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Abstract

The tumour vasculature plays an important role in tumour growth and metastasis. Tumour angiogenesis provides
more oxygen and nutrients to growing tumour cells, is not as tightly regulated as embryonic angiogenesis, and
do not follow any hierarchically ordered pattern. The heterogeneity of the vasculature, high interstitial fluid
pressure, poor extravasation due to sluggish blood flow, and larger distances between exchange vessels are
potential barriers to the delivery of therapeutic agents to tumours. The prevention of angiogenesis, normalization
of tumour vasculature, and enhancement of blood perfusion through the use of monoclonal antibodies against
receptor proteins that are overexpressed on proangiogenic tumour cells, and improved, tumour-targeted delivery
of therapeutic agents can all be achieved using nanocarriers of appropriate size. Nanomedicines such as polymeric
nanoparticles, lipid nanoparticles, micelles, mesoporous silica particles, metal nanoparticles, noisomes, and
liposomes have been developed for the delivery of anticancer drugs in combination with antiangiogenic agents.
Amongst them, liposomal delivery systems are mostly approved by the FDA for clinical use. In this review, the
molecular pathways of tumour angiogenesis, the physiology of tumour vasculature, barriers to tumour-targeted
delivery of therapeutic agents, and the different strategies to overcome these barriers are discussed.

Keywords: Tumour, angiogenesis, antiangiogenic drug, targeted drug delivery, nanoparticle, normalization of
tumour vasculature, sonoporation, hyperthermia
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ANGIOGENESIS

In general, there is an efficient vascular network that supplies blood to normal tissues. The hierarchal
architecture and growth of blood vessels are maintained by the balance between pro-apoptotic and
anti-apoptotic factors. This balance is controlled by the metabolic demands of the corresponding
tissue. Lymphatic channels on the other hand, remove metabolic waste from the interstitium. Thus, the
microstructure of the vascular network is capable of supplying adequate oxygen and nutrition to all
associated cells". During tumour progression, there is rapid proliferation of tumour tissue. When the
tumour reaches a critical size (1~2 mm’), tumour cells located further from the supplying blood vessel
become starved of oxygen and nutrients, leading to the impairment of tumour growth by apoptosis or
necrosis. In turn, this triggers angiogenesis, the formation of new blood vessels from existing ones".
Although tumour angiogenesis provides for tumour growth and a route for metastasis, it is not as tightly

regulated as embryonic angiogenesism.

DIFFERENCES BETWEEN BLOOD VESSELS OF NORMAL AND CANCER TISSUES

The growth of tumour blood vessels does not follow any hierarchy. It is typically heterogeneous, tortuous,
branches irregularly, and is enlarged circumferentially””. The endothelial cells, pericytes (multifunctional
mural cells that wrap around endothelial cells) and basement membrane of tumour blood vessels are
all abnormal™: endothelial cells have abnormally loose intracellular associations and focal intercellular
openings that are < 2 ym in diameter'® while their association with multiple layers of the vascular basement
membrane is also loose due to high interstitial pressure, leading to hyper-permeable tumour blood vessels
and vascular leakagem.

Tumour blood vessels also have a reduced surface area: volume ratio. The high interstitial pressure, coupled
with a reduced surface area, impairs the delivery of oxygen, nutrients, and removal of metabolites. As such,
the tumour microenvironment is typically characterized by hypoxia and acidosis which in turn, selects for
apoptosis-resistant and metastasis competent tumour cells [Figure 1].

CELL SIGNALLING PATHWAYS IN HYPOXIA-INDUCED ANGIOGENESIS

Cell signaling pathways in hypoxia-induced angiogenesis is shown in Figure 2. HIF-1qa is the founding
member of the hypoxia-induced factor (HIF) familym. It regulates the genes associated with oxygen
deprivation". The HIF activity pathway is regulated by prolyl hydroxylase enzymes (PHD1-3)""". PHD acts
as an oxygen sensor; in normoxia, PHD hydroxylates the proline residues of HIF-1a. The hydroxylated
HIF-1a then binds to the von Hippel-Lindau E3 ubiquitin ligase complex leading to proteasomal
degradation of HIF-1¢"""*. Under hypoxic conditions, oxygen and cofactor 2-oxo-glutarate substrates are
depleted[”] and PHD becomes inactivated, resulting in stabilization and intracellular accumulation of HIF-
1o.. HIF-1a is then translocated into the nucleus to bind with transcriptional factor Arnt (Aryl hydrocarbon
nuclear translocator family protein)"*. Subsequently, a transcriptional complex is formed with p300/
CBP which binds to HREs (hypoxia response elements) in the promoters and enhancers of target genes,
leading to vasodilatation (for better delivery of oxygen), lowering of oxygen demand and upregulation of
proangiogenic factors like fibroblast growth factor (FGF), insulin-like growth factor (IGF), and vascular
endothelial growth factor (VEGF)"™. Vasodilatation is also caused by the upregulation of inducible nitric
oxide synthase leading to increased production of nitric oxide and relaxation of vascular smooth muscle
cells"®. Under hypoxic conditions, the demand for oxygen is lowered due to over expression of glucose
transporter 1 enzyme (GLUT1). GLUT1 improves the uptake of glucose'” and induces glycolytic enzymes
such as phosphoglycerate kinase""”’. In turn, phosphoglycerate kinase is regulated by aldolase A and HIF-q.
Aldolase A helps in better utilization of glycolysis, tumour epithelium mesenchymal cell proliferation"” and
upregulation of pyruvate dehydrogenase kinase (PKD1) which inhibits mitochondrial respiration””. HIF-
10 helps in cancer cell proliferation”" by regulating the expression of a number of proangiogenic genes like
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Figure 1. Schematic representation of the physiological differences between normal blood vessels (A) and the tumour vasculature (B)

VEGE Ang-1, Tie 2, platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), monocyte
chemoattractant protein-1 (MCP-1), IGF and epidermal growth factor (EDGF). These HIF regulated factors
bind to corresponding receptors on the cell membranes of pericytes and increase vascular permeability,
endothelial cell proliferation, sprouting, migration, adhesion, and tube formation. The angiogenic factors,
their corresponding receptors, and functions are shown in Table 1. Vascular permeability is increased due
to overexpression of VEGE™*!, In endothelial cells and pericytes, Ang-1 (angiopoietin-1) is induced by
hypoxia. It is a Tie-2 receptor agonist which recruits pericytes to mature vessels and promotes tumour
angiogenesis"””. Despite active angiogenesis, the tumour microenvironments still have hypoxic domains
that lead to sustained stabilization of HIF-a. HIF-a then promotes cap-dependent translation of selective
mRNAs for angiogenesis through up-regulation of translational factor eIF4E1. In contrast, 4E-BP1 is a
translation initiation repressor that sequesters eIF4E1 and is thus a tumour supressor protein. The activity
of translational factor eIF4E1 is also controlled by pathways such as Ras and PI3K/AKT. These pathways act
by inhibiting 4E-BP1 and increasing the expression of eIF4E1.

The inducible enzyme cyclooxygenase-2 (COX-2) is also an important mediator of angiogenesis and tumor
growth. It induces matrix metalloproteinases that have traditionally been associated with the degradation
and turnover of most of the components of the extracellular matrix (ECM). Plasminogen activator inhibitor
type 1 (PAI-1) though has the opposite effect of remodeling the ECM by regulating plasmin.

BARRIERS TO TARGETED DELIVERY OF THERAPEUTIC AGENTS TO TUMOUR
Spatial and temporal heterogeneities in blood supply

Vascular morphology and blood flow rate govern the movement of blood-borne particles through tumour
vasculature. Depending on the tumour type, location and growth rate, the architecture of the tumour
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Figure 2. Cell signalling pathways of hypoxia-induced tumour angiogenesis. MNK: mitogen-activated protein kinase interacting
protein kinases; EGFR: endothelial growth factor; VEGFR2: vascular endothelial growth factor receptor type 2; PDGFR: platelet derived
growth factor receptor; VEGF: vascular endothelial growth factor; ECM: extracellular matrix; MMP: matrix metalloproteinase; mTOR:
mammalian target of rapamycin; TCEB: transcription elongation factor B; FGFR: fibroblast growth factor receptor; IGFR: insulin-like
growth factor receptor
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the macroscopic and microscopic levels. The resulting spatial and temporal heterogeneities in blood supply
is thus responsible for non-uniform distribution of the therapeutic agent. Generally, the average uptake of a
therapeutic agent decreases with an increase in tumour mass.

Poor extravasation and high interstitial fluid pressure limit transport across the microvascular
wall

Diffusion and convection are the main mechanisms behind the transport of drug molecules across the
vascular wall. The concentration gradient of the therapeutic agent across the plasma (C)) and interstitial
fluid (C)) is the driving force for the diffusion process. This mass transfer process is proportional to
the surface area; the proportionality constant is known as vascular permeability P (cm/s). Transfer of
therapeutic agents by convection is associated with the leakage of plasma/fluid across the vascular wall
due to differences in hydrostatic pressure of fluid in the blood vessel and interstitial space. The associated
experimental constant is known as hydraulic conductivity, L, (cm/mmHg-s). Similarly, the convection
process is also proportional to the osmotic pressure difference between the blood vessel and the interstitial
space[”]. This proportionality constant is known as the osmotic reflection coefficient (c). These three
experimental constants (P, L, and o) are used to describe the extent of transport of plasma content across
tumour vessels. Tumour vessels have relatively high P and L, values”* as they have wide endothelial
junctions, a large number of fenestrae and trans-endothelial channels, discontinuous or absent basement
membrane and significant spatial heterogeneities[m’“]. Although these physiological characteristics increase
vascular permeability, tumours also have poor extravasation, which is a significant barrier to the delivery
of therapeutic agents. This can be explained as follows: tumour vessels have sluggish blood flow. The
hydrostatic fluid pressure in the blood vessel (P,) is less than that of fluid in the interstitial space (P,). Of
note, the Pi in animal/human tumours is even higher than that of normal tissue'*”’. Furthermore, it has been
reported that Pi increases with the growth of a tumour. This is mainly due to high vascular permeability
and poor, impaired lymphatic drainage™ ", Both tumour hyperplasia around a blood vessel and increased
production of extracellular matrix components contribute to high interstitial fluid pressure (IFP). In normal
tissue, IFP is 0 mmHg but in tumour blood vessel, the IFP varies from 10-40 mmHg[“]. The IFP is elevated
throughout the mass of a tumour except at the periphery, where it becomes equal to normal physiological
values. Therefore, intratumoral fluid may extravasate from the periphery of a tumour, resulting in non-
delivery of a therapeutic agent. In different animal and human tumour models, it was found that 1%-14%
of plasma entering the tumour leaked into the periphery[zs’"’”]. Again, the tumour interstitial space has a
higher concentration of endogenous plasma protein, leading to higher interstitial osmotic pressure. Thus,
the transfer of therapeutic agents by diffusion is further limited.

Resistance to transport through the interstitial space and distribution into the tumour
microenvironment

Diffusion and convection are the main mechanisms behind the movement of therapeutic agents that
have extravasated into the interstitial space”™”. The concentration gradient is the driving force behind
diffusion whereas fluid velocity determines the convection process. The interstitial diffusion coefficient
(D) and hydraulic conductivity (K)[”] are the experimental constants used for quantitative measurements
of therapeutic agent distribution in the interstitial space. The interstitial space of a tumour is located at the
TME (tumour microenvironment) and composed largely of a collagen and elastic fibre network, filled with
a hydrophilic gel made up of interstitial fluid and macromolecular constituents”™’. Its structural integrity
is maintained by collagen and elastin whereas resistance to transport is provided by macromolecular
constituents such as glycosaminoglycans and proteoglycans***"". Compared to normal tissues, tumours have
a higher collagen content but lower concentrations of hyaluronate and proteoglycans™” due to increased
activity of lytic enzymes such as hyaluronidase in the tumour interstitial space. Thus, the tumour interstitial
space should provide lower resistance to the distribution of therapeutic agents, suggesting larger values of
D and K. Paradoxically however, therapeutic agents are not distributed homogeneously in tumours. This
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can be explained as follows: the time constant for a molecule with diffusion coefficient, D is proportional
to the diffusion path length, raised to a power of two. Therefore, if the diffusion path length is doubled, the
required time will be increased by four times. In solid tumours, the exchange vessels are at a large distance
apart (~200 um)"**"". Therapeutic agents will need a prolonged transit time for homogenous distribution.
High interstitial pressures also slow down the distribution process. Thus, low molecular weight (M, <
1000 D,) anticancer drugs do not accumulate in the tumour because of their small size and hence, rapid
clearance™. The drug distribution process in a tumour may be further limited by the high affinity of the
drug molecule for proteins present in interstitial fluid.

Growth induced solid stress

A tumour mass consists of proliferating cancer cells and stromal cells (i.e., fibroblasts, immune, and
perivascular cells)*”. It is supplied by a dense ECM, and a tortuous and chaotic network of blood
vessels'™”. During tumour growth, there is rapid proliferation of cancer cells in a limited space resulting
in the generation of mechanical forces from different structural components such as cancer cells, various
host cells, and the ECM. Thus, there is also a growth induced solid stress, which commonly ranges from
10 to 142 mmHg"", that can deform the vascular and lymphatic structures and cause limited perfusion
and hypoxia throughout tumour tissue. This creates a barrier to the penetration of therapeutic agents'”
which restricts their flow to cells within the perivascular space, such that resistant cells in hypoxic regions
are missed"*”. Shear stress can also induce vascular endothelial growth factor receptor type 2 (VEGFR2)
expression and ligand-independent phosphorylation. This causes activation of MAPK, PI3K, and Akt
signalling pathways that are involved in promoting angiogenesis"*”. Additionally, there is VEGFR2
membrane clustering and downstream signalling. Recently VEGFR3 has also been found to be a part of
this mechanosensory complex. Depletion of VEGFR2 or VEGFR3 thus causes significant reduction in
endothelial cell response to mechanical stress'*”

Specific integrins can also contribute to tumour angiogenesis and tumour progression"*. In endothelial
cells, VEGF upregulate the expression of o131 and a.2f1 integrins. The a5B1, avB3 and avf5 integrins are
also expressed in angiogenic vasculature to facilitate the growth and survival of newly forming vessels'*.

Therefore, the general strategy to overcome the barriers to vascular and tumour tissue permeability is
functionalization of the surface of nanoparticles with tissue and cell-penetrating peptides, such as the
iRGD™. It interacts with v integrins on the endothelium and stimulates proteolytic cleavage. The released
CendR peptide subsequently binds with neuropilin-1"“" to ensure the homing of and penetration of tumour
tissue by nanoparticles.

TARGETED DELIVERY OF THERAPEUTIC AGENTS BY EXPLOITING TUMOUR VASCULATURE

A therapeutic agent is delivered to the target tissue via supplying arterioles to that particular tissue. As
discussed in the previous sections, there are a number of barriers that hinder the distribution process of
therapeutic agents in the tumour. First, the tumour vasculature is highly heterogeneous in distribution.
Unlike the tight endothelium of normal blood vessels, the vascular endothelium in tumour microvessels
is discontinuous and leaky. Elevated levels of growth factors such as VEGF and bFGF cause vasodilatation
and enhancement of vascular permeability. Therefore, the gap sizes between endothelial cells can range
from 100 to 780 nm, depending on the anatomic location of the tumour™”. As such, low molecular weight
anticancer drugs (M, < 1000 D,) can easily enter the tumour microenvironment but at the same time,
they can also be easily removed because of their small size. Consequently, when delivered as an aqueous
solution, small-molecule chemotherapeutic agents like paclitaxel®, gemcitabine™, cisplatin'®”, etc. do not
accumulate in the tumour at the desired concentration for an adequate duration. These potent anticancer
drugs undergo unwanted bio-distribution, leading to unfavourable pharmacokinetics characterized by a
large volume of distribution, high renal clearance and short half-life"™. Furthermore, these cytotoxic agents
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can cause severe dose-dependent side effects such as myelosuppression, neurotoxicity, mucositis, nausea,
vomiting, and alopecia that may become fatal for patients”, or even, the development of drug resistance
and relapse of cancer™

This problem can potentially be solved by delivering anticancer drugs encapsulated within nanoparticles”**”
or as drugs conjugated to the nanoparticle’s surface”™ " Due to their size range, nanoparticles are
inherently able to permeate through leaky tumour microvessels but impaired lymphatic drainage of the
solid tumour, together with a higher interstitial fluid pressure, hinders clearance of nanoparticles from the
TME. Thus, retention of anticancer drugs is enhanced when delivered as nanomedicine. This mechanism of
passively targeting a solid tumour is known as the enhanced permeation and retention (EPR) effect, which
was first described by Matsumura and Maeda' in 1986.

The size of the tumour, degree of tumour vascularization, and angiogenesis are the main factors affecting
EPR'**!. Thus, the stage of the disease is critical for drug targeting using the EPR effect*’. Another
factor is the challenge for the chosen delivery system to penetrate deep into tumour tissue due to the high
interstitial fluid pressure at the centre of a tumour'®”’. This results in initial tumour regression, followed
eventually by recurrence from residual cells in the non-accessible regions of the tumour'®. Therefore, the
drug delivery system needs to be optimized for deep tumour penetration'””", This can be achieved by
(1) enhancing blood perfusion to a tumour; (2) modulating the structure of tumour vasculature; and (3)
destroying the mass of cancer cells to increase passage of nanoparticles.

Enhancing blood perfusion to a tumour

As discussed earlier, tumour blood vessels have sluggish blood flow. The hydrostatic fluid pressure in
a blood vessel (P) is less than that of fluid in the interstitial space (P,). This limits the distribution of
therapeutic agents in the TME. Therefore, an increased rate of blood flow in tumour vessels will enhance
the distribution of nanoparticles in the TME because of higher extravasation. Strategically there are two
ways to increase the rate of blood flow in tumour vessels. First, vasoconstrictors such as angiotensin can
be parenterally administered””. This will constrict normal blood vessels but not tumour blood vessels
which will remain unaffected because of their impaired muscular structure. As a result, more blood will
be delivered to tumour blood vessels. Second, vasodilators like NO and CO should be delivered directly to

tumour blood vessels without affecting blood vessels of normal tissue'”

In experimental rats with subcutaneously transplanted AH109A solid tumours, Suzuki et al.” found a
5.7 fold enhancement of blood flow in the tumour after intravenous administration of angiotensin II.
This enhanced the chemotherapeutic effect of mitomycin C on the main tumour and metastatic foci in
lymph nodes. Nagamitsu et al.””’ then successfully treated patients with SMANCS (neocarzinostatin, the
anti-tumour antibiotics conjugated with a hydrophobic copolymer of styrene) under angiotensin induced
hypertensive states. The induction of hypertension at ~15-30 mm Hg higher than normal blood pressure
for 15-20 min resulted in remarkably enhanced and passively targeted delivery of neocarzinostatin to the
tumour. This resulted in faster reduction of tumour size with the least toxicity to normal tissue.

Many research groups have developed nano-medicines that induce tumour-specific vasodilatation by
releasing mediators such as NO"*" and CO" in situ. This helped in the accumulation of nanoparticles
within the TME. Tahara ef al.”” incorporated NONOate, a typical NO donor, into PEGylated liposomes.
Its retention in blood was similar to that of empty PEGylated liposomes but its accumulation within the
tumour was doubled. Due to successful augmentation of the EPR effect, this liposome could be a potential
vehicle for the targeted delivery of potent chemotherapeutic agents.

Wei et al.” then developed tumour vascular-targeted multifunctional hybrid polymeric micelles for the
targeted delivery of doxorubicin [Figure 3]. Poly (d,l-lactide) (PLA) and poly (e-caprolactone) (PCL)



Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36 Page 9 of 29

- —— -,

’ ~

4

: Polymer :
1 conjugated Metal
I comple 1
1 s 1
: Polymer :
1 conjugated |
: RGD peptide :
1 1
l ;
\

Nanoparticle release at
Extracellular matrix

i: 10

a,p; receptor,

Endosome/%

' ¥ ) A

Lysosome release 33 k!

mediated R i
Nanoparticle

Nanoparticle binding at cell surface
Cytoplasm receptor

*'-é'*.%é?é’v‘

%
%

NO+RS- Cu2+ -NP ;:e';a Vasodilatation i‘}':%‘

% v v %‘ -
> g & 0 & - &
i\o@ % 9:.‘;' Endosome/ Lysosome mediated Nanopa;;ticle
Cu1+ -NP 2 3 Nz % Ve
RSNO (Cuil+ | & %@ %}; i gﬁ; i i %:25 iG:

Figure 3. Schematic representation of NO generating tumour vasculature targeted drug delivery systems. Copper ion-chelated
porphyrin triggers tumour vasculature specific release of NO causing local vasodilation, whereas RGD peptide causes o, 3; mediated
tumour cell-specific nanoparticle uptake. The drug is released specifically within the cancer cells where the cytoplasmic levels of GSH is
higher than normal cells. NO: nitric oxide; GSH: glutathione; RSNO: S-Nitroso alkane NP: nanoparticle; RGD: arginylglycylaspartic acid

Cytoplasm



Page 10 of 29 Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36

formed the inner core to encapsulate doxorubicin. The poly (ethylene glycol) (PEG) was linked to PLA
with disulphide linkages to form the outer surface of the particle. Copper ion-chelated porphyrin (PpIX-Cu)
was then added to the end of the PEG segment, providing a catalytic function to decompose endogenous
NO donors like S-nitroso-glutathione (GSNO), S-nitrosocysteine, and S-nitrosoalbumin. Since these
endogenous NO donors are also present in human plasma and all tissue fluid, 2-propionic-3-methyl-maleic
anhydride (CDM)-modified methoxy polyethylene glycol (mPEG) (mPEG-CDM) was linked to the PpIX-
Cu component as a pH-sensitive protective layer, in order to mask the positive charges of the micelles and
avoid copper ion-catalysed NO production in the general circulation. Copper catalysed NO production
occured only in mildly acidic (pH 6.5) tumour tissue. Furthermore, cRGD grafted PCL-PEG-cRGD (PCE-
cRGD) copolymer was added during the synthesis of micelles. The grafted cRGD peptide then effectively
targeted the tumour vasculature and tumour cells, on which avp3 integrin is overexpressed. Once taken up
by the cancer cell, doxorubicin was immediately released due to the high cytoplasmic level of GSH. Thus,
this complex hybrid polymeric micelle structure was very effective in treating tumours in an animal model.

Fang et al.” reported augmentation of the EPR effect and efficacy of anticancer nanomedicine by CO
generating agents. Haem oxygenase (HO) catalyses the degradation of haem to produce CO which
causes vasodilatation similar to NO™** Pegylated hemin is the HO inducer whereas tricarbonyl-di-
chloro-ruthenium (II) dimer (CORM2) is the CO-releasing molecule”™. The authors showed that in
tumour-bearing mice, the accumulation of intravenously administered Evans blue-albumin complex
(a macromolecule) in a tumour can be enhanced by the intradermal injection of recombinant haem
oxygenase-1, intra-tumoral injection of tricarbonyl-dichloro-ruthenium (II) dimer (CORM2) and
intravenous administration of PEGylated hemin. Thus CO plays a significant role in tumour uptake of
macromolecular drugs by EPR™ They have also developed polymeric micelles of CORM2 copolymer and
styrene maleic acid. It had a prolonged plasma half-life and was able to maintain a sustained release of CO.
They used it for photodynamic therapy with pyropheophorbide-a"””.

Modulating the structure of tumour vasculature

The balance between pro-angiogenic (e.g., VEGE, PDGFB, IGE, PDGFRB, FGF-2, and TIE2) and anti-
angiogenic factors (e.g., thrombospondin-1, angiostatin and endostatin) is responsible for the formation
of normal tissue vasculature. This balance tips in favour of overexpression of pro-angiogenic factors in
pathological conditions such as the progression of solid tumours"™. The purpose of such is to meet the
high demand for oxygen and nutrients of tumour cells. Therefore, restoring this balance of factors may
restore tumour vasculature back to normal. This process involves the inhibition of pro-angiogenic factors
at a different level of their cell signalling pathways [Figure 2], which will reduce the diameter of tumour
microvessels, prune immature vasculature, increase vasculature maturity with higher pericyte coverage,
reduce tortuosity of microvessels, and decrease IFP. Although normalization of tumour vasculature is the
rationale for inhibition of tumour growth™, it is not effective enough alone in clinical settings. Instead,
it has been found in clinical trials that combinations of radiotherapy or chemotherapy together with anti-
angiogenic agents are very effective™*". Ionizing radiation generates ROS that leads to DNA damage and
cell death. Since the presence of oxygen helps in the generation of ROS, a well-vascularized and perfused
tumour tissue would be more susceptible to radiotherapy™. It has also been shown that under low-dose
irradiation, cancer cells are induced to express proangiogenic factors (e.g., VEGE PIGF) at a level sufficient
to stimulate endothelial cell migration and sprouting. This is known as the vascular rebound effect™,
which can be overcome by combining anti-angiogenic agents with radiotherapy. In one clinical trial on
advanced pancreatic cancer patients, a combination of optimal dosages of bevacizumab, capecitabine
and radiotherapy was found to be very effective®. In another clinical study with rectal cancer patients,
promising results were reported when radiotherapy was combined with bevacizumab, capecitabine, and
oxaliplatin®’. In cases of chemotherapy used in combination with anti-angiogenic agents, normalization of
tumour vessels will not only reduce vascular permeability but at the same time, enhance the trans-capillary
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pressure gradient (due to lowering of IFP), resulting in better distribution of small molecule anticancer
drugs and nanoparticles (< 60 nm) into the TME"™,

Strategically, one may either block the pathways for synthesis of pro-angiogenic factors and their target
receptor proteins, or neutralize the effects of these factors by inhibiting the corresponding target receptors
with monoclonal antibodies. Such angiogenesis inhibitors can either target endothelial cells of the growing
vasculature (known as direct inhibitors) or tumour cells and tumour-associated stromal cells (indirect
inhibitors). Direct inhibitors like angiostatin[”], endostatin®®", arrestin®®, canstatin®” and tumastatin"**®
bind with integrin receptor to prevent the proliferation and migration of endothelial cells in response to
different pro-angiogenic factors. Indirect inhibitors prevent the expression of pro-angiogenic proteins
(e.g., VEGF) expressed by tumour cells or block the expression of corresponding endothelial cell receptors
(VEGFR). Many angiogenesis inhibitors have been approved by the FDA for cancer therapy including
thalidomide””, bevacizumab™”, pazopanib” and everolimus™ amongst others. There are also many
candidate anti-angiogenic drug molecules such as siRNA, shRNA, VEGF aptamer, KPQPRPLS-peptide
currently under study.

Different types of nanomedicines such as polymeric nanoparticles, lipid nanoparticles, micelles,
mesoporous silica particles, metal nanoparticles, noisomes, and liposomes have been developed for the
delivery of anticancer drugs. Amongst them, liposomal delivery systems are mostly approved by the FDA
for clinical use.

Therapeutic nucleic acids like small interfering RNA (siRNA) and short hairpin RNA (shRNA) are
negatively charged and thus, frequently delivered with liposomes made up of cationic phospholipids.
Cai et al."™ developed Bio-reducible fluorinated peptide dendrimers for efficient and safe delivery of VEGF
siRNA. It improved physiological stability, serum resistance; promoted intratumoral enrichment, cellular
internalization, as well as facilitated endosomal/lysosomal escape and reduction-triggered cytoplasm
siRNA release. It had found to have excellent VEGF gene silencing efficacy (~65%) and a strong ability
to inhibit HeLa cell proliferation. Upon intratumoral injection in mice with HeLa tumor xenografts, it
significantly retarded tumour growth. Yang et al."" developed strategy for co-delivery of VEGF siRNA
and docetaxel. This dual peptide modified liposome binds specifically to glioma cells, undergoes specific
receptor-mediated endocytosis and deep tissue penetration. Once within target cells, the siRNA silences
the VEGF gene to inhibit angiogenesis while docetaxel kills tumour cells.

Chen et al."™ studied the effect of silencing the VEGF gene using siRNA for the treatment of breast cancer
(MCF7 xenograft model) with doxorubicin. They prepared calcium phosphate/siRNA nanoparticles and
further encapsulated it in a liposome. The liposome was injected intratumorally while doxorubicin was
administered intraperitoneally. This combination therapy resulted in 91% tumour inhibition using only
60% of the standard dose of doxorubicin. In a more recent study, Zheng et al."*” utilized mesoporous silica
nanocarriers (148.5 nm) for the co-delivery of sorafenib (a multikinase inhibitor) and VEGF targeted
siRNA to treat hepatocellular carcinoma. The particles were further coated with lactobionic acid to target
asialoglycoprotein receptors that are overexpressed on cancer cells. Taking one step further, Shen et al."*"
co-delivered sorafenib and survivin shRNA with nano-complexes to reverse multidrug resistance in human
hepatocellular carcinoma. Survivin is an angiogenesis promoting agent. Suppression of survivin with
shRNA thus resulted in the reversal of drug resistance and promoted sensitization to sorafenib treatment,
leading to cell cycle arrest and apoptosis.

While positively charged liposomes are best suited for the delivery of negatively charged RNA molecules,
they undergo nonspecific electrostatic adsorption with blood components and are quickly recognized by
the immune system, leading to rapid clearance from the blood by the reticuloendothelial system (RES). This
limitation can be overcome by coating the positively charged liposomes with negatively charged anionic



Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36

Page 12 of 29

201W apnu
2/97v g 8uisn |spouu 1jes30UsX 104/ Uy
au| ||92 J2dued

aseyd /9 1e
S||92 J92UBD S)Salie [9Xe}|RY "(SAemyied

3ut|jeudis ¥¥3/MIW/4vY Buqiyut Aq)
uoljeJaljoad ||92 Jadued Ssyglyul osfe 3

awosodi| 21uoljed paljipow-0d JawAjodod
p1oe o1j0ydAxoap-suisA|Ajod pue a3euldons
0001 |024]3 sus|AyjaA|od |Aisydod0oy

[ozL] 6L0Z  1sea4q /4D JUBISISI SNUp-1}NW 04/ X7 10}IqIyul sisauadol3ue ue si qiuajelos -10-7 pajedn(uod pide diuoinjeAH |oxey|oed qlusjelos
auIge}dWIBE YiIMm Juawieal) sull-1siy LIM-2 pue Y49ad 493N
pa|ie} OYM BLIOUIDIEDI0USPE DljeaJdued SUIBLLIOP 9SBUIY 9UIS0JA} Y] SHqIyul 3|
[61l1  vlOz 2neiseiaw yyum sjusijed :(j] aseyd) [edl Io}qiyul sisaue3ol3ue ue s| qiue|elen 12|qe} [eJ0  @|qedyjdde joN qiuejeiep
921W 9pNU Ul [9pOLU }4eI30UdX 0/ U] SeCIIE] (3]|921woueu) sexajdwodoueu
(Z0%/-139) S||92 ewounied Jejn|j@d03eday 21x030342 pue diuagolSueljue sey qiuajeos 91eu12ons 00| 93d-|A1eydodoy-n-q (UIAIAING)
[v0L] 7102 9oue)SISal 3nuplyNwW :oM/4 X7 ‘uoissaldxa 4H3A SHAIYUI YNYYS /Bulwiaua|Ay}a-A|od -G8 dluoinid qlusjelos VNYYs
SI192 (£YnH ‘79daH)
ewouldJed Jejn|j@dojedsy Suissaldxalano  S}09)48 DIX0}03AD pue dlusdoidueljue sey 9|211iedoueu edljis
[e0L] 810C J03deda. u19301d0odA|B0BISE (10//4 XT GIUB)RIOS "UOISSaIdXD 4DIA SHIYUI YNYIS  SnoJodosaw pajedn(uod pioe 21uoiqojoe] qiuajelos VNYIS
|apow juage uoI3N|os [oueyla pue
1jei30UdX 617Gy pue [9poL }yei3ousx ulngni-ijue sy} yym sioydedal adepins |9 Joydowaad JO 24NIXIW |:| Ul POA|OSSIP
[8LL] 0L0Z J9DUBD }SBRIQ UBWINY |-X|N 1044 L/ |92 S} 0} 493 A 40 Sulpuig ay3 Suliqiyu| [axeyl|doed ‘auljes Yyiim pajn|ip qewnzioeaag |oXey[DBd  gewnzidoeasg
Jnowny on-649Y
21doj0y1i0 3ulieaq aiW apnu 0/ LY S||92 49dUed pioe o1odi|-uesoyiyd pajjes3-aulplisiy
[sol] 610¢ INT-6¥SY OMA-X]  S||13 9plsodol] "auas /97,1 9JUI|IS YNYIS PaIe|ADId Yim pajeod sawosodi| dluole) apisodoi] VNY!s
sinowny 9N
/8N YHM 921w apNnu 3/g7Vg S|ew :041/1 Uy S||92 422UBD S|y [9Xe}920( "uoldnpoad
D3IANG sulinw pue 493A SHQIYu!l YNY!s uoijeljsuad
(OW Jnowiny saunsua |-dA73 ‘Sunediey 90BLINS 8y} UO paydene (|-4A7) pue
[£11] 7102 /80N) S||92 eWO3SE|qOI|3 UBWNY 104/ XT Jnowny uteaq ul sdjsy pue3i| dedoi3uy dadoi8uy) sepnidad omy y3m swosodi] |9xe1920Q VNYIS
[opow
}jea3ouax 21dojoypo LEZ-gN-VYAW 044 Uf A}IA130B 21X030340 pue
oLl 910¢ SI[29 LEZ-AW-YAW ‘0AIA-X  DluagolSueljue U3og sey pide d13oquien sswosodl| pajejAn3d  pioe diSoquen  pioe diSoquien
921w apnu
Ul [9pOoW Inowin} Jea8ousX /-4 104/ Uf S||22 J22ued S||1 XOd 9|21iedoueu ajeydsoyd
[SLL] /102 QUI| (192 L-ODDIN :0M4 X7 4DTIA O UOISSaIdXa 2y} S92UB|IS \YNYIS wnidjed pajejnsdesus-awosodi| uoliedA|od 1DH XOd VNYIS
S||92 492UBd By} S| XOQ pases|a. uoleIn3iuod paged
|y "xa|dnp 3u1jes sy} jo uolnesedss sayj pue e ul Jswejde 4H3A-1jUe ue 3uipn|oul pioe
soxa|dwod Jswejde-{HJA 8Y3 JO Uollewo)  dI9|anu xa|dnp e yim pajed ss|dijedouen
aul| 2y} eIA 9363 9y} 300jun 0} WSIueydaLW 3y} Sdomawel) Jlueio-|elaL +{717 paspLq
[¥LL] 8102 ||92 492ued 3sealq |£Z-gIN-YAW 0414 X7 sapinoid s|j9d Jeoued Aq passaidxalano {HJA -81ejAxogaedip |Ausydi-oulwy papeol-xOd XOQ ®|qedidde joN
921w 3ulieaq-INoWNy ZZH :04/4 Uy 493 J0 uoije|ndaiumop sawosodi| payipow VNYIS-€4D
[€LL] 6107 ||92 ZOdoH 04 x7 0} anp sisauadol3ue Jo uoliqiyu| -uesolyd |AyewAxogied aAljsuas-Hd  s|gediidde joN  pue qiuajelos
el U9)SIAA 9jewa) 3uisn |92 J492uUed S||1Y (1) wnuneld
|opow jeJ ewol|3 97 [eIUBIDRIUL :04/4 Uy (||) Winulle|d-0J}iu-Ip-sultuwe-1p-SI) "S[|ad 90e4INSs awosod|| 8y} Uo paydelje a1om -0J1u-1p
[ell] 910¢ S|192 O /8-N PUB 9D BWOINS 1044 X7  Inown) 0} swosod]| 8y} sjedie} qywi syl qyW Zy4HIA-1IUB pue QYW {DIA-JUY  -Sulwwe-Ip-si>  3|qedljdde JoN
uoldnpoud
493A HqIyul SYNY!s uoijeljsuad
ewojse|qol|3 Jnowiny saunsua |-4A73 ‘Sunediey 92e4INS 8y} Uo paydene (|-4A71 pue
(1Ll 102 D /8N 3uliesq a21W spnu :04/4 Uy Jnowny uteaq ul sdjsy puesi| dedoi3uy dadoi8uy) sepnidad om) yym swosodi]  o|gediidde JoN VNYIS 493A
3o, Apms Apn3s [ea1ui|d/0411 xa /oMIA uj uoide Jo wsiueyd?)| w)sAs A1aniap/uonejnwo snip juage 1012e}
Y 30 Jeap p3s el d A Hae HueyRW ¥ HI9p/uone] 4 J9dued-nuy  diudsoiduenuy diuadoiSueold

a4njenaseA Jnownj Suiyiojdxa A1aAljap Snap pajasiej-inowny jo sai3ajea)s "z ?|qel



Page 13 of 29

Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36

[ezl]

[8zl]

[zel]

foct]

fszl]

[rzll

(8oLl

f60L]

[eel]

[zotl

[eell

[lzl]

6l0¢

8L0¢

900¢

L10¢

6L0¢

Sjxer4

800¢

L10¢

cloc

€10¢

610¢

8L0¢

aUl| |[92 J9dURD }5B3UQ /- DN [0 X7
90IW apnu dIWAYje ajew
Sulieag-inowny} SNOsURINOGNS (04/4 U/

(SL6LH
‘0G9LH) 492uUed Bun| |92 ||PWSUOU :04/4 XT

s)jes3ouax

[-DDSINN Sulieaq ad1wW spnu 04/ uf

aul| 192 [-DDSINN (044 X7

S|[22 J3dued Jsealq

auuNW /Yy pue 921w ajewsay gA4 Suisn
[apow Jadued 1seaiq 21dodjo4ylo oA/ Ly
Gul

(193 43dUed 3se24q) 89t-gW-VAW 041 X7

[|92 J9dUeDd 3Sealq /-4 D (01 XT

SIES)

BLIOUIDIED AJeWWeW 9SNOW | | {7 :0M/A XT
901w apnu Suisn Jadued

d13easnued Jo [apow 21dosjoYpIo oA/ Uy
(z-e3ed VIW pPue ‘I-DNVd ‘L
92 Jadued d1jeasoued (04 x7
Jnowiny snoauenagns Suliesq

201W D/q|eg Jo ulesis [edads e oM uy

(O Pue '0Z9MS ‘OLLLDOH)
aul| |92 |B32240]0D UBWNY OAIA-X]

-0dsV) s?

S|l (1€
HIN) 35€|qo.ql} @SNOW pue S||9d g 101/ X7

(LEZ-9W-VAW Pue -4DW)
SaU| |[92 J9JURD }SBDIQ UBWINY (04/4 XTF

201w apnu Sulieaq Jnowny 92 :0M/A Uy
[|92 BWOIIS 9D 1044 XT

sinowiny | | 7 SuLieaq adiw 2/g7yg (044 Uy
aul| |92 |11 10AIA-XT

aseyd /9 1e s||92
422Ued sisalle _wxmt_umn_ SeaJaym aseuly

auIs0JA} Z¥3H PUe ¥493 sHqIyul qiueder]

Aemujied 3uljjeusis € |V1S/ZAVI
3y} Jo uoissaiddns pue ¥49H3 Jo uoniqiyu|

S[|92 Jaoued S||13 auigedwas pue
S3SBUIY BUISOIA} ¥3DT SHYIYUI GIURED

S||92 420ued S||1y XOJ pue aseury

aulsolA) Y493 suqiyul quiyeo "Xod Aq
PaMO||0} ‘pases|al Sem qIuIleD 1Sily 3
aseyd

/2D 1B S||92 S}Salle [axe}|oed ‘utajold
d9-d pue sissus3dol3ue sjiqiyul giuijede]
aseyd |\ /29 e s||92 Sysadle

[oxe}l|ded ‘sissuadoldue syiqiyul qiuijede

Jaoued aAllsod Y493 ay) 03 sulgeldwas jo
Kianijep pajadie)} ayy ul sdjsy gewixnia)

eseyd W/z9

1e S||92 Ssisalle ey} [axeyl|ded jo Alanljep
pa31e3.Je)-||92 Jodued ul sdjay gewixniad)
S||92 J9dued

10 UoI12N.3Sap |ewayloloyd pasnpul ¥|N
asned 03 5|19 9A13ISod Y494 0} dNNY

Jo A1anijsp pajedie} sy ul sdjay |94
sisauadoldue

S}qIyul pue Joydedal |-uljidoinau 03 spulq
Aj@1euiwopald 31 a1aym ‘|92 sy} Uulym
aplidad ay) sisAljap 9|d13aedoueu pjog
aseyd

W/Z9 3y} 1B S||92 Jadued s)salle [axel|ded
pue sisauadol3ue sjqiyul giuiiungs (dINN
JO 9ouasald ‘Hd MO|) JUSLLIUOIIAUSOIDIL
Jnowiny ayy je pasea|as atam s3niqg

elwJayiadAy Aq s||ed Jodued

|11 9Ap 08/ ¥| Seataym ‘sioydedsl {9 d
pue {D3A YM paleIdosse aseuly| aulsolA}
S}QIYul gIUI}IUNS JO 9SE3|a4 P)RAIDR J9SeT

S9|[221W
(102413 auajAy1a)A|od-02-apiioe|A|od

s|d13iedoueu

(p1oe 21oe|) Ajod-(]02A|3 aus|Ayia)A|od
a3eneg |eJo se

paJa)SIuILLIpe PUB J9)BM Ul PIAJOSSIP SeM
qIul}lye9 "uoIIN|OS auljes ul AlsnousAeljul
paJa)sIuILLIpe Sem aulge}dwWwan)

(93d-9-V1d) 109413 aus|Ayyek|od
-}20|9-(aph2e|-7)Ajod parednfuod XOQ

JO apeuw 9d13edoueu sy} 0jUO papeo)

sem 3ulied uol eiA pioe dipijeydsoyd
-|A03]01p y3im paxa|dwiod qiuie
J9}aWeIp WU 07 4O S9||9dIw

|eouayds pue yi3us| wiu QQ| 4O S|[@21Wo|1}
(]024|8 aus|Ay3e)-Ajod-02-apiioe|Ajogd

awosodi]

9402 3|21 edoueu pjod
9|3UlS B UO BUIGR}IDWSS pue qeLuIxn}ad
y30q 3ululeiuod sajednfuodoueu | Uiz,

puowe|poueu
papeo| |oxell|oed paje3nuod gewixniad)

9|213dedoueu pjo3
pajesn(uod |49

(j024A13

aua|Ay1e) exay (JA-||-d9punoidediaw-|)
AxogJedouow yum padded N p|oo

Jake| ulIxapo|2Ad siyy

Ul papeo| Sem qiuiliung "x1jew Jnowny sy}
ul a|qeAes|d sem jey} apiidad aAISUSS 7
-dWW BIA ULIIX2PO[2AD-¢ Y}im pajeod sem
3||@21W aAIsuodsal-Hd papeo| |axe}l|oed

awosodi

|oxey|oed

9|gedijdde JoN

auIgejdwan

X0da

[oxeyljoed

|oxey|oeg

auIge}dWwan

Joxeyjoed

(dNNY)
9|21 edoueu

p1o9

9|d1pedoueu

p1o9

|oxey|oed

08LY1-9Ap
paJeiju|-lesN

qiunijeden

qiunelpay
pue qiuRop3

qiuileo

1}99

qluijeden

qiunjeden

gewixnia)

gewixnieD

(s4494
lle 1o} pues|
JueUIqUODRI)

1494

spndad
dddTMLY

quuuns

quiung

103084 Ymou3
|ewuspidy

494

493A



Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36

Page 14 of 29

aanedou woiy 93reyd pnredouru Jo [BSIOAI B Sasned TDHHJ Jo yuowdas surpnsiy oy ur dnoid ojozeprurr ay3 jo uoneuojoid ‘(s'9) Hd Mol Je ‘AL o) U]
* [¥ 2m3ry] 1owdjod oarsuodsar xopa1 pue s[qe[jonuod-a3reyd pa1assin Hd e ((TDHJ) poe

[so1]

o10d1[-UBSOIIYD-PajyerS-aurpnsIy pare[ADTd YIM Pajeod JaUIny sem Jey) awosodI] o1uomed e ur papeo] a1om aprsodola pue YIS IDTA Lpnis Juadal e U 1022
Ydd 2Y} 03 anp Inownj 2y} UIyiMm saprIedouru Jo UONR[NUINIOE Y} 2OULYUS pue poo[q Ul sapntedouru ay) Jo uonemoIn Juojord uay) pnom yorym ‘siowkjod

(p12e 21102A|3-02-21308))Aj0d YO ‘AS|mep andeuads :QS ‘aul| ||92 S1S8|qoJql) UBwny [PLLION :fg
1103d929J S1032.) YIMO043 1Se|qo.ql) 14D [padeljul Jeau (YN -2|2i3edoueu (¢N ‘uidAweded Jo }934e) UeljewiwewWw YO W 48dued 3un| |22 [|ews-uou :)TDSN 10328} YImoi3 1Se|qoiqly :{D ‘seseury paje|n3dal
-[eusis Jejnjjadeixa Y7 ‘@seuny uiejoid pajeAildoe us3oliw HJ|N ‘ewodiesolqly pajels|edde Ajpides (Y [101dedal J01de) |80 Wels pue /11D Pa||ed OS[e 4adJew Jown} pue aseuly aulsolAy 1oidsdal
J0 adAy e :] -2 403dadau J01oe) YIMmou3 panliap 13]e1e|d Y49 Ad ‘103dedau J03or) YIMOUS [BI|SYI0pUS JBINJSEA Y{DTA 403dadal 1032k YImoUS |eljaylopus ¥{DH7 ‘eseulsjoldojjeisw Xujew dA N 1032e)
Yimou3 pannep 12|91e(d :4{9dd ‘S||92 |el[2Ylopua JB|NdSeA0DIW ulelq :DFAING YNY uldiiey 1oys 1y NYYS YNy Suliapiaiul [[ews 1y NYIS udIgnioxod :XOd ‘10198) YIM043 [B1|aYjopus JB|NISeA ({DIA

9|NJ3joW ul3e|dsId 21X0}03AD 0} PazZI}ISuUas

aJe S[|9d Jnowiny 8y} sny] ‘uoisnyiad

BLIOUB|SW JNOwWN} 9A0IdwWl 0} UOIeZI|eLIOU JB|NISBA

uewiny Jo [9pou }jeiSoudx o/ Uy sajowo.d 3| "}0a4a dluadoiSueljue ayy

[I”Ys vO1d Ul

pasJadsip sem udAwedey ‘sa|d1j edoueu
VO1d Ul pajensdedus Jayliny sem

¥ “p1oe dipieydsoyd-jAosjo-1p yim

[g€ll 7102 S||92 BWOUR|SW G/EY 04/ XT AQ ymou3 inowny syqiyul upAwedey pa31e0d sem ulje|dsio Jo ajeyidioaidouen une(dsiH upAwedey
YOS PUB NZH-LEZ-gW-VAW ‘Ly4L S[I93 J9duUed 190 = Oljed Jejow [9Xe]l|2ed:SNI|0I19A]
=40 '89%-GN-VYAW 'LEZ-GN-VAW Il Y3 S||1¥f [9xel|oed 23}4e dlusBol3ueljue ‘9jo1nedoueu sswAjodoo (9p1j02A|300
[/€1] 8107 SoUul| |92 J92UeD 1SeaUq JualayIp (041 x7  Ag Yyimou3 unowny sassaiddns snuwiijoian] -apioe|)Ajod-g-(|024|3 susjAyia)Ajod |oxell|ded SNWI|049AT
sissusdol3ue syqgiyul
SNWI|0J9AT "WINI[9Y}OpUD JNOWN} 0}
S[|32 awosodi| Jo AISAISP S} S3294Ip UI3DR]9s-3  awosod| pajelodsp-diWiw XSImaT |Ajels
[o€1] 6L0C  [el|aylopua UISA [edl|iquin uewny :o4/4 x7 o pues|| |ednjeu ay) ‘(xXe1s) XsimaT |Ajels |Ayra(Ax0qied-|)- € papeo| snwijoiaAy  3|qedijdde JoN SNWij0JaA] yOolw
20IW
apnu ul [spouw }ei3ousx gy (oA Uy 0-4NL pue 9|d1edoueu (auoyoejoided Joydadau
[s€Ll 8107 aul| |92 6%7SY ‘041 X7 Joydedal usBoapue s}qiyul spluopljey | -3)Ajod-(]02A|3 susjAyia)Ajod Axoyle|y  9|gedrjdde joN aplwopljey | usdoipuy
qiu1jo}4e 3uuiejuod
-pidi| ap13dadoSi|o 21uo1IS}IMZ D138YJUAS
S[[92 492UBd S|P} XOJ SeaJaym aSeul] B Y}IM pajeod Sem UdIym ‘sa|dijiedoueu
sjel QUIS0JA} Y4DHT SHUQIYUI qIuIl0}4T "1I9))9 e21|IS SNoJodosal pazijeuol}duny
Qs 8uisn [apow 1jea30uax JNoWNY :0A/A U/ 213s18J9uAs e pamoys pue Ajjeljusnbas  -oulwe Ul papeo| sem X “8liiedoueu
V€Ll 910¢ aul| |19 617G 04/ xT pases|al alam X pue qiuijolg U0ISISAUOD 934eYD 9AI}ISURS-Hd X0d qiuno3
J9oued dijeasdued dijeise}aW Jo
‘s|qesadoul ‘padueApe A||edo| yum sjusiied S||92 J92UBD S||1Y BUIGe}IDWS SealayMm (uoisnjur A1, w/3w 000L)
Leel] €loz  :(jeu[edulo || aseyd |93 uado) [ealul|D @seup} aulsolA} Y493 suqiyul qiuiiop3  suigeIdwan ‘(Ajjelo ‘p/3w OOL) qiuiio)i3 sulqejpwen qiunopg
Jake| ouswiAjod paje|Anid
aseyd /29 B YlIM paleod sem ydIym ‘sa|dijiedoueu
1 S|[92 J9dUueD S)Saule [oxeloed seasaym 9jeJeajsouow |A192A|3 ul pajensdeous
[eell 8L0¢ SUIL 92 ECH-IDN -01/4 X7 aseup} aulsolA} Y493 syqiyul gluiol3 aJom [axeyljoed pue qiuijole yiog [oxeyl|oed qilunol3
saJaydso.diw snolod paseq-apl|0d4|30d
aseyd |\ /¢9 1e s||90  -api3oe|Ajod ul papeo| aiom |axe}ljded pue
Jadued s)sadie [axelloed sealaym aseuly a|dlpedoueu siy] ssjdisedoueu pidi| pijos
[Lel] 6L0¢C DTDSN JUBISISSI-3NIp 1041 X7 BUISOIA} ZYTH PUB Y497 SHQIYul qiulle)y  paseq-pioe dLies)s Ul papeo| sem qiuliely [9Xe}l|oed qiluney
aseyd N /g9 1e s[ed
J92ueD S)SaUle [oxel|oed sealaym aseury 10108} YImou3
oLl 910¢ (192 AJeWLUeW SULINW | | 7 :0//4 X7 3UISOJA} Z4FH pue Y493 sigiyul qiuneder awosodr [oxeyl|oed qlunede lew.apidy



Dastidar et al. Vessel Plus 2020;4:14 | http://dx.doi.org/10.20517/2574-1209.2019.36 Page 15 of 29

Phospholipid + +

%o o2
gg {f’:‘ C:éj O:O

il 8 gAnnnm o2

o0&
0500 Og o0
|.° Q
°'L°°o°°"oo°
Etoposide R Angiogenesis
Tumour Site Charge reversal Extracellular matrix
n L OO OODCO0 OEQOOOT ............l

WL s
1o

O P
—

mRNA cleavage

Endo-lysosome

Inhibition of Proliferation

Figure 4. Schematic representation of using multifunctional nanoparticles for co-delivery of VEGF siRNA and etoposide (an anticancer
drug) for enhanced anti-angiogenesis and anti-proliferation activity. RISC: siRNA induced silencing complex; VEGF: vascular endothelial
growth factor; GSH: glutathione; EPR: enhanced permeation & retention

to positive, leading to deep tumour penetration and enhancement of internalization of nanoparticles. The
positive charge is further enhanced in the lower pH of endo-lysosomes, where the disulphide bond of the
lipoic acid segment in PHCL-liposomes undergo GSH induced redox-activated breakage, leading to the
release of cargo within the liposome [Figure 4].

The antiangiogenic agent bevacizumab is a humanized monoclonal antibody that inhibits tumour growth
and metastasis. When combined with a cytotoxic anticancer agent such as paclitaxel, therapeutic efficacy
was significantly improved because of the targeted accumulation of paclitaxel within tumours™”. In a
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preclinical study using the MX-1 human breast cancer xenograft model, different doses of paclitaxel
were administered in combination with 5 mg/kg bevacizumab. 30 mg/kg paclitaxel in combination with
bevacizumab was as effective as 100 mg/kg single dose of paclitaxel in inhibiting the growth of a tumour.
This observation can be attributed to treatment with bevacizumab, which significantly enhances the
effective concentration of paclitaxel within the tumour.

Gold nanoparticles have also been used for the targeted delivery of anti-angiogenic agents, either alone
or in combination with an anticancer drug. Bartczak et al."” synthesized gold nanoparticles of ~15 nm
and capped them with mono-carboxy (1-Mercaptoundec-11-yl) hexa (ethylene glycol). These particles
were then further functionalized through surface coating with a peptide (KATWLPPR) that specifically
binds to neuropilin-1 receptor to inhibit angiogenesis. In an in vitro study using human endothelial cells,
it was found that this peptide coated gold nanosphere could block capillary formation by endothelial cells
without causing toxicity. Patra et al." then used gold nanoparticles for targeted co-delivery of cetuximab
and gemcitabine. Cetuximab has been approved for the treatment of EGFR positive colorectal cancer
whereas gemcitabine is used for pancreatic carcinoma. “2 in 1” nanoconjugates containing both cetuximab
and gemcitabine on a single gold nanoparticle core were synthesized. Physically, this was more stable than
a gold nanoparticle-containing either of the agents. This nanoconjugate could target metastatic EGFR
expressing cells and inhibited 80% tumour growth and was significantly better than all other non-targeted
groups.

EGEFR tyrosine kinase inhibitors like cetuximab, lapatinib, afatinib, gefitinib, erlotinib, fedratinib are
well studied for anticancer therapy when used in combination with different chemotherapeutic agents
including doxorubicin, gemcitabine, paclitaxel, and carboplatin. They help in the normalization of tumour
vasculature and sensitize tumour cells to cytotoxic drugs. Additionally, monoclonal antibodies such as
cetuximab have been used as a targeting agent. Lin et al."” conjugated both paclitaxel and cetuximab on
the surface of carbon nano-diamond particles of 3-5 nm diameter. This was found to enhance the mitotic
catastrophe and tumour inhibition in the drug resistance of colorectal carcinoma in vitro and in vivo.
Among the other inhibitors, lapatinib also inhibits human epidermal growth factor receptor 2 (HER2)
tyrosine kinases and ATP-binding cassette transporters, thereby sensitizing multidrug-resistant (MDR)
cancer cells to chemotherapeutic agents. Lapatinib was clinically approved by the US FDA in 2007 for
anticancer therapy. There have been many studies since where lapatinib has been used in combination
with paclitaxel, and liposomes and polymeric micelles used as drug delivery vehicles. Li et al™ developed
stealth polymeric micelles using an amphiphilic diblock copolymer named poly (ethylene glycol) -block-
poly (2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol) which formed a core-shell structure
by self-assembly. Hydrophobic molecules like paclitaxel, lapatinib are loaded into the hydrophobic core
while the hydrophilic shell of PEG prevents their aggregation, restricts plasma protein adsorption, prevents
recognition by the RES, and minimizes rapid elimination from the bloodstream. This ~60 nm particle
successfully overcame multidrug resistance in an athymic nude mouse xenograft model established with
DU145-TXT MDR prostate cancer cells. The strategies of tumour-targeted drug delivery exploiting tumour
vasculature aresummarised in Table 2. The FDA-approved anti-angiogenic agents for the treatment of
cancer is summarized in Table 3.

Enhancement of vasculature permeability by physical treatment

EPR is a highly heterogeneous phenomenon. It is variable, even amongst different regions of the same
tumour. In fact, within a single tumour, not all blood vessels are permeable to the same extent. Moreover,
in many clinical settings, it has been found that tumours do not have a sufficient level of EPR to ensure
the accumulation of nanomedicines. This is mainly because of the insufficient permeability of the vascular
endothelium of tumour blood vessels. This problem can be addressed by local application of physical
treatments such as sonoporation, hyperthermia, and radiotherapy that enhance tumour vasculature
permeability, and aid in extravasation of nanomedicines uniformly throughout the TME.
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Figure 5. Schematic representation of cancer treatment with anticancer drug-loaded liposome-micro-bubble complexes (PLMC)
assisted by ultrasound (US). A: when flowing through the target region, drugs remain attached to the lipid shells of MBs but are unable
to cross the tumour vasculature by simple diffusion; B: application of high-intensity focused US bursts the micro-bubbles to release
drugs. The cavitating and imploding MBs also enhance permeability of the plasma membrane, leading to higher uptake of released
drugs. MBs: micro-bubbles

Theek et al."” studied the effect of sonoporation and softshell/hardshell microbubbles on tumour
accumulation of fluorophore-labelled 100 nm liposomes in mice bearing A431, BxPC-3 tumour. There was
a 100% enhancement in tumour accumulation of liposome.

In another study, Yan et al"" attached paclitaxel encapsulated liposomes to the lipid shell of microbubbles
via avidin-biotin linkage. They achieved high encapsulation efficiency of doxorubicin and upon
application of ultrasonic sound of optimized intensity for the optimal period of time, there was significant
enhancement in the uptake of drug molecules in 4T1 breast tumours by EPR.

As an alternative approach, Meng et al."”" developed a doxorubicin loaded nanobubble [Figure 5]. It
consisted of a core of a polymeric network where doxorubicin is dispersed. This core was encapsulated
in a perfluoropropane gas bubble, the lipid shell of which was further stabilized with pluronic molecules.
When delivered intravenously in combination with therapeutic ultrasonication, this ~170 nm diameter
nanobubble showed higher accumulation and better distribution of doxorubicin in tumours, leading to
significantly higher intracellular uptake and therapeutic efficacy.

Hyperthermia
In response to temperatures of 41-45 °C, there is increased tissue perfusion to dissipate heat. For healthy
tissues like muscle and skin, this increase in perfusion can be as high as 10- and 15-fold respectively.
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In tumour tissue, perfusion rates are increased by 1.5-2 folds only"”*"””. Due to this insufficient perfusion,
the temperature of tumour tissues raises further. This causes shut down of local blood flow due to (1)
endothelial denaturation; (2) vasoconstriction in large pre-existing arterioles at the tumour periphery; and
(3) increase in flow resistance because of high viscosity due to the formation of thrombus and fibrinogen
gel. Ultimately, tumour cells are killed due to heat only.

Controlled, local heating of tumour tissue with radiofrequency[m], microwave or ultrasound to
temperatures between 40-45 °C has the following effects: (1) dilatation of tumour vessels leading to
enhanced blood flow; (2) enhancement in microvascular permeability to macromolecules™" and
nanomedicine"*"**”. This further increases the EPR effect; and (3) triggering the release of cargo molecules
(therapeutic agents) from thermoresponsive nanomedicine””.

[183-188] [189-192]

There are different well-studied thermoresponsive nanomedicines such as liposomes , nanogels ,

hydrogel coated metal nanoparticles"*, polymeric nanoparticles"”” and elastin-like peptide-drug
conjugatesh”]. Thermodox® is a doxorubicin loaded thermoresponsive liposome, approved for the
treatment of liver cancer. It is capable of delivering 25 times more doxorubicin to tumour tissues compared

to intravenous infusion, and 5 times more doxorubicin than standard/ordinary liposomal formulation"".

Again, to control drug release at mild hyperthermia, leucine zipper peptide was incorporated into the
liposome™. At ~42 °C, the leucine zipper gate dissociated to release the drug precisely.

The thermo-responsive bubble generating liposomes™" was also developed [Figure 6]. It consists of an
ammonium bicarbonate loaded core, which generates CO, upon application of hyperthermia (42 °C) and

increases the permeability of the liposome bilayer by triggering the release of the drug.

Gold nanoparticles coated with thermo-responsive hydrogel was developed for cancer therapy****”. Local
hyperthermia enhances the accumulation of nanoparticles within the tumour™”. The gold nanoparticle has
strong plasmon absorption, resulting in the generation of heat and removal of the polymeric shell. Thus,
the gold nanoparticle acts as an anticancer agent"*"**”"

Sato ef al.”” successfully applied threefold strategies to chemotherapy with Fe (Salen) nanoparticle. After
intravenous injection, this magnetic nanoparticle was guided to the tumour site for delivery in a rabbit
toung tumour model. The nanoparticle, at the target site, was heated with an alternating magnetic field for
the local induction of hyperthermia that helped in further distribution of the nanoparticle into the TME
due to the EPR effect.

Hyperthermia by NIR laser irradiation causes shrinkage of blood vessels and tumour ablation. Combining
hyperthermia and chemotherapy could be an efficient treatment approach. This is known as photothermal
chemotherapy[m]. Docetaxel loaded polypyrrole and hyaluronic acid-modified phospholipid nanoparticle
were used for photothermal chemotherapy[m]. There was complete inhibition of tumours in 4T1 tumour-
bearing mice.

Whole-body hyperthermia at the mild fever range (39.5 °C, for 4-6 h) was found to help in the therapeutic
efficacy of doxorubicin-loaded liposome in syngeneic CT26 colorectal mice carcinoma™. There was a
threefold increase in drug uptake in the tumour. It was also reported to be associated with decreased IFP

. . . [207]
and an increased fraction of perfused microvessels .

CONCLUDING REMARKS

Hypoxia-induced formation of new blood vessels is the key factor in the progression of tumours. Tumour
vasculature is heterogeneous, tortuous, irregularly branched, and hyperpermeable. Due to poor lymphatic
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Figure 6. Schematic diagram showing the structure and function of thermoresponsive, bubble-generating liposomes and the mechanism
of localized extracellular drug release triggered by heat. A: drug release mechanism upon application of hyperthermia; B: internalization
of the released drug by the target cell
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drainage, the TME has high IFP. This heterogeneity of the vasculature, high IFP, poor extravasation due to
sluggish blood flow, and larger distance between exchange vessels are all potential barriers to the delivery
of therapeutic agents to tumours. A rationally designed delivery system should overcome all these barriers
to reach deep tumour tissue. As the endothelial cells of tumour vasculature have longer gaps, and the IFP is
high, nanoparticles of proper size can inherently be accumulated in the tumour due to the EPR effect. This
is known as passive targeting. The surface of nanocarriers can also be coated with monoclonal antibodies
against receptor proteins overexpressed in proangiogenic tumour cells for active targeted drug delivery. The
vascular barrier can be further reduced by enhancing blood perfusion in the tumour and normalization
of tumour vasculature. Local delivery of mediators such as NO and CO enhance blood perfusion whereas
inhibition of proangiogenic pathways and the use of antiangiogenic agents help in the accumulation of
anticancer drugs loaded nanocarriers deep within tumour tissues. Furthermore, the use of sonoporation
and hyperthermia boosts nanocarrier mediated tumour-targeted drug delivery.
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