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Abstract
Purpose: We aimed to determine the amount of some toxic elements in three organs of Hilsa shad, focusing on the 
possible exposure to human health through Hilsa consumption. This study was designed to determine the 
concentration of seven toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) in three distinct organs (n = 21) 
(muscle, liver, and gills) of Hilsa shad (Tenualosa ilisha) fish collected from the Bangladeshi coastal area. The 
samples were digested following a microwave digestion. Inductively coupled plasma mass spectrometer was used 
as analytical instrument. Estimated daily intakes (EDI) and target cancer risk (TR) were used to evaluate 
carcinogenic and non-carcinogenic risk.

Results: The mean concentrations (mg/kg-wet weight) of toxic elements in different organs of T. ilisha were 
determined as follows: in muscle, As (4.05), Cd (0.09), Cr (0.12), Cu (0.77), Ni (0.26), Pb (0.20), and Zn (10.64); 
in liver, As (2.83), Cd (0.84), Cr (0.18), Cu (6.17), Ni (0.55), Pb (0.23), and Zn (30.16) and in gills, As (3.45), Cd 
(0.05), Cr (0.08), Cu (1.06), Ni (0.51), Pb (0.78), and Zn (35.21). The liver showed higher concentrations of most 
elements than that of muscle except for As. Concentration of As, Cd, and Pb in the fish were found above the food 
safety guidelines, while other trace element concentrations were below the permissible range for human 
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consumption. According to EDI and TR values, there were carcinogenic and non-carcinogenic risks from exposure 
to total As concentration from Hilsa fish consumption.

Conclusion: This study suggests that the toxic trace elements contamination levels in Hilsa fish from Bangladesh’s 
coastal area need to be monitored on a systematic and regular basis to ensure the safety of this food item for 
human consumption.

Keywords: Trace elements, arsenic, hilsa shad, health risk, Bangladesh

INTRODUCTION
Trace elements are the most hazardous to aquatic ecosystems because they are widespread in the 
environment, widely dissolved in water, and rapidly absorbed by aquatic organisms[1-3]. Metals enter the 
environment naturally through air deposition, geological matrix attrition, and anthropogenic intrusions 
including sewage, industrial, and agricultural runoff[4]. Because of their toxicity, persistence, and 
bioaccumulation in food chains, trace elements in aquatic environments may have an impact on fish and 
other biological life[5,6]. The aquatic environment is one of the most regularly monitored areas where 
different organisms will be vulnerable depending on the type of contaminant, habitat, position in the food 
chain that the organism occupies, etc.[7]. Fish have been recommended as valuable biological indicators for 
the assessment of aquatic pollution because they are large in size, considered as resident species, adult, 
perennial, and easily identified in aquatic medium[8]. In addition, they have a longer life span and a higher 
position in the aquatic food chain[9], and thus have been suggested as useful biological markers in the 
assessment of aquatic environmental pollution[10,11].

The concentrations of trace elements accumulated in a fish’s body greatly vary among its different 
organs[12-15]. Fish absorb trace elements by ingesting of particulate matter from water, taking of foods, 
grazing food from sediments through the gills, and adsorption on tissues. The distribution of metals in 
different tissues of fish depends on the mode of exposure, biokinetics of the elements, lipophilic properties, 
etc.[16-18]. Furthermore, the accumulation rates of trace elements in fish are affected by both absorption and 
removal processes[19-21].

However, very few studies in Bangladesh have concentrated on the increasing high levels of trace elements 
in different organs of the fish (e.g., muscle, gills, and liver). Gills and liver are considered as indicators for 
measuring metal accumulation in fish. Metal accumulation is also measured using the gills and liver as 
markers. Metal concentrations in gills represent the metal concentrations in a fish’s living environment, 
while the liver mainly acts as metabolic organ where metals are also stored[22] and muscle is not an active 
tissue in accumulating trace elements but does act as storage organ[23-25].

The presence of metals in fish tissues is of major concern for food safety as well as public health[26-28]. As a 
result, metal contamination in fish has become a major problem around the world, and many studies on 
metal accumulation in fish have already been conducted[28-32].

In Bangladesh, trace element pollution in fish has become a serious public health concern. Fish are the 
major source of protein for Bangladeshi people, and about five million coastal residentsd are directly or 
indirectly engaged in commercial fishing, particularly of Hilsa shad (Tenualosa ilisha) fishing. Hilsa shad is 
usually known as Indian shad, which is a highly migratory fish with a similar breeding behavior to Atlantic 
salmon. It migrates into the Padma and Meghna Rivers and their tributaries from the Bay of Bengal for 
breeding and nursing. Hilsa is the most dominant, commercially important, and widely consumed fish by 
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the Bangladeshi people. As a single species, it contributes 12% of the total marine catch. Approximately, 2% 
of the country’s population is directly or indirectly involved with Hilsa fishing[33]. Bangladesh contributes 
75% of the global Hilda shad catch, and the rest comes from Myanmar (15%), India (5%), and 5% from 
Thailand and Iran[33].

The rapid unplanned industrialization, urbanization, and trans-boundary movement of water may 
contribute a considerable amount of industrial effluent and untreated domestic wastewater into the coastal 
water environment through rivers. As a result, trace elements contaminate coastal water, and contaminants 
can be deposited in aquatic organisms, including Hilsa fish, via bioconcentration, bioaccumulation, and 
food chain effects. Trace element contamination in Hilsa fish and other aquatic biota threatens human 
health via the food chain.

To the best of our knowledge, this was the first study carried out on the organ-specific trace element 
distribution in Hilsa shad in Bangladesh. The objective of this study was to determine the level of trace 
element contamination (As, Cd, Cr, Cu, Ni, Pb, and Zn) and its distribution in three organs (muscle, liver, 
and gills) of Hilsa shad, with a focus on the possible exposure to human health through the consumption of 
Hilsa shad.

EXPERIMENTAL
Collection of hilsa shad
The most consumed and commercially important fish, Hilsa shad (Tenualosa ilisha) (weight, 851.71 ± 
10.57 g; length, 32.46 ± 3.27 cm) was collected from the central fish landing center, which is very close to the 
Bakkhali estuary of Cox’s Bazar [Figure 1]. Cox’s Bazar is a seaside tourist town with the world’s longest 
sandy sea beach. Hundreds of factories and industries, such as ship breaking and building industries, paint 
and salt industries, fish and shrimp processing plants, textile manufacturing, fish and shrimp hatcheries, fish 
auction and landing center, unplanned urbanization, and several hotels, have an impact on the city. Every 
year, many local and international tourists visit the city. The sampling was conducted in winter 
(temperature range: 10-16 °C) from January to February 2016. The fish samples were transported to the 
Department of Fisheries, University of Dhaka, Bangladesh. They were washed with deionized water after 
transportation to remove surface adherence. With the use of a clean SS knife, the samples were chopped 
into small pieces according to target organs, namely gills, liver, and muscles, and separately freeze-dried 
(48 h) until a constant weight was achieved. Further chemical analysis of all processed samples was 
performed at the laboratory of the Yokohama National University, Japan.

Sample preparation
The samples were digested following a microwave digestion[34]. In a closed digestion vessel, 0.2 g of each 
organ of Hilsa shad was treated with 5 mL of 69% HNO3 acid and 2 mL of 30% H2O2 and mixed for 20 min. 
The samples were then placed in the Berghof-MWS2 (Berghof speedwave®, Germany) digestion system. 
Acid solutions containing samples were put into a Teflon graduated cylinder after digestion, and the total 
volume was adjusted to 50 mL using Milli-Q water. The digested acid solutions were then filtered through a 
syringe filter (DISMIC®; 0.45 m) and stored in 50 mL PP tubes.

Instrumental analysis
The samples were analyzed using inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7700 
series, USA) following the previous method[34]. Briefly, the calibration curve was prepared using a multi-
element standard (SPEX CertiPrep®, USA) solution. For concentration calculations, calibration curves with 
R2 > 0.999 were accepted. The relative standard deviation (RSD < 5%) was checked using a tuning solution 
before starting the analysis (1 μg/L each of Li, Y, Ce, Tl, Mg, and Co in 2% HNO3). Dilution of the multi-
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Figure 1. Map showing sampling site (main fish landing center at Cox’s Bazar, Bangladesh).

element stock solution yielded working standards (0, 10, 20, 50, and 100 g/L). An internal standard method 
was used to determine trace element concentrations. In the current investigation, the trace element 
concentrations in Hilsa shad (T. ilisha) were assessed on a wet weight (ww) basis.

Quality control and quality assurance
To maintain strict quality control and assurance, Internal Quality Controls were maintained for all test 
batches and validated. The experiment included a blank, a certified reference material (CRM), and some 
samples that were examined in triplicate to remove the batch-specific error. NMIJ CRM 7402-a, cod fish 
tissue, as a certified reference material, was used to check the quality. The CRM recoveries ranged from 91% 
to 106%, with the triplicate reproducibility ranging from 93% to 97%, confirming the acceptable accuracy 
and precision of the method.

Health risk assessment
Estimated daily intakes (EDI) and target cancer risk (TR) were used to quantify the risk of trace element 
concentrations in the fish. Because the human population in the vicinity consumes fish tissues such as gills, 
muscles, and liver, all of these tissues were considered in the risk evaluation.

EDI
EDI (µg/kg-bw/day) were calculated for the detected trace elements by using Equation (1):

where FIR is the food ingestion rate (77 g/day for adults)[34], C is the metal concentration in samples 
(µg/g-ww), and WAB is the average body weight (60 kg for adults).
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Carcinogenic health risk assessment
TR over a lifetime was used to assess the carcinogenic health concerns associated with fish consumption in 
this study. TR was calculated using Equation (2)[35]:

where EF is the exposure frequency (365 days per year), ED is the exposure duration (60 years for 
Bangladesh), FIR is the fish ingestion rate, C is the metal concentration in fish, WAB is the average body 
weight, TA is the exposure time (365 days per year × ED), and CSFo is the oral carcinogenic slope factor for 
As and Pb, cosidered as 1.5 (mg/kg-d)-1 and 0.0085 (mg/kg-d)-1, respectively[36].

Statistical analysis
Concentrations of trace elements, expressed as mg/kg-ww, are presented in the form of mean, standard 
deviation and range (minimum-maximum). Overall mean concentrations of trace elements were calculated 
as the average of the three organs. The dataset was normally distributed (evaluated by P-P plot). Variations 
of trace element concentrations among the three fish organs (muscle, liver, and gill) were tested by a one-
way ANOVA analysis followed by Tukey’s HSD post hoc test. Statistical analyses were carried out using 
SPSS (Version 25.0, IBM Corp., NY, USA) and the level of significance was P < 0.05.

RESULTS AND DISCUSSION
Trace elements concentration in muscle, liver and gills of Hilsa shad
The concentrations of seven trace elements detected in muscle, liver, and gills of Hilsa shad are presented in 
Table 1. The trace element concentrations in three organs of the Hilsa shad were detected in a wide range. 
The trace element concentrations were found in three organs of Hilsa shad in the following ranges: Cr 
(0.06-0.17 mg/kg), Ni (0.08-0.72 mg/kg), Cu (0.52-1.1 mg/kg), Zn (7.99-17.49 mg/kg), As (2.25-5.59 mg/kg), 
Cd (0.05-0.17 mg/kg), and Pb (0.10-0.31 mg/kg) in muscle; Cr (0.08-0.32 mg/kg), Ni (0.17-2.01 mg/kg), Cu 
(2.15-17.16 mg/kg), Zn (23.12-43.40 mg/kg), As (1.72-4.44 mg/kg), Cd (0.35-1.43 mg/kg), and Pb (0.16-
0.34 mg/kg) in liver; and Cr (0.05-0.10 mg/kg), Ni (0.19-1.71 mg/kg), Cu (0.84-1.30 mg/kg), Zn (27.66-
47.90 mg/kg), As (2.32-4.07 mg/kg), Cd (0.02-0.08 mg/kg), and Pb (0.58-1.03 mg/kg) in gills. The mean 
concentration of the metals examined in Hilsa decreased in the order of: Zn > As > Cu > Ni > Pb > Cr > Cd 
in muscle; Zn > Cu > As > Cd > Ni > Pb > Cr in liver; and Zn > As > Cu > Ni > Pb > Cd > Cr in gills. When 
total metal concentration was taken into account, the investigated metals in Hilsa followed a decreasing 
order of: Zn > As > Cu > Ni > Pb > Cd > Cr. The highest mean concentration of most metals, except As and 
Zn, was found in the liver, while muscle showed the lowest concentration except for As [Table 1]. Our 
results corroborate the previous findings[41,42]. The toxic elements accumulated in the liver at high 
concentrations, resulting from the liver’s higher accumulating ability[41,43,44]. Many scientists believe that fish 
liver is the most accurate environmental indicator for measuring both water pollution and chronic trace 
element intake[45,46]. Fish muscle tissue, on the other hand, is not as active in binding metals. As a result, 
compared to other tissues and organs, the accumulation of metals in muscle is minimal[3,47].

Among the three organs, gills had the highest mean content of Zn (35.21 mg/kg) and the lowest 
concentration of Cd (0.05 mg/kg). Moreover, a significant concentration of As (3.5 mg/kg) was also 
observed in gills, which was higher than that of the liver (2.8 mg/kg) [Table 1]. Metal contamination in the 
surrounding water environment is often reflected in the gills of fish[48]. Gills come into close contact with 
suspended particulates in water, and, as a result, different metals from the aqueous environment may be 
absorbed. The elevated metal concentrations in gills could be linked to trace element pollution in the living 
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Table 1. The concentrations (mg/kg; ww) of trace elements in the three organs (muscle, liver, and gills) of Hilsa shad (n = 21) and 
different national and international FSG values

Concentrations of trace elements (mg/kg; ww)
Fish organs

As Cd Cr Cu Ni Pb Zn

Mean 4.05a 0.09a 0.12a,b 0.77a 0.26a 0.2a 10.64a

SD 1.18 0.04 0.03 0.21 0.22 0.08 3.2

Muscle

Range 2.25-5.59 0.05-0.17 0.06-0.17 0.52-1.1 0.08-0.72 0.10-0.31 7.99-17.49

Mean 2.83b 0.84b 0.18a 6.17b 0.55a 0.23a 30.16b

SD 0.97 0.44 0.09 5.11 0.65 0.06 6.75

Liver

Range 1.72-4.44 0.35-1.43 0.08-0.32 2.15-17.16 0.17-2.01 0.16-0.34 23.12-43.40

Mean 3.45a 0.05a 0.08b 1.06a 0.51a 0.78b 35.21b

SD 0.6 0.02 0.02 0.15 0.53 0.21 7.27

Gills

Range 2.32-4.07 0.02-0.08 0.05-0.10 0.84-1.30 0.19-1.71 0.58-1.03 27.66-47.90

Overall mean 3.4 0.3 0.1 2.7 0.4 0.4 25.3

FSG 2[37] 0.05[38] 1[39] 20[38] 0.5[40] 0.3[38] 50[38]

Horizontally, a,bdenote significant difference at P < 0.05 among the different organs of Hilsa shad for each metal. SD: Standard deviation; ww: wet 
weight; FSG: food safety guideline.

environment of fish. Furthermore, metal absorption onto the gill surface can affect the overall metal levels 
in gills[29,45]. In addition, relatively higher concentrations of metals in the liver and gills of fish have also been 
reported previously[49,50].

The maximum concentration (5.59 mg/kg-ww) of As was detected in muscle, while the lowest 
concentration (1.72 mg/kg-ww) was found in the liver [Table 1]. The mean concentration of As in muscle, 
liver, and gills exceeded the food safety guideline values [Table 1]. Delgado-Andrade et al.[51] (2003) reported 
the total As in fish muscle ranged from 0.39 to 12.58 mg/kg from southeast Spain. Arsenic concentrations in 
Bangladeshi freshwater fish species have been recorded in the range of 1.01-15.2 mg/kg-dw in earlier 
studies[52]. The maximum arsenic concentration level permitted for fish muscle is 2.0 mg/kg-ww according 
to the New Zealand food safety standard[37]. Chronic exposure to arsenic can cause dermatitis, mild skin 
pigmentation keratosis, reduced nerve movement velocity, and lung cancer. Arsenic can be found in two 
forms in fish, inorganic and organic. Organic As, while present in large concentrations in fish, is far less 
hazardous than inorganic arsenic and can be eliminated in urine efficiently and quickly without 
transformation[53]. Inorganic As, on the other hand, is thought to be carcinogenic in fish consumed by 
humans[54].

Cadmium is an extremely hazardous element that occurs naturally in soil but is also distributed throughout 
the environment as a result of human activity. Even at low quantities, it could be one of the most poisonous 
trace elements[55] and could be particularly harmful to fish genetic material[7]. Cadmium accumulates in 
various organs and has a significant potential for bioconcentration in fish. The highest Cd content was 
found in the liver 1.43 mg/kg-ww and the lowest concentration was found in gills 0.02 mg/kg-ww. Other 
fish species had a similar Cd distribution pattern (highest levels in the liver, lowest in muscle)[45,56]. 
Cadmium levels in fish muscle were found to be in the range of 0.51-0.73 mg/kg-dw in samples from the 
Dhaleshwari River in Bangladesh[57]. A maximum Cd level of 0.05 mg/kg in fish muscle is set by European 
Community regulation[38].

The liver had the greatest concentration of Cr (0.32 mg/kg-ww), while gills had the lowest concentration 
(0.05 mg/kg-ww). Cr levels in edible fish muscles from Bangladesh ranged from 0.47 to 2.07 mg/kg-dw[58], 
and Cr (4.64 mg/kg) was found in Mystus bleekeri of Dhaleshwari River[32]. Matasin et al.[59] (2011) reported 
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similar Cr concentrations in edible Silurius glanis tissue (0.23 mg/kg).

Copper is necessary for good health, but excessive amounts can cause issues such as liver and kidney 
damage[60]. Cu concentrations in the liver were the highest (17.16 mg/kg-ww), while the lowest 
(0.52 mg/kg-ww) were found in muscle [Table 1]. Copper concentrations in fish muscle from the 
Dhaleshwari River, Bangladesh, have previously been found to be in the range of 5.17-9.45 mg/kg[57]. Copper 
levels in fish muscle from the Northeast Atlantic have been recorded in the range of 0.11-0.97 mg/kg and 
0.04-5.43 mg/kg-ww in the Iskenderun Bay, Turkey[61,62]. The concentration of Cu in this investigation was 
below acceptable levels when compared to international guidelines [Table 1].

Nickel is found in the environment at extremely low quantities; however, it can cause a number of 
respiratory health problems, including lung inflammation, fibrosis, emphysema, and malignancies[63]. 
Among the metals, the highest Ni concentration was recorded in the liver (2.01 mg/kg-ww), which exceeded 
the WHO recommended food safety guideline (0.5 mg/kg-ww), while the lowest concentration was 
observed in muscle (0.08 mg/kg-ww)[40] [Table 1]. The highest concentration of Ni in the liver of the present 
study differed from previous findings[64,65]. Nickel concentrations in fish have been recorded in the range of 
0.11-12.88 mg/kg-dw for Iskenderun Bay fish species[62].

Lead is a non-essential and toxic element which may induce neurotoxicity, toxicity in the kidney, and a 
variety of other health problems[66]. Gills had the highest Pb content (1.03 mg/kg-ww), exceeding the 
European Community limit of 0.3 mg/kg, while muscle had the lowest (0.2 mg/kg-ww). Pb levels in fish 
species have been previously reported as 0.09-6.95 mg/kg-dw in Iskenderun Bay, Turkey[62]. Our findings are 
consistent with the findings of Storelli et al.[64] (2006), who found that gills had the greatest amounts of Pb. 
Furthermore, the previous study found that Pb concentration in the range of 1.76-10.27 mg/kg in various 
edible Bangladeshi fish[58]. Gills were found to contain levels of lead above detection thresholds, which is 
consistent with earlier results that gills were the primary site of metal accumulation[29,65]. Gills serve as a 
direct metal absorption site from water[64].

The highest mean concentration of Zn (35.21 mg/kg-ww) was detected in gills, while the lowest 
concentration (10.64 mg/kg-ww) was observed in muscle [Table 1]. The greatest Zn concentrations in fish 
gills have been reported in several earlier investigations[45,56]. Gills help with a variety of physiological 
functions, including as osmoregulation and gas exchange. The exchange of trace elements between fish and 
their aquatic environment influences fish gills[67]. Furthermore, the elevated Zn content might be linked to 
the outflow of various fish processing plants as well as from fish and shrimp hatcheries where zinc oxide 
(ZnO) is typically used to provide oxygen to fish and shrimp larvae. Certain edible fish in Bangladesh had 
Zn levels ranging from 42.8 to 418 mg/kg[58], and the concentration of Zn in different fish of the Black Sea in 
Turkey ranged from 38.8 to 93.4 mg/kg[68].

Health risk assessment
The EDI and the oral reference dose (RfD) of detected trace elements from Hilsa consumption among 
Bangladeshi coastal adults are shown in Table 2. Human exposure to trace elements can take various forms, 
including inhalation and skin contact. Food consumption is frequently considered as one of the most 
significant exposure routes. With the exception of As, the average EDI of other metals in fish were below 
their respective RfD, indicating that regular Hilsa fish intake would not pose a health concern. However, 
dietary As intakes (4.4 µg/kg-bw/day) from Hilsa fish consumption surpassed the RfD (0.3 µg/kg-bw/day), 
potentially resulting in As-induced adverse consequences in human health.
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Table 2. TR of trace elements due to the consumption of Hilsa fish collected from the Bangladeshi coast

Metals Overall mean concentration 
(µg/g-ww)

Estimated daily intake (EDI) 
(µg/kg-bw/day)

RfD 
(µg/kg-bw/day) TR

As 3.4 4.4 0.3 6.63 × 10-4

Cd 0.3 0.4 1

Cr 0.1 0.2 3

Cu 2.7 3.4 40

Ni 0.4 0.6 20

Pb 0.4 0.5 3.5 4.42 × 10-6

Zn 25.3 32.5 300

TR: Target cancer risk; RfD: reference dose.

Table 2 shows the TR of As and Pb resulting from Hilsa fish intake. The TR values for As (assuming 10% 
inorganic As in marine fish)[51] and Pb from sea food consumption were 6.63 × 10-4 and 4.42 × 10-6, 
respectively. In general, cancer risks of less than 10-6 are regarded as negligible, cancer risks of more than 
10-4 are unacceptable, and risks of 10-6 to 10-4 are within the acceptable range[35,36]. Pb showed a carcinogenic 
risk that was near the permissible limit, whereas As had a risk that was in the unacceptable range. As a 
result, the possible health risk posed by metal exposure from Hilsa fish intake should not be overlooked.

CONCLUSION
The purpose of this study was to investigate the distribution pattern of some trace elements in various 
organs of commercially significant Hilsa fish and to assess the potential health risk associated with the 
consumption of this fish. The results of this investigation indicated a significant degree of differential 
accumulation of the investigated trace elements in three distinct tissues of Hilsa shad. The higher 
concentration of detected trace elements was found in the liver, while muscle exhibited the lowest amounts 
of analyzed metals. Except for Zn and As, which surpassed international quality requirements, trace element 
quantities in the tissue were below permissible limits for human consumption. The EDI and TR values 
indicated a high likelihood of carcinogenic and non-carcinogenic health consequences from consuming 
Hilsa fish. To reduce the negative consequences induced from As bioaccumulation, excessive consumption 
of Hilsa fish should be avoided. Where urgent control and more thorough investigations are needed, this 
circumstance should not be overlooked. Our findings suggest that further research is urgently needed to 
draw a conclusion about the trace element contamination in Hilsa shad of Bangladesh.
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