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Supplementary Methods

Contrastive learning-based co-modelling framework

We conducted empirical evaluations of non-co-modeling and co-modeling

frameworks on downstream datasets for both regression and classification tasks. Our

findings substantiate the superior performance of co-modeling approaches, with

particular performance enhancement on the contrastive learning-based co-modelling

framework. Building on these results, we provide a detailed elaboration of our

contrastive learning-based co-modeling framework as depicted in Figure 1 in the

main text.

Normally, chemical structural information depicted by molecular graphs offers a

higher level of detail compared to amino acid sequences. However, GNNs exhibit

weaker long-range dependency with molecular graphs compared to attention

mechanisms over message passing. Our objective is to enrich the sequence encoder

with molecular information via contrastive learning, and to leverage attention

mechanisms for capturing long-range relationships among amino acids, thereby

achieving more accurate predictions of peptide properties and functions.

Let the primary structure of a peptide x be denoted by its sequence xseq and its

molecular graph xgraph, with the corresponding label being y. For a given peptide input

(xseq, xgraph), sequence-based encoder module fe(xseq) and graph-based encoder ge(xgraph)

produce the representations hseq and hgraph, respectively. The downstream predictors,

fp(hseq) and gp(hgraph), which are based on MLP, take these sequences and graph

representations as inputs, respectively. To optimize the predictive performance, we

minimize the prediction loss associated with the downstream tasks as follows:
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where Dtr represents the training dataset, and supL denotes the supervised loss

associated with downstream tasks. To enhance the interdependence of the outputs

from sequence and graph encoders, we employ an unsupervised loss based on

contrastive learning, specifically utilizing the InfoNCE loss as described in

reference[1]. For the i-th peptide chain, its contrastive loss is presented as follows:
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where h (i.e., outputs from the encoders) denotes either hseq or hgraph of the peptide

sample x, K denotes the number of negative samples,h is the encoder output of

another peptide. The pair (h, h ) forms a negative sample pair. The parameter τ is the

temperature hyperparameter used in the contrastive learning framework. The

theoretical justification for the enhancement of the discriminative capability within

the co-modeling framework, based on the contrastive loss as presented in Equation

(S2) is demonstrated as below.

The effectiveness of contrastive loss in co-modeling framework

Theorem 1: Given the sequence xseq and the chemical structure xgraph as two distinct

depictions of a peptide primary structure, by employing InfoNCE-based contrastive

loss, the fusion of learned representations hseq and hgraph derived from xseq and xgraph,

can effectively enhance the discriminative capacity of the model.

Proof. Assume Dc is a distribution of peptides with label c on a given downstream

task from which sequence data xseq and graph data xgraphwith label c can be drawn as:

 seq cx D X | seq 

 graph cx D X | graph 
(S3)

xseq and xgraph are two distinct observation forms of a specific peptide X ∼ Dc. The

condition variable τ serves as a determining factor to classify whether the data is

observed as sequence or molecular graph. Within our method, xseq and xgraph above are

considered as a positive pair (x, x+), and (h, h+) are considered as the corresponding

positive pair of learned representations from encoders. We illustrate the

aforementioned definition within a classification downstream task. This approach can

be generalized to regression tasks by conceptualizing each regression value as a

distinct soft label in a binary classification context.

In the subsequent proof, we aim to construct a function that quantifies the

discriminative capacity of the model, and we demonstrate such a function can be

upper bounded by the contrastive loss. By minimizing this function, the model will be

enabled to effectively distinguish representations with different labels in downstream

tasks.



Therefore, we reformulate and simplify the contrastive loss conL in Equation (S2) as

following:
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  1

k

i ic, c C
  is the sampling process from a label distribution C. We take k + 1 labels

from this process, and we aim to separate label c from other labels in   1

k

i ic 
to

demonstrate discriminative ability of our method. (x, x+) ∼ Dc denotes two

observation forms (sequence or graph) of the same peptide sampled from Dc;

i ci
x D


 denotes ix

is a negative sample of (x, x+) from another peptide with

downstream label ic
 .

l is a convex function with respect to xi, which can be expressed as:
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According to Jensen’s Inequality, we have:
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Here,  c' c | c   ,   T
cc c

g h h W h      ,
C dW   whose cth row is the mean

of embedding representation with label c (i.e.,  
cc x Dc

W h       ). In terms of

neural networks, we adopt a fully connected layer with no bias as an example

downstream task predictor with the input of representation h ∈ d . We approximate

W as Wμ asW is optimized during training ideally. By taking the inner product

between h (assume having label c) and each row ofWμ, the output vector has a larger

value in cth row, so it acts as a classifier W.

Thus, by minimizing contrastive loss conL , the classifier Wμ can better discriminate x

with label c from the other label c' .

Follow-up theoretical support for contrastive loss from a mutual information

perspective

Theorem 2:Minimizing contrastive learning loss conL can improve the information

correlation between sequence representation and graph representation I(h; h+).

Proof. As per Theorem 1, the model can distinguish representations with different

downstream task labels by optimizing contrastive loss. It is reasonable to posit that
 h,h'e is proportional to  

 
h' | h
h'




, where  h' | h denotes the probability that yield

representation h. h' shares the same label as h. The denominator  h' ensures the

permutation invariant under h' and h, thereby we can reformulate the contrastive

learning loss as:
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based on the fact that ih
 is independently sampled, i.e.,    i ih | h h   .

Considering both performance and efficiency, the contrastive loss is incorporated into

the model’s supervised training as a regularization component. The final loss is given

by:

train prd con L t L t L t (S8)

where λ is a hyperparameter that weighs the contrastive loss component. It ensures

that the model's training process is not solely dominated by the supervised loss, but

also benefits from the regularizing effect of the contrastive loss, which encourages the

model to learn more discriminative representations.

The pseudocode outlining the training and testing procedures of the aforementioned

co-modeling framework is presented in Figure 2 in the main text. By employing

contrastive learning, we integrate the chemical information extracted by the GNN into

the long-range dependencies within the amino acid sequences obtained through the

attention mechanism. Upon the model is properly trained, it activates the sequence

encoder and its predictor for prediction. It is important to note that, the co-modelling

framework based on contrastive learning involves the joint training of two end-to-end

models, however, only certain modules need to be activated during the prediction

phase. In contrast, co-modelling frameworks based on other fusion methods must

activate all modules. Therefore, our approach is superior in terms of time efficiency

and computational cost among various implementations.

Implementations of other representation fusion methods

In addition to contrastive learning, the implementation principles of fusion module

also include techniques such as WS, Concat, CA, and CBP. The fusion module taks

the representations hseq and hgraph as input, which are derived from the sequence

information and chemical structure of a peptide, respectively. Let hco−rep denote the

output representation from fusion module, the implementation details of the baseline

fusion methods are as follows:

(1) WS simply merges the input representations, denoted as:

 1co rep seq graphh h h     (S9)

Where  is a hyperparameter, set as 0.5 in our implementation.



(2) Concat directly aligns two representations, denoted as:

co rep seq graphh h ,h     (S10)

(3) CA is based on multi-head attention mechanism used for aligning two

representations. The mathematical expression can be denoted as:
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where hgraph is considered as the key and query, hseq is considered as the value, and

graphhd is the dimension of hgraph. The number of heads is set as 8 in our

implementation.

(4) CBP combines features from different sources or modalities, aiming to capture

rich interactions. The formulation of CBP is denoted as:

    1
co rep seq graphh h h
  F F F (S12)

Where  F represents the Fourier Transform operator,  1 F represents the

inverse Fourier Transform operator, and  represents element-wise

multiplication.
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