHC: the 
cancer genome atlas - liver hepatocellular carcinoma; TCGA-CHOL: the cancer genome atlas - cholangiocarcinoma
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