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Section S1. Performance comparison 

 

 

 
Figure 1. Physical performance of different ceramic materials. The dielectric loss (tanδ), 

thermal conductivity (λ), density s (ρ), fracture toughness (KIC), flexural strength (σ) and hardness 

(H) of referenced ZrO2 ceramics [1-9], referenced Al2O3 ceramics [10] and referenced Si3N4 ceramics 
[11-25] plotted as a radar map: The performance of Si3N4 ceramics is outstanding. 
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Section 2. Phase composition of the synthesized powder 

 

 

 

Figure 2. The XRD pattern of synthesized YAG powder.  

 

Section 3. The glass phase separation in the grain boundary liquid phase 

 

 
Figure 3. The STEM-EDS analysis of the regions 1-3 in grain boundary glass phase of the 

sample SEu-5: The hollow structure (region 2) has a higher Eu content compared to the 

surrounding liquid phase (region 1 and region 3).   
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Section 4. Micromorphology of Si3N4 ceramics 

 

 
Figure 4. SEM images of the sample SEu-4 (A), SEu-5 (B) and SEu-6 (C). 

 

 

Section 5. Morphology and distribution of hollow structures  

 

 

 
Figure 5. Distribution of hollow structures in Eu-doped Si3N4 ceramics. (A-H) STEM images 

of hollow structures distributed in the silicon nitride grains (white up arrows) and grain boundary 

glass phase: (A, E) the sample SEu-4; (B, F) the sample SEu-5; (C, G) the sample SEu-6; (D, H) 

the sample SEu-7. 
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Section 6. Diameters of hollow structures 

 
Figure 6. STEM images of the sample SEu-5 (the red line marks the diameter of the hollow 

structure). 

 

Section 7. Crystallographic feature of the hollow structures 

 

 
Figure 7. The structure of the hollow structure. (A) STEM image of hollow structures in the 

sample SEu-5; (B) TEM image corresponding to the STEM image; (C-F) HRTEM images 

corresponding to the region 1-4: The hollow structure has a hexahedral crystalline morphology; 

(G-H) FFT pattern corresponding to the HRTEM images; (I-P) STEM-HRTEM images of the 

hollow structure in β grains: The hollow structure in β-grain has the same hexahedral morphology 

as the β-grains.  
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Section 8. Phase composition of bulk ceramics 

 
Figure 8. X-ray diffraction (XRD) analyses of all samples: The phase composition of all 

samples contained only the β-Si3N4 crystal phase, and no other crystal phase was found. 

 

Section 9. Chemical information of the hollow structures 

 

 
Figure 9. Element distribution in the hollow structure. (A-B) STEM-EDS elemental maps of 

the sample SEu-5.  
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Section 10. Valence state analysis of Eu ion 

 
Figure 10. XPS spectrum of Eu element in the sample SEu-5. In sample SEu-5, Eu ions have 

two valence states, namely Eu2+ and Eu3+. 

 

 

 

Section 11. Physical properties  

 

 
Figure 11. Physical properties of Si3N4 ceramics with different Eu2O3 contents. (A) The 

fracture toughness and flexural strength; (B) The density and relative density. 
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Section 12. Microstructures of the Si3N4 ceramics 

 

 
Figure 12. SEM images with BEC of the polished surfaces and fracture surfaces of the 

samples SEu-4 (A) (D) (G), SEu-5 (B) (E) (H) and SEu-8 (C) (F) (I) (the yellow circle marks 

the grain pull-out): The microstructures of the sample SEu-5 show more elongated grains, grains 

pull-out and curved crack growth paths, which is conducive to the consumption of crack energy 

and the improvement of mechanical properties [26-29]. 
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Section 13. Intergranular fracture 

 

 

 
Figure 13. TEM image of crack propagation path of the sample SEu-5: Obvious intergranular 

fracture can be observed. 
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