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Abstract
Utilization of contrast media to visualize vasculature structures in the setting of cardiovascular disorders (CVD) 
can lead to acute kidney injury, referred to as contrast-induced nephropathy (CIN). CIN can potentiate mortality 
and hospitalization in aged individuals, patients with CVD, nephropathy, enhancing kidney damage, and cardiac 
events. Preventing CIN by identifying risk factors is important. The underlying mechanisms of CIN pathology are 
unclear, but the key factors include direct cytotoxicity, oxidative stress, vascular and endothelial dysfunction and 
inflammatory processes. Reactive Oxygen Species and inflammatory mediators have been proposed as key factors 
influencing the development of CIN and CVD, and the elucidation of the interplay between the mechanisms 
evoked by them may provide a better understanding of the signaling processes happening in these conditions, 
thereby potentially enabling early identification, prevention and characterization of novel drug targets.
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INTRODUCTION
Inflammation is an immune system response to pathogenic insults and is physiologically important to 
protect the organism from injury. Inflammatory responses are triggered by harmful stimuli and lead to 
a removal of invading pathogens and initiation of the healing process[1]. Reactive oxygen species (ROS) 
modulate the inflammatory processes[2-5]. ROS include chemically heterogeneous free radicals (e.g., 
superoxide) and non-radicals (e.g., hydrogen peroxide) vital for cell development, survival and signaling[6]. 
Redox signaling occurs through posttranslational oxidation of proteins (e.g., cysteine residues)[7,8]. 
Moreover, there is also a known cross-talk between ROS and neutrophil inflammation clearance and 
pro-inflammatory markers[5,9]. Usually, these mechanisms are tightly regulated and when sustained and 
aberrant, inflammatory responses and ROS can lead to tissue damage and disease.

Environmental stress can cause oxidative stress, often defined by cell/tissue injury and attendant oxidative 
macromolecule damage[10]. Moreover, ROS have been highlighted as a cause of several inflammatory 
diseases like cardiovascular diseases (CVD), type II diabetes and cancer.

Due to its role promoting inflammation and lipid peroxidation, ROS have been tightly linked to 
CVD[11]. Thus, both inflammatory elements and ROS are CVD risk factors, described as underlying 
participants in the progression of atherogenesis. In addition, chronic inflammatory diseases, characterized 
by an involvement of oxidative stress in their pathogenesis, promote high risk and influence CVD 
susceptibility[12,13]. Inflammatory molecules and ROS have been proposed as possible predictors and drug 
targets in CVDs, reviewed by Cervantes Gracia, Llanas-Cornejo, & Husi, 2017[14,15]. Interestingly, target 
organ damage, described as the strong association with high blood pressure and functional changes in the 
heart, brain, eyes and kidney, is known to have significant implications in CVD onset[16,17]. Furthermore, 
CVD is a characteristic hallmark of severe kidney failure. Patients with chronic kidney disease (CKD) have 
been well characterized to carry a significantly higher risk of developing and dying from severe CVDs[18-20]. 
Therefore, management of chronic kidney disease progression has been proposed as strategy to reduce the 
incidence of cardiovascular events[21]. Conversely, the presence of CVDs have also been associated with a 
higher risk of renal impairment and CKD progression[22]. However, the influence that one disease has over 
the other, as well as the underlying molecular mechanisms remain to be elucidated.

To add to this pathology, kidney failure exacerbated by coronary intervention procedures relying on 
contrast media (CM), known as contrast induced nephropathy (CIN), constantly increases the incidence 
of comorbidities in this group of patients undergoing interventions and its prevention is challenging[23-26]. 
Since pre-existing CKD is the most common cause of CIN[27,28], the interplay among the underlying 
mechanisms of CVD and kidney failure are important. Additionally, inflammation and ROS have been 
identified as risk factors of CIN and as potential targets for prophylaxis or treatment[29-34]. Hence, the 
elucidation of CIN/CVD interplay in this setting would improve understanding of the signaling processes 
and progression of the diseases, leading the way to different approaches to either early detection or to 
identification of novel drug targets.

CIN PATHOPHYSIOLOGY IN THE CONTEXT OF CVD
According to the WHO, non-communicable diseases (NCD) account for 71% of all deaths world-wide 
and CVDs are responsible for most NCD deaths. CVDs were responsible for about 17.8 million deaths 
in 2017[35,36], and are the primary cause of death globally. Notably, angioplasty is the most common 
percutaneous coronary intervention (PCI) method for CVD treatment[37,38], and diagnostic angiography 
and PCI routinely utilize iodinated CM for vascular visualization[39,40]. Although angiograms and PCI can 
effectively diagnose and treat CVD patients, this can potentially lead to acute kidney diseases such as CIN 
induced by CM[41-46]. CM can be retained by the kidney where they have the potential to cause toxicity, 
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resulting in acute renal injury[47]. Alternative CM have been developed to perform these procedures, 
but patients with risk factors such as kidney malfunction, diabetes, advanced age, CVD, anemia and 
hypotension are at high-risk and remain vulnerable to CIN[48,49].

CIN is a reversible form of acute renal injury that becomes evident after 48-72 h of intravascular 
administration of iodinated CM, manifesting in an increase of at least 25% in the serum creatinine 
level from baseline[50-52]. Although CIN can be transient, and in most of the cases serum creatinine 
level normalizes in 5-10 days, it can be irreversible and is associated with increased mortality and 
morbidity[25,45,50,53,54]. CIN is known to increase hospitalization, cardiovascular events, hepatic failure, dialysis 
and cardiac mortality, thus being directly associated with detrimental cardiac outcomes[50,55-57]. Additionally, 
CIN is attributable for a third of all hospital-acquired acute kidney injuries and its incidence can be as high 
as 50% in high-risk patients undergoing any procedure relying on intravascular contrast[26,47,58-60]. Regarding 
CIN treatment, it is limited and mainly supportive[60], thus early identification of at-risk patients is crucial 
and can be a potential approach for its management.

Although the precise pathophysiology of CIN is incompletely understood, crucial mechanisms have 
been associated with CIN, such as vasoconstriction in the renal vasculature, oxidative stress, renal 
medullary hypoxia, direct renal tubular cytotoxicity, and viscosity[45,53,61] [Figure 1]. It has been proposed 

Figure 1. Contrast induced nephropathy and cardiovascular disorders pathophysiology interaction. Mechanisms triggered by Contrast 
Media (represented in black) lead to CIN. Their interaction promotes mitochondrial dysfunction, excessive ROS, promotes cytotoxicity 
and apoptosis. CIN enhances CVD pathophysiology. CVD processes (represented in grey) show CIN/CVD potential interaction creating 
a feedback loop that will enhance heart and kidney malfunction. Outcome from CM induced processes are represented in blue. ⊥: 
repression/reduction; ↑: overproduction; ROS: reactive oxygen species; NO: nitric oxide; UFR: urine flow rate; IL: interleukin; CRP: C-reactive 
protein; CIN: contrast induced nephropathy
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that the interplay of cytotoxicity and viscosity caused by CM, may be key in CIN pathophysiology. CM 
causes damage and apoptosis in surrounding endothelial cells (EC) and tubules of the nephron through 
iodine[62,63]. Moreover, vasoconstriction is known to increase blood viscosity after CM administration. CM 
increased viscosity and tubular pressure, exacerbating renal hypoperfusion and promote a decrease in urine 
flow rate, leading to its retention and allowing its continuous cytotoxicity [Figure 1][64,65]. Furthermore, 
blood viscosity is a key player in CVD pathophysiology and is associated with increased risks of CVD[66,67]. 
It has also been reported in the context of renal dysfunction and is associated with an increased risk of 
CVD and CKD development[68].

Vasoconstrictor mediators (endothelin, adenosine, angiotensin II, vasopressin) are known to play a 
key role CIN and CVD pathogenesis[65,69-73]. CM is known to cause immediate vasoconstriction and 
vasodilation impairment, reduce renal blood flow, decrease glomerular filtration rate (GFR) and cause renal 
hypoperfusion, which leads to an inadequate delivery of oxygen, promoting ischemic injury [Figure 1]. 
These processes are associated with oxidative stress promoted by CM[74,75]. Decrease in GFR has also 
been associated with increased risk in CVD mortality, a feature that reflects kidney damage[76]. Regarding 
vasodilatation impairment, it has been suggested to be induced by CM through decreased nitric oxide (NO) 
bioavailability. This event has been proposed to be a result of loss of vasoactive NO and cellular damage 
on account of generation of peroxynitrite (ONOO-). Under physiological conditions, ROS production is 
attributed to nephron tubular transport regions with dense mitochondria populations, an important source 
of ROS[77,78]. Additionally, mitochondrial dysfunction is a key player in acute kidney injury[79,80] and is a 
characteristic feature of ageing, and chronic diseases, including diabetes and CVD, which are considered 
to be major risk factors for CIN[81,82]. Mitochondria are also abundant within cardiac cells due to the high 
energy demands, and notably mitochondrial ROS production is associated with CVD development[15,83]. 
Deleterious events such as arterial hypertension, endothelial dysfunction, atherosclerotic plaque formation 
and heart failure are associated with mitochondrial dysfunction[84-86]. Mitophagy removes damaged 
mitochondria and its impairment is a feature in CVD development as well. Moreover, ROS can induce 
damage in mitochondrial DNA, and damaged mitochondria are important sources of ROS; therefore, 
ROS overproduction due to mitophagy impairment disturbs homeostasis and leads to inflammation 
and apoptosis[87,88]. As in CIN, excessive ROS production from mitochondria is also associated with NO 
vasodilator impairment and it is tightly linked with endothelial dysfunction in cardiac event[89]. To add 
to CIN pathophysiology, oxygen imbalance under hypoxic conditions also leads to ROS production by 
the conversion of adenosine triphosphate (ATP) into hypoxanthine and its further reduction by xanthine 
oxidase. Mitochondrial dysfunction is also responsible for reduction in ATP synthesis, and will add to 
the cellular apoptotic state [Figure 1]. Interestingly, it has been recently reported that CKD in a rat model 
can influence cardiac pathologies by changing the function of cardiac tissue and inducing mitochondrial 
swelling and damage[90].

Inflammation is also a CIN hallmark, since the mechanisms previously described can trigger inflammatory 
processes. Notably, the presence of inflammatory elements has also been set as a feature for the population 
at high risk of CIN. Several studies have reported that the presence of active inflammatory processes 
biomarkers in patients with CVD may attribute its high-risk to developing CIN after CM exposure[30,31,91-94].

Cardiac insufficiency is also accountable for renal function impairment, emphasizing the complex 
interactions between heart and kidney where dysfunction in one organ can result in injury of the other[95]. 
Since CVD is a high-risk factor in CIN, and CIN can exacerbate CVD mortality, it is important to identify 
potential biomarkers for early detection and development of appropriate treatments. CIN processes 
that induce the release of vasoconstrictors, ROS and inflammatory cytokines have also been defined as 
hallmarks in CVDs due to the promotion of myocardial damage[50,96,97]. Additionally, a drastic decline 
in renal function may accelerate cardiovascular impairment by triggering inflammatory pathways[95,98]. 
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Although an association of these events has been suggested for many years, its interplay remains to be 
described. Elucidating the possible interplay between oxidative stress and inflammation is important.

OXIDATIVE STRESS IN CVD AND CIN
ROS play a significant role as second messengers within cells and regulate normal cellular functions, 
including gene transcription, signal transduction and homeostasis[99]. Many sources of ROS exist within 
cells and amongst ROS, the free radical superoxide (O2

-), is often a proximal ROS. O2
- can lead to 

peroxynitrite (ONOO-), hydroxyl radical (OH) and hydrogen peroxide (H2O2) production. Univalent 
reduction of molecular oxygen (a diradical) by the mitochondrial electron transport chain (ETC), as well as 
by xanthine oxidase, uncoupled endothelial nitric oxide synthase and Nicotinamide adenine dinucleotide 
phosphate oxidases (NOXs) leads to O2 production[100].

Mitochondria are responsible for the bulk ATP synthesis via chemiosmotic oxidative phosphorylation 
(OXPHOS). OXPHOS involves mobile electron carriers shuttles (NADH, cytochrome C and Coenzyme 
Q), protein complexes (complexes I-IV and the ATP-synthase complex) and a sequence of redox reactions 
where electrons are transported across the complexes of the respiratory chain up to complex IV, where 
molecular oxygen is reduced to water. The proton pumps establish an electrochemical proton motive force 
necessary for OXPHOS. Mitochondrial ROS can directly disturb the functionality of the ETC complexes by 
oxidizing iron-sulfur clusters and protein thiols [Figure 2][101-103]. Although mitochondria are a major source 
for ROS production, no clinical studies have been reported for mitochondrial-targeted antioxidants. This 
is largely due to the complications surrounding the targeted antioxidant delivery of injured mitochondria. 
Another cause for concern is that the role of mitochondrial ROS differs from cytosolic ROS as they 

Figure 2. Oxidative stress mechanisms in contrast induced nephropathy and cardiovascular disorders. ONOO-, OH, O2 and H2O2 are 
physiologically relevant ROS in the vascular endothelium. Processes involved in oxidative stress are represented in bold black. Left side 
represent mechanisms described in CVD, right side represent mechanisms described in CIN. Boxes show effects of oxidative stress 
in CIN and CVD. Oxidative stress mechanisms lead to inflammation which in turn generates a feedback loop in ROS production. ROS, 
NO, and antioxidant enzymes are represented in blue. ⊥: repression/reduction; ↑: overproduction; ↓: decrease; ROS: reactive oxygen 
species; NO: nitric oxide; ER: endoplasmic reticulum; ox: oxidases; ETC: electron transfer chain; eNOS: endothelial nitric oxide synthase; 
ONOO-: peroxynitrite; OH: hydroxyl radical; O2: superoxide anion; H2O2: hydrogen peroxide; CIN: contrast induced nephropathy; CVD: 
cardiovascular disorders
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are responsible for intracellular functions, which are maintained at a delicate equilibrium that could be 
negatively influenced by the careless use of antioxidants[104].

It is understood that ageing is associated with cardiovascular oxidative stress[105]; tissue vulnerability to 
oxidative damage and is likely to be a key contributor in the development of cardiovascular disease[106]. 
Direct CM-induced toxicity on renal tubular epithelial cells appears to be a major contributing factor in 
CIN. CM induces renal vasoconstriction, through increased adenosine and endothelin-1 secretion, and 
diversion of blood flow from the medulla to the cortex [Figure 2]. Consequently, renal blood flow to the 
medulla and GFR is reduced, followed by ischemia in the renal medulla[107,108].

Atherosclerosis is the main cardiovascular disorder in which the association with oxidative stress 
became evident. Oxidized low density lipoprotein (oxLDL) plays a critical role in the pathogenesis of 
atherosclerosis. Studies have shown a clear link between arterial stiffness and oxLDL concentration, 
independent of the typical CVD risk factors[109]. It remains uncertain whether oxLDL as an oxidative stress 
biomarker has any predictive property in cardiovascular patients[110].

Vascular NOXs are important ROS generating enzymes and in human vascular cells, NOX1, NOX2, NOX4 
and NOX5 are expressed. NOX are transmembrane enzyme complexes with a few regulatory subunits and a 
core catalytic subunit, except for NOX5[111]. NOX activation results in the generation of O2 from molecular 
oxygen by the transfer of electrons from NADPH[112]. NADPH oxidase in humans was thought to be 
phagocyte specific as the two membrane bound units, gp91phox and p22phox form a heterodimer and mediate 
bacterial killing by generating O2 (gp91phox produces a burst of O2 and p22phox acts to stabilize gp91phox, 
enhancing O2 production)[113]. P22phox expression in non-phagocytic cells directed the discovery of NOX1 in 
non-phagocytic cells which then led to the identification of the other NOX proteins[111].

NOX4 plays a key regulatory role, generating athero-protective ROS that inhibits inflammation 
and vascular remodeling. Decreased levels of effector T cells and chemokines, increased regulatory 
T-cells and reduced lesion formation was seen in apolipoprotein E-deficient mice expressing ectopic 
endothelial NOX4[114]. However, reduced levels of endothelial H2O2 and phosphorylated mothers against 
decapentaplegic homolog 3 (p-SMAD3), along with the elevated expression of profibrotic connective tissue 
growth factor has been seen when NOX4 was downregulated in human aortic endothelial cells[115]. NOX4 
knockdown in vivo has also been shown to elevate fibrillar collagens I and III production in plaques, which 
is linked to increased p-SMAD3 levels and transforming growth factor-β expression in diabetic lesions[116]. 
During the development of arteriosclerosis, NOX4 and H2O2 regulate the response of EC to endoplasmic 
reticulum (ER) stress [Figure 2][117]. ER stress leads to elevated ER H2O2 in a NOX4-dependent manner 
which then results in Ras-specific guanine nucleotide releasing factor (RasGRF) activation, the oxidation of 
thiols in the Ca2+-ATPase of sarcoplasmic reticulum microsomes and increased cytosolic calcium levels. In 
addition, NOX produced ROS affects X-box-binding protein 1 (KBP1) splicing, a key protein that promotes 
EC apoptosis and atherosclerosis formation[118].

As well as the increased production of oxLDL, an additional contributor to cardiovascular morbidity 
appears to be oxidative endothelial damage. In healthy adults of varying ages, brachial artery flow-mediated 
dilation appeared to inversely correlate with the concentration of nitrotyrosine (produced, for example, 
via nitrogen dioxide radical and tyrosine radical recombination) in vascular EC[119]. ET-1, as well as being 
a powerful vasoconstrictor, has also demonstrated proinflammatory and prooxidant properties and 
consequently, it has been associated with oxidative endothelial damage[120]. In EC, oxLDL has been shown 
to stimulate endothelin-1 production, and elevated levels of endothelin-1 is known to generate ROS by 
NADPH oxidase [Figure 2][121]. Furthermore, the cardiovascular system inflammatory response is induced 
by oxidative stress and proinflammatory cytokines additionally induce oxidative damage in a positive, 
reverse feedback mechanism [Figure 2][122].
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Antioxidant defense mechanisms decrease with age[123], therefore age is a major risk factor of CIN. The 
unique anatomy of the renal medulla requires the thick ascending limbs of the loop of Henle to carry out 
energetically challenging ion transport in a state of relative hypoxia compared to the renal cortex. It has 
been proposed that a discrepancy between the metabolic requirements of these thick ascending limbs 
and the medullary blood supply could generate O2

[124]. The thick ascending limb is associated with ROS 
generation mostly due to the extremely high mitochondrial density and therefore, mitochondrial ROS 
generation[125]. Reduced renal blood flow can induce oxidative stress and osmotic necrosis consequently 
generating ROS, via a positive feedback mechanism, leading to acute tubular necrosis[114,123]. Renal 
microcirculation is compromised by ROS production, which affects renal vascular function by facilitating 
the production of vasoconstrictors such as endothelin-1 and ameliorating the effects of vasodilators, such 
as NO[126]. Direct toxicity of CM in renal tubular cells can also result in mitochondrial dysfunction and, 
combined with elevated levels of ROS, leads to extensive damage of glomerular cells by compromising the 
cellular membrane, ultimately resulting in apoptosis[127].

A crucial factor in the production of ROS in the kidney is renal hypoxia. There are, however, conflicting 
reports relating to the extent to which oxidative stress is a cause or epiphenomena. ROS are regularly 
involved in cellular inflammatory responses and it is proposed that ROS are formed during renal 
parenchymal hypoxia, following CM exposure, resulting in vascular endothelial injury. This aggravates 
renal parenchymal hypoxia resulting in endothelial dysfunction[125]. O2 can lead to the accumulation of 
ONOO-, the production of which reduces NO bioavailability. In addition, ROS activate p38 MAPK stress 
kinases and c-Jun N-terminal kinases, that are involved in the activation of caspase-3 and caspase-9, which 
are associated with the induction of apoptosis[128]. Mitochondrial dysfunction can induce apoptosis by 
releasing cytochrome c and activating caspase-9, which in turn activates caspase-3. Caspase-3 plays a major 
role in apoptotic signaling by mediating death receptor-dependent and mitochondria-dependent apoptosis 
pathways[129].

In response to excessive oxidative stress, cells activate/induce their own antioxidant defense mechanisms. 
Glutathione (GSH), is an important endogenous thiol that is essential to a variety of detoxification 
processes. Mammalian cells contain high concentrations of GSH (3-5 mmol/L) which is used in numerous 
diverse roles as well as hepatic detoxification. GSH can donate reducing equivalents for the activity of 
specific antioxidant peroxidase enzyme, such as GSH peroxidase (GPx), and can react directly with certain 
ROS (e.g., carbonate radical). Intracellular levels of GSH are tightly controlled by the enzymes glutamate-
cysteine ligase and GSH synthase (involved in synthesis), GSH reductase (involved in recycling of oxidized 
glutathione back to GSH) and GSH transferases (involved in utilization)[130]. Redox enzymes include 
thioredoxin, catalase, GPx, peroxiredoxins and superoxide dismutase (SOD)[100].

ROLE OF INFLAMMATION IN CIN/CVD
One of the factors that is central to the prevalence of CIN is chronic inflammation. The role of 
inflammation in CIN has been extensively studied and clinical trials in humans and animal models have 
been performed to help elucidate this role[131-134]. One of the main features of intravascular iodinated 
CM is that it causes vasodilation followed by a prolongation in vasoconstriction[135,136]. The vasodilation/
vasoconstriction occurs in all patients that require a CM procedure, but this effect has not been found to 
work alone in the increase of CIN risk among patients. Two additional pathways suggested to promote 
this increase are cellular toxicity and elevated urinary viscosity that can cause obstructions through stone 
formation[137]. 

Although the global prevalence of CIN does not constitute a public health threat, at risk populations, such 
as those suffering from higher presence of infectious diseases, have a higher incidence of inflammation 
than populations that are not affected by these diseases[138]. A close relationship between inflammatory 
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molecules and thrombogenesis has been well reported[139]. The acute inflammatory state is a landmark of 
infectious diseases and one of the main type of molecules that derive from it are interleukins (ILs). IL-6 
and IL-12 have been targeted as disruptors of homeostasis within inflammatory processes. IL-6 promotes 
the expression of the C reactive protein (CRP), which is being used as a current acute inflammation marker 
[Figure 3][140]. 

One of the studies that assessed the increased risk for CIN due to inflammation was performed by 
Kwasa et al.[132]. They performed a prospective cohort study of patients undergoing a contrast-enhanced CT 
(CECT) scan. 423 patients were recruited and grouped into those without inflammation having serum CRP 
levels ≤ 5mg/dL and those with evidence of inflammation having CRP levels > 5 mg/dL. Serum creatinine 
(SCr) was measured before the CECT and 48 h following the CECT with CIN diagnosed by an increase 
of > 25% in SCr from the baseline [Figure 3]. The observed incidence of CIN was 9.92%. Of the patients 
with inflammation, 29 (13.5%) developed CIN, while 13 (6.25%) of those without inflammation developed 
CIN. No significant relation was found between the increase of CIN prevalence and biophysical variables 
(age, sex, height, weight, etc.)[132]. Another study reported by Oweis et al.[30] showed serum levels of IL-33 
as significant predictor for development of CIN. Of the total 202 patients, 30 (14.8%) developed CIN. The 
incidence rate was 21.1% among females and 12.4% among males [Figure 3]. 

Additional biomarkers of inflammation have been studied to assess their potential as predictors of CIN in 
different conditions. Cell types that are associated chronic inflammation have been proposed as predictors 

Figure 3. Inflammatory molecules in CIN and CVD. Inflammatory states have been associated with CIN and CVD risk factors. 
Inflammatory cells and molecules are considered as potential risk factors in CVD and CIN. Inflammatory risk factors highlighted in blue. 
CM, Disease states and cellular types related to inflammatory risk factors represented in grey. ↑: overproduction. CM: contrast media; 
RF: risk factors; AMI: acute myocardial infarction; ACS: acute coronary syndrome; IL: interleukin; CRP: C reactive protein; TNF-a: tumor 
necrotic factor-a; TLR4: toll like receptor 4; CIN: contrast induced nephropathy; CVD: cardiovascular disorders
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of increased risk of developing CIN: the study published by Yuan et al.[92] in 2017 found in 1,061 patients 
that white blood cell count, neutrophil count, neutrophil lymphocyte ratio, CRP level, and big ET-1 level 
were all associated with an increased risk of CIN development. It is important to mention that all of the 
patients in this study went through emergency PCI.

Regarding the assessment of multiple markers to predict the development of CIN, different studies have 
reported combinations between proteins that can be measured in human serum. The study performed by 
Satilmis et al.[141], presented an assessment of the ratio between 2 inflammatory markers, CRP and albumin. 
205 patients with non-ST-elevation myocardial infarction that underwent PCI were subsequently assessed 
for development of CIN. The prevalence of CIN in this study was 10.2%. Multivariate logistic regression 
analysis showed significant association between CRP: albumin ratio and the development of CIN; advanced 
age, diabetes, dyslipidemia and left ventricular ejection fraction were also associated with the condition.

Animal models have also been used in the search for the potential role of inflammation in the development 
of CIN. Demirtas et al.[29] evaluated the role of IL-33 in the pathogenesis of CIN in diabetic rats. 30 male 
Sprague-Dawley rats were divided into 3 groups (healthy, diabetic and diabetic with CIN). Significantly 
increased presence of IL-33 was found in the kidney tissue of the diabetic group after induction of CIN 
when compared with the healthy and diabetic groups. Serum levels of IL-33, IL-6, and IL-1b were also 
significantly increased in the diabetic + CIN group when compared to the healthy and diabetic groups 
[Figure 3].

Prophylactic use of carotenoids has been studied in animal models to assess the relation between oxidative 
stress induced inflammation and CIN development. The studies presented by Buyuklu et al.[142,143] aimed 
to investigate the effects of lycopene and curcumin as protection against the development of CIN in rats. 
28 male Wistar albino rats were divided into 4 groups, they included a normal control group, CIN group, 
CIN + lycopene and CIN + curcumin groups. Significant increase in urea, creatinine and malondialdehyde 
were observed in the CIN group when compared with the control group. Additionally, histological tests 
showed significant increase of infiltrated inflammatory cells and necrotic degenerative changes in the CIN 
group when compared against the control[142,143].

The role of the inflammatory state in CVD was addressed in an extensive literature[14]. The search for 
markers has two principal aims: to look into the understanding of the mechanisms of disease and to 
identify molecules that can be detected more accurately to predict the risk of cardiovascular events. 
The role of inflammation in CVD development has been assessed throughout different populations and 
experimental models, critical importance has been given to events such as acute myocardial infarction 
(AMI) and atherosclerosis due to their high incidence and mortality rates[144]. Inflammation in CVD 
includes a vast number of processes which can occur at the site of disease, in the bloodstream and at 
sites far from the disease[145]. Immune response takes the spotlight when addressing inflammation and 
CVD. In AMI a signaling cascade induces the expression and recruitment of proinflammatory molecules, 
accelerating both damage and further repair of injured cardiac tissue. Elevated levels of high-sensitivity 
CRP and IL-6 in plasma have been found correlated with unfavorable outcomes in patients [Figure 3][146]. 

Rajendran et al.[147] assessed both IL-6 and hs-CRP in a Chennai based population. 93 patients with 
AMI and 102 healthy subjects as a control group were analyzed. Both IL-6 and hs-CRP were found to be 
significantly increased when compared with the control group. Pro-inflammatory cytokines IL-6, IL-10, 
IL-18 and TNF-a were evaluated in a study published in 2019 including 120 patients with acute coronary 
syndrome (ACS) and 60 healthy controls. Serum levels of IL-6, IL-18 and TNF-a were significantly higher 
in the ACS group when compared to the healthy group [Figure 3]. No significant difference in serum 
levels of IL-10 was found[148]. Additionally, TNF-a has been found to promote the release proinflammatory 
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chemokines and adhesion molecule synthesis in damaged myocardium and causing additional leukocyte 
infiltration in mice[149].

Toll-like receptors (TLRs) may be key to understanding heart failure. TLR4 deficiency is associated with 
decreased in size of damage by infarct and reduction of systemic inflammation in mice[150]. In humans, the 
activation of TLR4 in monocytes is associated with the development of cardiac failure after AMI [Figure 3][151]. 
By contrast, deficiencies in the function of TLR2 were found to reduce myocardial fibrosis and improve 
ventricular remodeling after AMI in a murine model[152].

Atherosclerosis is often described as a chronic inflammatory process. Deregulation in the endothelium is 
mediated by cell adhesion molecules, such as ICAM1, P-selectin and VCAM1. Additionally, the secretion 
of cytokines has a role in atherogenesis, namely IL-1, IL-6, TNF, IL-4, IL-10 and IL-13 [Figure 3]. The 
detection of some of these molecules in plasma has identified associations that could help to predict 
atherosclerosis severity. Moreover, the identification of cell types through flow cytometry has proven to 
be a promising predictor for atherogenic levels of severity. The amount CD14+CD16++ monocytes present in 
circulation has been found to be inversely correlated to plasma HDL levels while CD16+ monocytes levels 
are proportional to severe atherosclerosis [Figure 3][153].

CVD AND CIN BIOMARKERS
The identification of rapid, predictive biomarkers for CIN is essential as current targets are relatively slow 
to be useful, or the assays are just too expensive to be launched in a clinical setting. Some of the postulated 
biomarkers for CIN and CVD are shown on Table 1. An early predictive biomarker of AKI is human 
neutrophil gelatinease-associated lipocalin (NGAL). NGAL is a small protein of the lipocalin superfamily 
that was initially identified from the supernatant of activated human neutrophils in 1993. Successive studies 
have recognized renal NGAL as a unique, specific biomarker for the early detection of AKI in critically ill 
patients and after CM administration. Urinary and serum levels of NGAL increase well before the increase 
of serum creatinine levels (~2 h). As a result, NGAL is increasingly studied as a marker of AKI[154-157]. 
Another proposed sensitive, early, non-invasive biomarker for AKI kidney injury is urinary neutrophil 
gelatinase-associated lipocalin (uNGAL) also known as lipocalin-2. uNGAL is an iron-transporting 
protein that rapidly accumulates in the urine and kidney tubules after nephrotoxic and ischemic insults. 
Zappitelli et al.[158] concluded that uNGAL is an effective predictor of AKI which is triggered in advance of 
increases in serum creatinine concentration. Despite these findings, the use of uNGAL is still experimental.

Liver type fatty acid binding protein (L-FABP) is an intracellular lipid chaperone and is expressed in renal 
proximal tubule cells and secreted into the urine in response to hypoxia caused by a decrease in peritubular 
capillary blood flow. Although L-FABP concentration is significantly increased in CIN patients after 
24 hours, the specificity of this biomarker for CIN is low on account of a range of potential confounders[159].

Tissue plasminogen activator (tPA), a part of the serine protease family, is a plasma protein involved in the 
breakdown of blood clots and a key fibrinolytic agent that takes part in the recruitment of inflammatory 
cells. Some other roles of tPA involve the turnover of extracellular matrix components via activation of 
matrix metalloproteinases and immune-modulatory functions. Plasminogen activator inhibitor-1 is the 
main physiological inhibitor of endogenous fibrinolysis which functions through the inhibition of tPA 
and the urokinase type activator (uPA)[160,161]. A recent study[162] reported a relationship between increased 
serum tPA levels with an increased rate of mortality of dialysis-dependent AKI (AKI-D) patients. Elevated 
tPA expression has been detected in the proximal tubular epithelial cells of ischemic kidneys, in animal 
models. Removing tPA by antisense treatment had reduced the influx of neutrophils and helped protect 
renal function during ischemia-reperfusion injury. This suggests tPA inhibition as a novel strategy to 
improve ischemic AKI[163]. Many additional studies have also implied the involvement of tPA in the process 
of kidney fibrosis that leads to progression of CKD[164-166].
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IL-6 is an interleukin that can act as both an anti-inflammatory myokine and a pro-inflammatory cytokine 
and is encoded by the IL6 gene in humans. Osteoblasts produce and release IL-6. The role of IL-6 role as 
an anti-inflammatory cytokine is facilitated via the interleukins inhibitory effects on IL-1 and TNF-a, and 
activation of IL-10 and IL-1ra[167]. Studies have demonstrated a close correlation between AKI and IL-6 

Biomarkers Etiology Mechanisms Organism Ref.
IL-6, IL-12, IL-8 CIN and CVD Induction of the production of CRP Human Alladina et al .[171] (2016) 

Kwasa et al .[132] (2014) 
Rajendran et al .[147] (2012) 

C reactive protein CIN and CVD Response to chronic inflammation Human Kwasa et al .[132] (2014) 
Rajendran et al .[147] (2012) 

TNF-a CVD Upregulated in inflammation in acute 
myocardial infarction, modulates 
cardiac contractility and peripheral 
resistance. Promotes leukocyte 
infiltration in mice

Human
Mice

Senguttuvan et al .[148] (2019) 
Maekawa et al .[149] (2002) 

CD14+CD16++ monocytes CVD Presence inversely correlated to 
plasma HDL levels

Human Schlitt et al .[153] (2004) 

CD16+ monocytes CVD Levels proportional to severe 
atherosclerosis

Human Schlitt et al .[153] (2004) 

Neutrophil/Lymphocyte 
ratio

CIN Elevated in subclinical inflammation Human Yuan et al .[92] (2017) 

CRP/Albumin ratio CIN CRP levels are found increased in 
chronic inflammation and albumin 
levels are negatively correlated in the 
presence of acute inflammation

Human Satilmis et al .[141] (2020) 

IL-33  and IL-1b CIN and CVD Proinflammatory cytokines, IL-33 
binds to immune cells and promotes 
secretion of cytokines resulting in 
inflammation

Human and 
Sprague-Dawley 
rat

Oweis et al .[30] (2018) 
Demirtas et al .[29] (2016) 

NGAL CIN Accumulates in urine, blood and renal 
cortical tubules following ischaemic 
and nephrotoxic injury. Antioxidant 
protection against CIN development

Human
Wistar albino rat

Malyszko et al .[156] (2009) 
Buyuklu et al .[143] (2014) 

L-FABP CIN Specifically binds to intracellular, free 
unsaturated fatty acids during hypoxic 
tissue injury

Human Nakamura et al .[159] (2006) 

tPA CIN and CVD Tissue type fibrinolytic agent involved 
in the breakdown of blood clots and 
the recruitment of inflammatory cells

Human Baramova et al .[160] (1997) and 
Stringer et al .[161] (1997) 

uPA CIN and CVD Urokinase type fibrinolytic agent 
involved in the breakdown of 
blood clots and the recruitment of 
inflammatory cells

Human Baramova et al .[160] (1997) and 
Stringer et al .[161] (1997) 

PAI-1 CIN and CVD Primary physiological inhibitor of tPA 
and uPA

Human Baramova et al .[160] (1997) and 
Stringer et al .[161] (1997)

KIM-1 CIN Localised to the proximal tubules of 
the human kidney following toxic or 
ischaemic injury

Human Nogare et al .[172] (2012)

IL-18 CIN and CVD Proinflammatory cytokine Human
Mice

Ling et al .[168] (2008) 

CysC CIN Produced by all nucleated cells and 
displays a stable rate of production. 
Freely filtered by the glomerulus

Human Soto et al .[174] (2010) 

Serum Creatinine CIN Resulting product of creatine 
phosphate from protein and muscle 
metabolism. Exhibits a stable rate of 
production and is freely filtered by the 
glomerulus

Human Slocum et al .[173] (2012) 

Table 1. Origin and mechanisms of potential biomarkers for prediction of CIN and CVD

IL: interleukin; TNF: tumor necrotic factor; CRP: C reactive protein; NGAL: neutrophil gelatinase-associated lipocalin; L-FABP: liver type 
fatty acid binding protein; tPA: tissue plasminogen activator; uPA: urokinase plasminogen activator; PAI: plasminogen activator inhibitor; 
KIM-1: kidney injury molecule 1; CysC: Cystatin C; CIN: contrast induced nephropathy; CVD: cardiovascular disorders; CRP: C reactive 
protein
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expression in many animal models[168,169]. Resident kidney cells, such as tubular epithelial cells, endothelial 
cells, mesangial cells and podocytes can all produce and release IL-6. A study has shown that, in a model of 
ischemia-reperfusion injury, after leukocytes penetrated the injured kidney, maladaptive IL-6 was produced 
in response to their TLR-4 receptors interacting with high mobility group box 1 protein released by the 
injured renal cells[170]. Raised levels of the pro-inflammatory cytokines, IL-8 and IL-6, have been seen early 
on in AKI patients and were linked to prolonged mechanical ventilation[171].

The transmembrane protein, kidney injury molecule 1 (KIM-1), recognizes apoptotic cells and leads 
them to lysosomes. Additionally, it acts as a receptor for oxidized lipoproteins and is therefore adept at 
recognizing apoptotic cell signals. KIM-1 is undetectable in normal kidney tissue but is highly expressed 
following toxic or ischaemic injury in differentiated proximal tubule epithelial cells from rodent and 
human kidneys[172,173]. Plasma cystatine-C (CysC), is a low molecular weight protein produced at a 
predictable rate by all nucleated cells. CysC is filtered across the glomerular membrane but is neither 
reabsorbed nor secreted during its passage through the nephron. Given that CysC is almost entirely 
catabolized in the proximal tubule, it is impossible to measure its renal clearance. However, the plasma or 
serum concentration of CysC accurately reflects the GFR and significant increases in CysC are detected 
in CIN patients after 8 h. However, a similar increment has also been seen in several other conditions, 
including thyroid dysfunction, age, an increase in muscle mass, systemic inflammation, corticosteroids 
administration and neoplasia[174] limiting its utility as a CIN biomarker.

The key diagnostic criterion for CIN is the elevation of serum creatinine concentration by more than 25% 
over baseline, after eliminating any other possible causes. Other laboratory findings may also be present such 
as hyperkalaemia and acidosis. Although patients may have normal urine output, they can also suffer from 
anuria (failure of the kidneys to produce urine) or oliguria (low output of urine > 80 mL/day, < 400 mL/day). 
Findings on urine analysis are normally non-specific[175]. Normally a delay of 24-48 h is seen between 
contrast exposure and changes in serum creatinine concentration, which makes creatinine a late indicator 
of renal function changes[176]. 

Since a close correlation among inflammatory molecules and kidney injury in CIN has been observed, as 
described above, they have also been proposed as potential CIN biomarkers [Table 1]. IL-8 and IL-6, have 
been seen early on in AKI patients and were linked to prolonged mechanical ventilation[171]. Successive 
studies have recognized renal NGAL as a unique, specific biomarker for the early detection of AKI in 
critically ill patients and after CM administration[154-157]. Other proposed biomarkers, despite being effective 
predictors of AKI, such as uNGAL triggered preceding increases in serum creatinine concentration[157,158] 
are still experimental. Other potential biomarkers have been deemed as non-specific, such as L-FABP, 
although significantly increased in CIN patients after 24 h, where potential confounders lower its 
specificity[159]. 

CONCLUSION
Oxidative stress influences cardiovascular morbidity mainly through increased peripheral vascular 
resistance [Figure 1]. However, although the generation of ROS could affect renal blood flow by facilitating 
the production of vasoconstrictors and impacting the effects of vasodilators, the influence of oxidative 
stress in the development of CIN is uncertain.

Inflammation results in the alteration of homeostasis in both the circulatory and renal systems. These 
alterations can be intrinsic of cellular damage or can be mediated by external factors such as CM. Immune 
response to CM cytotoxicity causes a rapid increase in the migration and accumulation of cytokines such 
as ILs and TNF-a in the progression of both CVD and CIN. Additionally, the presence of cellular types 
found in response to inflammation is a feature in early development of CVD and CIN. The main interplay 
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between CIN and CVD in the context of inflammation may rely on endothelial dysfunction and immune 
response. The signaling pathways activated through endothelial dysfunction in cardiac events result in the 
generation of systemic inflammation which has been found to affect the kidneys and made them more 
susceptible to local inflammation processes driven by CM cytotoxicity. 

Current CIN prevention strategies, such as the use of carotenoids, for instance curcumin and lycopene[142,143], 
to limit the oxidative effects of CM are questionable due to the inconclusive evidence to support the 
oxidative capacity of CM. Existing biomarkers for CIN are either non-specific, such as L-FABP, or late 
indicators of renal function changes, such as changes in serum creatinine, making them poor predictive 
markers at best. The relationship between CVD and CIN and the underlying mechanisms responsible for 
CIN are unclear. Identifying novel biomarkers, be it genetic, redox or serum protein markers, for the early 
detection of CIN will help gain a better understanding of the underlying mechanisms. Greater mechanistic 
understanding is required to better predict and treat CIN.
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