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Abstract
Atherosclerosis is the main pathological basis of most cardiovascular diseases and the leading health threat in the 
world. Of note, lipid-lowering therapy cannot completely retard atherosclerosis progression, even in patients 
treated with combined statins and PCSK9 inhibitors. This failure further impels researchers to explore other 
underlying therapeutic strategies except for lipid-lowering. Monocytes and macrophages are the major immune 
cell groups in atherosclerotic plaques. They play important roles in all stages of atherosclerosis, including the 
occurrence, advance, and regression. It is interesting that macrophages are demonstrated to have plastic and 
heterogenous characteristics within the dynamic atherosclerotic plaque microenvironment. Furthermore, the 
phenotype of macrophages can switch upon different microenvironmental stimulus. Therefore, macrophages have 
become a potential therapeutic target for anti-atherosclerosis treatment. This article reviews the phenotypic 
diversity of macrophages and their roles in dynamic atherosclerotic plaque microenvironment, especially the 
related signaling pathways involved in macrophage polarization and compounds exhibiting therapeutic effects.
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INTRODUCTION
Atherosclerosis is a progressive inflammatory disease that mainly affects large- and medium-sized 
arteries[1-3]. This disease is characterized by the formation of atherosclerotic plaques, which are composed of 
lipids, necrotic nuclei, calcified areas, inflammatory cells, endothelial cells, immune cells, and foam cells[2,3]. 
Monocytes-derived macrophages are the most abundant type of immune cells in atherosclerotic plaques 
and play a key role in the progression and regression of atherosclerosis[4,5].

Atherosclerosis is initiated by deposition of cholesterol-rich lipoproteins, such as oxidized low-density 
lipoproteins (ox-LDL), in the arterial wall[6,7]. This pathological alteration promotes the production of 
cytokines and chemokines that can recruit monocytes from circulation. In the following, monocytes can 
differentiate into macrophages upon the stimuli of the local atherosclerotic plaque microenvironment[6,7]. 
Mature macrophages express a variety of scavenger receptors, such as scavenger receptor A (SR-A) and 
cluster of differentiation (CD) 36, which are responsible for scavenging modified lipoproteins within the 
plaque[1,8,9]. Accumulation of neutral lipids in macrophages promotes the formation of foam cells, which is 
considered as a protective mechanism for clearance of deposited lipids from the arterial wall[1,8,9]. However, 
excessive accumulation of foam cells in the arterial wall leads to the formation of advanced atherosclerotic 
plaques[1]. Of note, the total number of macrophages is associated with the progress and severity of the 
plaque, and symptomatic plaques have more macrophages than asymptomatic plaques[10-12]. These 
atherosclerotic plaques cause narrowing of the arteries, which limits or stops blood flow to the tissue, 
inducing various cardiovascular events[13].

Atherosclerotic plaque microenvironmental stimuli influence the phenotypes and functions of 
macrophages, which in turn play key roles in atherosclerotic plaque progression and regression[6,14,15]. 
Macrophages are simply divided into classically activated (M1) and alternatively activated (M2) subtypes, 
which have been extensively studied since the end of the last century[16-18]. In terms of numbers, the pro-
inflammatory M1 macrophages are enriched in progressing plaques, while the anti-inflammatory M2 
macrophages are dominant in regressing plaques[19-21]. Moreover, accumulating evidence suggests that the 
phenotypic shift of plaque macrophages from an M1 phenotype to an M2 phenotype appears to play 
important roles in maintaining plaque stability and promoting atherosclerosis regression[16-18]. Over the past 
decade, the original classification of macrophages (M1 and M2) has been challenged due to the gradual 
discovery and identification of other macrophage subpopulations. These subpopulations of macrophages 
possess distinctive functional phenotypes in response to specific signals of the atherosclerotic plaque 
microenvironment[2,3,21-23].

Presently, the therapeutic strategies for atherosclerosis are mainly aimed at lipid-lowering. However, clinical 
data demonstrate that these strategies are not powerful enough to inhibit the progression of atherosclerosis 
and especially to promote its regression[24,25]. As mentioned above, the macrophages with plasticity in the 
dynamic atherosclerotic plaque microenvironment may be a potential therapeutic target. In this review, we 
summarize the recent advances in macrophage heterogeneity, macrophage metabolism, macrophage 
polarization, and potential modulatory signaling pathways in the context of atherosclerosis.

MONOCYTES RECRUITMENT AND DIFFERENTIATION INTO MACROPHAGES
Monocytes are derived from hematopoietic stem cells in the bone marrow and play important roles in the 
defense system. Monocytes exude blood vessels and enter tissues and organs, where they further 
differentiate into macrophages and become the most phagocytic cells in the body[26]. Monocytes and 
macrophages are involved in the progression of cardiovascular disease, and they are associated with the 
development of atherosclerotic plaques[27].
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In mice blood, monocytes, especially the classical Ly6C+ cells, are generated by bone marrow. The 
migration of these monocytes from bone marrow requires C-C motif chemokine receptor 2 (CCR2), which 
is expressed only in Ly6C+ cells[28]. Furthermore, mitogen-activated protein kinase kinase kinase 8 
(MAP3K8) deletion affects the number of monocytes and the production of inflammatory cytokines in the 
atherosclerotic lesions via decreasing CCR2 mRNA and protein levels, suggesting the important role of 
MAP3K8 in this process[26]. In human blood, monocytes are generated by bone marrow and spleen, and they 
can be classified into at least three types: classical monocytes (CD14hiCD16-cells), intermediate monocytes 
(CD14++CD16+ monocytes), and non-classical monocytes (CD14lowCD16++ cells)[15,29,30]. Classical 
mononuclear cells account for the majority of these cells. Recently, multicolor flow cytometry and mass 
cytometry analysis have further improved our knowledge about monocyte subtypes[31,32]. For instance, 
Hamers et al.[33] recently described eight human monocyte subtypes distinguished by 34 unique surface 
markers. Furthermore, the expansion of Slan+CXCR6+ nonclassical monocytes in individuals is associated 
with coronary artery disease. Accumulating studies have demonstrated the phenotypic diversity of 
monocytes and highlights the unique migratory and efferocytotic capacity of each subtype, which may 
ultimately influence the development tendency of atherosclerosis[4,34,35].

In the case of atherosclerosis, when monocytes adsorb or invade the endothelium, the autoregulatory and 
anti-thrombotic effects of endothelial cells are weakened, thereby promoting the occurrence of 
atherosclerosis[4,36]. Mononuclear cells have obvious deformable characteristic and are responsible for 
clearing injured, senescent, dead cells, and cell debris. Upon atherosclerosis, the recruited monocytes are 
predominantly pro-inflammatory cells that have a high invasive capacity to enter tissues and become 
macrophages[37-39]. The recruitment of monocytes is critical to the formation of atherosclerosis plaques. It 
has been demonstrated that the number of circulating monocytes is positively related to the number of 
macrophages in the atherosclerotic plaques[40]. Multiple factors, such as hypercholesterolemia, 
hyperglycemia, and life habits (e.g., smoking), can influence monocyte recruitment.

Hypercholesterolemia is an important factor contributing to atherosclerosis[24,41]. Accumulation of lipids, 
especially cholesterol, in the arterial wall is the main feature of atherosclerosis. In response to lipid 
accumulation, monocytes and macrophages exhibit different gene expression and lipid metabolism[42]. For 
example, high lipoprotein X in hypercholesterolemia drives monocytes changes, such as upregulation of SR-
A and CD36, which enhance uptake of modified low-density lipoprotein (LDL), such as ox-LDL, leading to 
the formation of foam cells[43-45]. Of note, ox-LDL induces monocyte activation through abnormal regulation 
of the dual specificity phosphatase-1 and p38 mitogen-activated protein kinase (MAPK) signaling axis[46]. 
Accumulation of monocytes under the endothelium, leading to plaque development, and the following 
activation of smooth muscle cells contribute the majority of foam cells in mice atherosclerotic plaques[47,48].

The production of reactive oxygen species (ROS) induced by obesity and hyperglycemia may contribute to 
the induction of M1-like pro-inflammatory macrophages by activating the related signaling pathways[49]. 
Significantly, diabetes mellitus is characterized by an increase in inflammatory monocytes/macrophages as 
well as high levels of tumor necrosis factor (TNF) α, interleukin (IL)-1β, and IL-6[50-52]. These alterations, 
such as activated Ly6Chigh monocytes, further contribute to hyperglycemia and insulin resistance[53,54]. Of 
note, high-density lipoprotein reduces proliferation of bone marrow progenitor cells via inhibiting 
cholesterol accumulation, and it decreases the production of monocytes and their general recruitment to the 
inflammatory sites, thus alleviating atherosclerosis[54].

Smoking influences all stages of atherosclerotic plaque formation[55,56]. Cigarette smoking is associated with 
vascular endothelial dysfunction, increased expression of monocyte tissue factor, and oxidative stress due to 
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the increased ROS production and decreased antioxidant defense systems[57,58]. These changes have an 
important effect on monocyte recruitment. Cigarette smoke condensate can induce the differentiation of 
THP-1 monocytes into macrophages and significantly increase the levels of CD14 and CD36. In addition, 
smoking-induced expression of miR-124-3p in circulation can induce monocyte transformation into foam 
cells, contributing to the formation of atherosclerotic plaques[59]. Furthermore, cigarette smoke condensate 
may activate the NLRP3 inflammasome and production of high levels of IL-1β and IL-18 possibly via the 
myeloid differentiation primary response 88/nuclear factor kappa-B (NF-κB) pathway[56,60]. Notably, the 
activated NLRP3 inflammasome may enhance the levels of scavenger receptors, cholesterol esterification, 
and matrix metalloproteins, thereby promoting atherosclerosis progression[61].

MACROPHAGE PHENOTYPIC DIVERSITY AND FUNCTIONS
Accumulation of macrophages within the arterial wall is a characteristic feature of atherosclerosis. 
Previously, macrophages are classified into two main types, designated as pro-inflammatory M1 and anti-
inflammatory M2 macrophages[6,62-64]. In fact, atherosclerosis macrophages are influenced by multiple plaque 
microenvironmental stimuli, such as oxidized lipids, cytokines, and senescent erythrocytes[21-23]. Growing 
evidence demonstrates that atherosclerotic plaque microenvironment can induce distinct subpopulations of 
macrophages, as summarized in Table 1.

Classically activated M1 macrophages are mainly induced by microbial products such as cytokines TNF and 
interferon (IFN) γ or lipopolysaccharide (LPS)[63,64]. These macrophages produce high levels of IL-12 and IL-
23, low levels of IL-10, and secrete the pro-inflammatory cytokines TNF, IL-6, and IL-1β[22,65]. Functionally, 
M1 macrophages are responsible for the removal of pathogens during infection by activating the NADPH 
oxidase system and subsequent production of ROS[66]. However, these reactive oxygen and nitrogen species 
generated by M1 macrophages may worsen oxidative stress in the atherosclerotic plaques[23]. With the 
development of inflammation, IL-10, IL-4, or IL-13 alternatively activates M2 phenotype macrophages that 
bearing anti-inflammatory functions. These cells express IL-10, transforming growth factor (TGF) β and 
arginase 1 (ARG1)[21]. M2 macrophages can be further divided into M2a, M2b, M2c, and M2d subtypes; 
each subtype is induced by different cytokines[67]. Of note, M2a, M2b, and M2c subtypes play key roles in 
anti-inflammation and immune regulation[68]. M2a macrophages are activated by IL-4 and IL-13, and they 
produce IL-10 as well as low levels of IL-12. These cells express high levels of mannose receptor (CD206), 
fibrotic factors, and TGF-β, which participate in tissue repair and wound healing[69-72]. Furthermore, these 
cells display high phagocytic capacity and low cholesterol efflux capacity due to the decreased expression of 
ATP-binding cassette (ABC) transporters. Immune complexes or toll-like receptor (TLR) activation in 
combination with IL-1β or LPS induces M2b macrophages, which express high levels of anti-inflammatory 
cytokine IL-10[73]. M2c macrophages are activated by glucocorticoid, IL-10, or TGF-β and produce anti-
inflammatory factors[74,75]. M2b and M2c macrophages express high levels of proto-oncogene tyrosine 
protein kinase MER, a major apoptotic cell receptor, contributing to their phagocytic and 
immunomodulatory capacity[15,21,26,65,76]. M2d macrophages are stimulated by IL-6 and adenosine A(2A) 
receptor activation (e.g., agonists), characterized by the increased expression of IL-10 and vascular 
endothelial growth factor and reduced expression of TNF and IL-12[77,78]. These cells play a key role in 
angiogenesis[78,79]. Additionally, macrophage subpopulations have also been classified based on hemostatic 
roles of macrophages, including host defense macrophages (M1), wound healing macrophages (M2a), and 
immune regulatory macrophages (M2b/c)[73]. However, recent studies demonstrated that M2 macrophages 
are not always protective[80].

In recent years, oxidized phospholipids have been reported to induce Mox macrophages via the 
transcription factor nuclear erythroid-2 related factor[81]. Mox macrophages exhibit a morphological 
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Table 1. Macrophage phenotype, markers, secreta, and functions

Phenotype Stimuli Human markers Mice markers Cytokines, chemokines, and 
other secreted mediators Functions

M1 IFN-γ, LPS, GM-CSF,  TNF-α IL1β, TNF, IL6, IL12, IL23, CXCL9, 
CXCL10, CXCL11, SOCS1, MARCO, 
TLRs, iNOS

IL1β, TNF, IL6, IL12, IL23, CXCL9, 
CXCL10, CXCL11, Arg II, TLRs, iNOS

TNF-α, IL (1β, 6, 12, 23), CCL (2, 3, 4, 5, 
8, 9, 10, 11), MMP (1, 3, 9), iNOS, ROS

Pro-inflammation, host defense, tumor 
resistance, bacterial killing

M2a IL-4, IL-13 CD68, CD163, MHC II, MR, CD200R, 
IL-1Ra, CCL18, Dectin-1, IL-1R II, DC-
SIGN

Arg-1, resistin-like α, Ym1, Ym2, 
MMGL, stabilin1, CD163, Dectin-1, 
Chil3, FIZZ1

IL10, TGF-β, IL-1Ra, CCL17, CCL18, 
CCL22, CCL24

Anti-inflammatory, tissue repair, wound healing, 
allergy, parasite killing

M2b Immune complexes, TLR 
Ligands, IL-1β

CCL1, IL-10 high/IL-12 low, TNF-α, 
CD86, IL-6, MHC II, MR

CCL1, IL-10 high/IL-12 low, TNF-α, 
CD86, IL-6, MHC II, MR, LIGHT

TNF-α, IL-1β, IL-6, IL-10, CCL1 Immunoregulation, phagocytosis, iron-storage, 
high oxidative capactiy

M2c IL-10, TGF-β, glucocorticoids CXCL13, MR, CD163, IL-10, TGF-β, 
MerTK, TLRs, Tie-2

CXCL13, MR, CD163, IL-10, TGF-β, 
MerTK, Arg-1

IL-10, TGF-β, CCL16, CCL18, 
CXCL13�PTX3

Immunoregulation, phagocytosis, matrix 
deposition, tissue remodeling, efferocytosis 
capacity

M2d LPS+A2R ligands, IL-6 VEGF, IL-10, TGF-β VEGF, IL-10, TGF-β, iNOS IL-10, VEGF, iNOS Immunosuppression, phagocytosis, tissue 
remodeling, Protumoral, proangiogenic capacity

M4 CXCL4 MR, MMP7, S100A8 MR, MMP7, S100A8 MMP12, IL-6, TNF-α, MMP-7 Proinflammatory, cytotoxicity, monocyte 
recruitment 

Mox Oxidized phospholipids HMOX-1, Nrf2, Srxn1, Txnrd1 HMOX-1, Nrf2, Srxn1, Txnrd1 IL-10, IL-1β, COX-2 Proatherogenic, proinflammatory, antioxidant

Mhem Heme CD163, ATF-1, MCH II CD163, ATF-1, MCH II IL-10; HMOX-1, LXRβ Antioxidant erythrophagocytosis, 
atheroprotective

M(Hb) Hemoglobin/haptoglobin 
complexes

CD163, MR CD163, MR IL-10, HMOX-1, LXRα, ABCA1, ABCG1 Haemoglobin clearance, antioxidant, 
atheroprotective

ABC: ATP binding cassette transporter; Arg1: arginase 1; A2R: A2adenosine receptor; ATF-1: cyclic AMP-dependent transcription factor-1; CCL: chemokine (C-C motif) ligand; CD: cluster of differentiation; Chil3: 
chitinase-like 3; COX: cyclooxygenase; CXCL: chemokine (C-X-C motif) ligand; DC-SIGN: dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; FIZZ1: found in inflammatory zone 1; GM-
CSF: granulocyte-monocyte colony stimulating factor; HMOX: heme oxygenase; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; LIGHT: homologous to lymphotoxin, inducible expression, 
competes with herpes simplex virus (HSV) glycoprotein D for binding to HSV entry mediator, a receptor expressed on T lymphocytes; LPS: lipopolysaccharide; LXR: liver X receptor; MARCO: macrophage receptor 
with collagenous structure; MerTK: Mer receptor tyrosine kinase; MMGL: Ctype lectin domain family 10 member A (also known as MGL-1); MMP: matrix metalloproteases; MR: mannose receptor (CD206); MCH: 
major histocompatibility complex; PTX3: pentraxin 3; ROS: reactive oxygen species; SOCS1: suppressor of cytokine signaling 1; Srx1: Sulforedoxin-1; TGF-β: transforming growth factorβ; TLRs: toll-like receptors; TNF: 
tumor necrosis factor; Txnrd1: Thioredoxin reductase 1; VEGF: vascular endothelium growth factor.

structure and biological functions that differ from M1 and M2 macrophages. In hypercholesterolemia mice, Mox macrophages account for about 30% of the 
total macrophages. These cells express pro-inflammatory markers, such as IL-1β and cyclooxygenase 2, and exhibit defective phagocytosis and chemotaxis[81]. 
Rupture of microvessels within the atherosclerotic plaque releases erythrocytes, which can be phagocytosed by macrophages, and then induce these cells into 
M(Hb) and Mhem phenotypes[82,83]. In vitro, stimulation of human monocytes by the hemoglobin-haptoglobin complex induces M(Hb) phenotype 
macrophages, which produce anti-inflammatory factors, such as cytokine IL-10, by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B 
(AKT/PKB) signaling pathway[82,84-86]. These cells have increased activity of liver X receptor (LXR) α and ABC transporters, which result in increased cholesterol 
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efflux and reduced lipid accumulation. Furthermore, they have increased ferroportin expression, which 
reduces intracellular iron accumulation upon iron exposure[82,87]. During hemorrhage, erythrocytes are 
released and scavenged by macrophages, causing an elevation in iron content and release of heme, which 
drive macrophages towards a Mhem phenotype[88,89]. Mhem cells are generally resistant to be transformed 
into foam cells due to the low oxidative stress inside the cells, and they are supposed to be atheroprotective 
macrophages[83]. M4 macrophages are activated by the chemokine C-X-C motif ligand (CXCL) 4, and they 
are characterized by expression of MMP-7 and the calcium binding protein S100A8. These cells display pro-
inflammatory and pro-atherogenic properties[90].

The distribution of macrophage subtypes in the atherosclerotic lesion is not uniform. In human 
atherosclerotic plaques, M1 macrophages are located at the rupture-prone shoulders of mature plaques, 
while the M2 macrophages are away from the lipid core[10,91]. Macrophages in the fibrous cap surrounding 
the necrotic core seem to express equal numbers of M1 and M2 markers[10]. Accumulating studies suggested 
that pro-inflammatory M1 macrophages predominate in progressing atherosclerosis, whereas 
atheroprotective M2 macrophages are dominant in regressing plaques[11,92,93]. Functionally, M1 macrophages 
induce plaque inflammation, while M2 macrophages scavenge apoptotic cells and cell debris, improving 
tissue repair and healing[70,75,94]. Therefore, plaque M2 macrophages contribute to not only the maintenance 
of efficient efferocytosis but also the resolution of inflammation[95,96]. For instance, in the hemorrhagic areas 
of atherosclerotic plaques, ingestion of iron by M1 macrophages results in an uncontrolled pro-
inflammatory phenotype and impairs wound healing, while M2 macrophages phagocytose both apoptotic 
cells and senescent erythrocytes via elevating ferroportin expression[94,97,98].

In advanced plaques, macrophages promote elastic fiber degradation and thinning of the fiber cap by 
increasing the production of matrix metalloproteinases[99]. These products cause macrophage invasion and 
tissue destruction, thereby contributing to the progression and even rupture of atherosclerosis[99,100]. 
Furthermore, M1 macrophages promote the initial calcium deposition in the necrotic core, named as 
microcalcification, whereas M2 macrophages promote the formation of macrocalcification by inducing 
osteoblast differentiation and mature of vascular smooth muscle cells. Macrocalcification induced by M2 
macrophage leads to stable plaque, while microcalcification induced by M1 macrophages may lead to 
plaque rupture[101-103]. It seems that the evolution and regression/stabilization of plaques is associated in 
general with the prevalence of M1 and M2 macrophages, respectively. However, the biology of 
atherosclerotic plaques is very complex and involves myriad cellular, soluble, and functional factors that are 
still far from being completely deciphered. Given the fact that M2 phenotype macrophages are not always 
protective[80], the biological mechanisms underlying these phenomena are much more complex and not 
exclusively linked to macrophage phenotypes.

MACROPHAGE METABOLISM AND POLARIZATION
Metabolism is a network of biochemical reactions required to generate energy and other metabolic 
products. Despite the plasticity of the metabolic network, macrophages generally prefer particular metabolic 
pathways to match their functions[104]. In recent years, accumulating data suggest different metabolic 
microenvironments may finally regulate macrophage polarization through signaling cascades and epigenetic 
reprogramming. The metabolic characteristics of M1 and M2 macrophages are shown in Figures 1 and 2, 
respectively.

Glycolysis is termed as the anaerobic breakdown of glucose into two molecules of pyruvate and ATP. In the 
following, pyruvate is converted into lactate under anaerobic conditions (also known as Warburg effect), 
and it is converted into acetyl coenzyme A and enters tri-carboxylic acid (TCA) cycle under aerobic 
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Figure 1. M1 macrophage metabolism. M1 macrophage metabolism is characterized by enhanced glycolysis and increased flux through 
the pentose phosphate pathway (PPP) to produce NADPH, which is used to produce the inflammatory mediators nitric oxide (NO) and 
reactive oxygen species (ROS). In M1 macrophages, the tricarboxylic acid (TCA) cycle is truncated, which leads to the accumulation of 
succinate and citrate metabolites. Succinate accumulation leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) and 
transcription of pro-inflammatory and glycolytic genes, whereas citrate is used for synthesis of fatty acids. ACLY: ATP-citrate lyase; α-
KG: α-ketoglutarate; FAS: fatty acid synthase; GLUT: glucose transporter; iNOS: inducible nitric oxide synthase; LDH: lactate 
dehydrogenase; MCT: monocarboxylate transporter; SLC: solute carrier.

Figure 2. M2 macrophage metabolism. M2 macrophages rely on fatty acid oxidation (or β-oxidation) and L-glutamine metabolism to 
fuel the TCA cycle, which provide ATP for the cells. The pentose phosphate pathway (PPP) of M2 macrophages is decreased. Arginase 
1 (ARG1) is highly expressed in M2 macrophages and competes with iNOS for their substrate L-arginine, thereby reducing NO 
production and leading to the production of urea and L-ornithine. α-KG: α-ketoglutarate; ATP: adenosine triphosphate; CARKL: 
carbohydrate kinase-like protein; CPT: carnitine palmitoyl transferase; LAL: lysosomal acid lipase; ROS: reactive oxygen species; 
SLC3a2: solute carrier family 3 member 2; TCA: tri-carboxylic acid; UDP-GlcNAc: uridine diphosphate N-acetylglucosamine.

conditions[105]. Glycolysis provides ATP at a faster pace compared with TCA cycle. Macrophages are 
essentially glycolytic cells in terms of bioenergetics. M1 macrophages display a metabolic shift towards the 
anaerobic glycolytic pathway to meet their rapid energy requirements [Figure 1]. In atherosclerotic plaques, 
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hypoxia-activated hypoxia-inducible factor 1 alpha (HIF-1α), driven through NF-κB, is a key regulator of 
the glycolytic gene program. For instance, HIF-1α induces glucose transporter 1 (GLUT1), which is a rate-
limiting glucose transporter and is upregulated in hypoxia-induced inflammatory macrophages to increase 
glucose levels[106]. Of note, glycolysis routes the carbon flux into the oxidative pentose phosphate pathway 
(PPP), which induces the generation of ROS via NADPH oxidases. M1 macrophages are characterized by 
enhanced PPP due to the high glycolytic flux. Carbohydrate kinase-like protein (CARKL) stimulates PPP to 
its non-oxidative route, thereby reducing ROS involved in pro-inflammatory activation and contributing to 
the macrophage polarization[107,108]. In M1 macrophages, the expression of CARKL is reduced, and 
overexpression of CARKL may promote macrophages to an M2 phenotype in line with the reduction of 
pro-inflammatory cytokines[109]. Furthermore, NADPH generated by PPP is a cofactor for inducible nitric 
oxide synthase (iNOS) to catabolize arginine and can be used to produce the antioxidant glutathione that 
plays a key role in maintaining redox homeostasis[104]. Therefore, NADPH can be used for nitric oxide (NO) 
and ROS production and may also support the redox balance in M1 macrophages. Except for energy source, 
lactate, the metabolic by-product of glycolysis, plays a key role in histone lactylation[110]. Compared to M1 
macrophages, M2 macrophages display a decreased flux through the PPP and lower glycolytic rates. 
Furthermore, glycolytic stimulation may be not a requirement for M2 macrophage differentiation[111].

M2 macrophages sustain ATP production through the TCA cycle due to slower rates of aerobic glycolysis. It 
is suggested that M1 macrophages mainly depend on the TCA cycle for ROS generation, while M2 
macrophages mainly relies on the TCA cycle for energy[105]. In M1 macrophages, TCA cycle is truncated, 
which leads to the accumulation of succinate and citrate metabolites. Citrate in M1 macrophages promotes 
the synthesis of the characteristic metabolite itaconic acid, which is an inducer for intracellular succinate 
accumulation[104]. Of note, the accumulated succinate can stabilize HIF-1α via induction of ROS and 
increased glycolytic flux, as reviewed by Geeraerts et al.[104]. In macrophages, HIF-1α regulates the expression 
of iNOS, which acts on L-arginine and promotes the production of the inflammatory factor NO and L-
citrulline, contributing to the macrophage polarization towards the pro-inflammatory M1 phenotype. 
Interestingly, the product NO orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 
and pyruvate dehydrogenase[112]. Furthermore, LPS-induced succinate stabilizes HIF-1α and contributes to 
IL-1β production during inflammation[113]. On the contrary, HIF2α is suggested to be associated with an M2 
phenotype macrophages[109]. Of note, HIF2α can regulate the transcription of ARG1, which is highly 
expressed in M2 macrophages and completes with iNOS for their substrate L-arginine, thereby reducing 
NO production and leading to the production of urea and L-ornithine. L-ornithine is a precursor of L-
proline, which can be used for collagen synthesis, thereby contributing to wound healing[114]. Interestingly, 
the TCA cycle undergoes a two-stage remodeling in response to LPS and INF-γ stimulation; this metabolic 
reprogramming provides insights into how changing metabolism can regulate the functional transitions in 
macrophages[115].

The nonoxidative PPP provides intermediates used for nucleotide and amino acid synthesis[104]. Citrate can 
be exported from the mitochondria and used for fatty acid synthesis through several enzymes, as recently 
reviewed by Ménégaut et al.[116]. For example, citrate-derived acetyl-CoA can regulate the activation of 
chromatin-modifying enzymes and the biosynthesis of fatty acids. Of note, M1 macrophages are associated 
with the activation of fatty acid synthesis due to the increased substrate availability and upregulated genes 
that encode fatty acid synthesis. Due to the important role of citrate, M1 macrophages develop mechanisms 
to maintain the high intracellular citrate levels. However, fatty acid synthesis mediated by fatty acid synthase 
may induce the expression of pyrin domain containing 3 (NLRP3) and secretion of IL-1β, contributing to 
increased inflammation. For instance, glycine made from serine can induce glutathione synthesis, which 
results in IL-1β production[117]. Excessive HIF-1α-mediated fatty acid and triglyceride synthesis may also 
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induce neutral lipid storage and foam cell formation[116]. Presently, most studies suggest that fatty acid 
synthesis in macrophages may be proatherogenic. The effects of amino acids on macrophage polarization 
were recently reviewed by Kieler et al.[118].

Mitochondrial oxidative phosphorylation is the primary mode of cellular energy production. However, this 
process is blocked in activated M1 macrophages, rendering them unable to be converted into M2 
phenotype[106]. Mitophagy alters mitochondrial metabolism and occurs during M1 macrophage polarization. 
Inhibition of mitophagy increases mitochondrial mass and decreases the expression of glycolysis genes and 
inflammatory responses[119]. M2 macrophages have more mitochondria and increased oxygen consumption 
rates when compared to M1 macrophages. These differences provide M2 macrophages with great 
plasticity[105]. Blocking oxidative metabolism not only blocks the M2 phenotype but also drives the 
macrophage into an M1 phenotype[109]. It is suggested that microRNA-generating enzyme Dicer prevents 
atherosclerosis via enhancing fatty acid-fueled mitochondrial respiration in M2 macrophages of the 
apolipoprotein E-deficient mice[120]. Using real-time extracellular flux analysis, M1 macrophages are 
demonstrated to have enhanced glycolytic and decreased mitochondrial activity, whereas M2 macrophages 
display high mitochondrial oxidative phosphorylation[121].

Fatty acid oxidation (also known as β-oxidation) and glutamine metabolism provide important energy 
sources for macrophage polarization towards an M2 phenotype. During this process, triacylglycerol-rich 
lipoproteins, such as LDL and VLDL, are internalized by CD36 and hydrolyzed via lysosomal acid 
lipases[105]. Th2 cytokines can activate signal transducer and activator of transcription (STAT) 6 and the 
down-stream transcriptional regulators, such as peroxisome proliferator-activated receptor (PPAR) β, 
PPARγ, and PPARγ coactivator (PGC)-1β. In the following, PGC-1β induces macrophage programs for fatty 
acid oxidation and mitochondrial biogenesis, thereby priming macrophages for alternative activation and 
shifting macrophage towards an M2 phenotype[122]. Furthermore, AMP-activated protein kinase (AMPK) 
may promote fatty acid oxidation by inactivating acetyl-CoA carboxylase and promoting mitochondrial 
biogenesis and function through PGC 1-α[116]. Glutamine plays important roles in M2 macrophage 
polarization: (1) it fuels the TCA cycle via anaplerotic generation of α-ketoglutarate, which promotes fatty 
acid oxidation and Jmjd3-dependent epigenetic reprogramming of M2 genes[123]; and (2) it drives the 
synthesis of UDP-GlcNAc, which contributes to the glycosylation of proteins, such as mannose receptor 
and macrophage galactose binding lectin[104]. Of note, differing from the observations in mouse 
macrophages, IL-4 intervention does not induce an elevated gene expression associated with mitochondrial 
biogenesis and fatty acid oxidation in human macrophages[109,116]. These differences and underlying 
mechanisms need to be investigated in the future.

Taken together, enhanced glucose uptake and glycolysis are key characteristics of M1 macrophages, whereas 
elevated fatty acid oxidation and oxidative phosphorylation are the main features of M2 macrophages. As 
reviewed recently, long chain non-coding RNAs may also participate in the regulation of macrophage 
polarization[124]. The underlying mechanisms of how metabolism regulates macrophage polarization are 
complex and remain open[125-127]. However, the development of advanced technologies, such as single-cell 
resolution and the metabolomics, are sure to improve our knowledge in this area.

MACROPHAGE POLARIZATION INDUCED BY ENDOGENOUS MOLECULES
As described above, macrophages are plastic cells that can polarize to different phenotypes upon different 
stimulus[128-130]. The polarization of plaque macrophages is mainly determined by the dynamic 
microenvironment, such as cytokines, lipids, and other molecules, present in atherosclerotic 
plaques[93,129,131,132]. According to the dichotomy, macrophages are divided into two classes: classically 
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activated pro-inflammatory M1 macrophages and alternatively activated anti-inflammatory M2 
macrophages[66,133]. Presently, available data related to macrophage polarization are mainly focused on the 
switch between M1 and M2 phenotypes.

As described in the previous section, macrophage phenotype can be regulated by cytokines and growth 
factors present in atherosclerotic plaques[134]. Pro-inflammatory M1 macrophages are typically triggered by 
T helper 1 (Th1) cytokines and boost an inflammatory response, whereas M2 macrophages are mainly 
induced by Th2 cytokines and counterbalance inflammation via producing anti-inflammatory 
cytokines[65,135,136]. IL-4 cytokine could polarize macrophages to the M2a phenotype resident in areas of 
neovascularization and stable plaques[20,94,133]. Granulocyte-macrophage colony-stimulating factor and 
macrophage colony-stimulating factor are important growth factors regulating differentiation and 
polarization of macrophages. GM-CSF induces M1 macrophage through promoting the expression of PPBP 
(also known as CXCL7) and AKT2/extracellular signal-regulated kinase (ERK)/NF-κB and Janus kinase 
(JAK) 2/STAT5 pathways, whereas M-CSF induced M2 phenotypes through enhancing PI3K/ERK/SP1 
pathway and blocking NF-κB via PI3K/AKT1 pathway[136,137-141]. The dynamic ratio of GM-CSF and M-CSF 
might determine the macrophage polarization[140,142]. In atherosclerotic plaques, another stimulus for 
macrophage polarization is intraplaque hemorrhage that occurs after vessel rupture in the areas of 
neovascularization, as mentioned above[97,98,143].

During the progression of atherosclerosis, deposition of ox-LDL and other oxidized lipoproteins induces 
M1 polarization through activation of a TLR4-mediated pathway and inhibition of the transcription factor 
Krüppel-like factor (KLF) 2[144-146]. Cholesterol crystals during the early stages of the atherosclerotic plaques 
induce polarization of the M1 phenotype through activation of IL-1 and IL-18 by inducing the caspase-1-
activated NLRP3 inflammasome[147,148]. Cholesteryl esters, including linoleate and 7-etocholesteryl-9-
carboxynonanoate, can also polarize macrophages to M1 phenotype via activation of the TLR-4 and/or 
NF-κB signaling pathways[149,150]. Sphingomyelin on the membranes can produce sphingosine-1-phosphate 
(S1P), and its interaction with S1P receptor 2/3 may induce macrophage M1 polarization via PI3K/JNK 
pathway and exhibit proatherogenic[151,152]. However, a major product of cholesteryl ester oxidation, 9-
oxononanoyl cholesterol, induces the polarization of anti-inflammatory macrophage phenotype through 
increasing secretion of TGF-β[150]. Additionally, conjugated linoleic acids, a set of natural isomers of linoleic 
acid, are found to promote an anti-inflammatory M2 subtype through increasing the production of IL-
10[153,154]. S1P is known to convert M1 phenotype macrophages to M2 through activation of S1P receptor 1, 
which may activate ERK/CSF1 signaling and STAT3/6[155-157]. Screwing the macrophage phenotype towards 
an M2 phenotype is also mediated by ω3-polyunsaturated fatty acid derivatives, such as resolvin D1[158,159].

It should be noted that many molecules may participate in macrophage polarization. For example, myeloid 
DAP12-associating lectin-1 (MDL-1), also called CLEC5A, is positively correlated with the severity of 
atherosclerosis and M1 macrophages markers. MDL-1 overexpression could maintain macrophage survival, 
downregulate cleaved caspase-3 expression, and induce MCP-1 production under atherosclerotic 
microenvironment stimuli (e.g., ox-LDL and hypoxia) during early atherosclerotic plaque progression[160]. A 
subunit of the Skp-Cullin-F-box ubiquitin E3 ligase device, called FBXO3, is also associated with 
inflammatory response of macrophages upon ox-LDL stimuli[161]. Of note, galectin-3, also known as Mac-2, 
is a β-galactoside-binding lectin highly and constitutively expressed on plaque macrophages and displays a 
soluble form in the tissue microenvironment and plasma[162,163]. This lectin-molecule has been proposed for 
imaging atherosclerotic lesions in vivo using (89Zr)-DFO-Galectin 3-F(ab')2 mAb PET/CT. This novel 
method can image atherosclerotic plaques at different stages and has potential application for clinical 
detection of atherosclerosis[164]. Functionally, galectin-3 acts as an opsonin and enhances macrophage 
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efferocytosis of apoptotic cells[165,166]. In M1 macrophages, galectin-3 endocytosis is receptor mediated and 
carbohydrate independent, whereas, in M2 macrophages, this process is carbohydrate recognition domain 
mediated[167]. Furthermore, the expression and secretion of galectin-3 is associated with fibrosis and wound 
healing[168,169]. A recent study demonstrated that loss of galectin-3 is associated with increased expression of 
proinflammatory genes, and MMP12-dependent cleavage of galectin-3 may promote proinflammatory 
macrophage polarization[162]. Furthermore, the IL-10-STAT3-galectin-3 axis plays an important role in 
regulation of alternative activated macrophages[170,171]. However, previous studies suggested that galectin-3 
has both pro- and anti-atherosclerotic roles[172-174]. The modulatory mechanisms of these molecules need to 
be investigated in the future. Collectively, the atherosclerotic plaque microenvironment impacts the 
macrophage phenotypes, which in turn affect plaque microenvironment due to their different biological 
functions and secretion of pro- and anti-inflammatory factors, contributing to atherosclerotic plaque 
progression and regression[65,175].

SIGNALING PATHWAYS INVOLVED IN MACROPHAGE POLARIZATION
Based on their working mechanisms, the polarization of macrophages is modulated through the activation 
of transcription factors and signaling pathways, and the receptors respond to different inducers. For 
example, direct injection of inflammatory proteins is related to the acceleration of atherosclerotic plaque 
formation by polarization of M1 macrophages in a porcine atherosclerosis model[176]. The key pathways in 
macrophage polarization are STATs, PI3K/AKT, NF-κB, and MAPKs pathways[177]. It is worth noting that 
different PI3K/AKT isoforms have different functions in the activation of M1 and M2 macrophage 
polarization[178-181]. Upon macrophage M1 polarization, MAPKs, STAT-1/2, NF-κB, and other signaling 
pathways are activated, thereby promoting M1-related genes expression[182,183]. IL-4 induced M2 polarization 
is associated with the activation of STAT3/6 or PI3K/AKT, which promote M2 genes expression[182-184].

The major pathways that participated in M1 macrophage polarization are summarized in Figure 3. In 
response to an inflammatory environment, TLR4 is activated, which stimulates intracellular signaling 
cascades, including MAPK and NF-κB transducers, contributing to the expression of inflammatory 
cytokines, such as TNF-α, IL-6, and IL-12[185]. IFN-γ-mediated JAK-STAT1/2 signaling also promotes M1 
macrophage polarization[183]. Theoretically, molecules that positively regulate these pathways may promote 
macrophage polarization towards an M1-like phenotype. For example, triggering receptor expressed on 
myeloid cells (TREM-1) is expressed in macrophages and plays a critical role in the upregulation of CD36, 
thereby promoting the formation of inflammatory foam cells. Furthermore, TREM-1 promotes 
inflammation by activating TLR4. Genetic and pharmacological inhibition of TREM-1 reduces TLR4-
initiated pro-inflammatory responses and retards the development of atherosclerosis in mice[186]. Proprotein 
convertase subtillisin/kexin type 9 (PCSK9) contributes to the formation of foam cells by inducing the 
expression of scavenger receptors and promoting LDLR degradation in lysosome[24]. PCSK9 overexpression 
in macrophages increases the secretion of pro-inflammatory cytokines induced by ox-LDL in vitro, and the 
mechanisms are related to the upregulation of TLR4 and p-IκBα levels and NF-κB translocation[187]. PCSK9 
gene interference reduces vascular inflammation via inhibiting TLR4/NF-κB signaling pathway[188]. Junction 
adhesion molecule-like (JAML) protein is expressed in macrophages of human and mouse atherosclerotic 
plaques. It regulates the activation of NF-κB and the production and secretion of inflammatory 
cytokines[189]. Silencing the expression of JAML can reduce the progression of atherosclerotic plaques in 
mouse models[189]. Thyroid-stimulating hormone level is an independent risk factor of atherosclerosis. 
Ablation of thyroid-stimulating hormone receptor inhibits the formation of atherosclerosis by reducing 
vascular inflammation and macrophage burden[190]. Mechanistically, thyroid-stimulating hormone interacts 
with its receptor and activates MAPKs (ERK1/2, p38, and c-Jun N-terminal kinase, JNK) and IκB/p65 
NF-κB pathways in macrophages, increasing the production of inflammatory cytokines and the recruitment 



Page 12 of Liu et al. Vessel Plus 2021;5:43 https://dx.doi.org/10.20517/2574-1209.2021.2524

Figure 3. The signaling pathways involved in M1 macrophage polarization. S1P: Sphingosine-1-phosphate; PI3K: phosphoinositide 3-
kinase; JNK: c-Jun NH2-terminal kinase; AKT: serine/threonine-protein kinases; mTOR: mechanistic target of rapamycin; TLR: toll-like 
receptors; MyD88: myeloid differentiation factor 88; OxLDL: oxidized low-density lipoprotein; LPS: lipopolysaccharide; MAPK: mitogen-
activated protein kinases; ERK: extracellular regulated protein kinases; IFN-γ: Interferon-gamma; JAK: janus kinase; STAT: signal 
transducers and activators of transcription; GM-CSF: granulocyte-macrophage colony stimulating factor; NFkB: nuclear factor kappa-B.

of monocytes[190]. On the contrary, the anti-inflammatory NR4A1 (Nur77) receptor shows an anti-
atherosclerosis effect in mice[191]. The underlying mechanisms are related to the suppression of TLR4 
signaling and polarization of macrophages towards an M1 phenotype by phosphorylation of p65 
NF-κB[191,192]. Glucose-dependent insulinotropic peptide is secreted by the gut after food intake. This incretin 
hormone attenuates inflammation of atherosclerotic plaques and endotoxin activated macrophages via 
inhibiting MAPKs (JNK, ERK, and p38) and the downstream NF-κB pathway. Furthermore, it reduces 
atherosclerotic plaque macrophage infiltration and MCP-1-induced monocyte migration and increases 
collagen content, possibly by inhibiting the activity of MMP-9[193]. PPARγ agonists play an anti-
inflammatory effect by antagonizing TLR4[194]. Pigment epithelium-derived factor (PEDF) is an endogenous 
cytokine with anti-inflammatory activity. PEDF overexpression can decrease the levels of inflammatory 
factors and MMP-9 via inhibiting the phosphorylation of MAPKs (JNK, ERK, and p38). PPARγ specific 
antagonist GW9662 reduces the anti-inflammatory effect of PEDF. These results suggest that PEDF may 
reduce the polarization of pro-inflammatory M1 macrophages via the MAPK/PPARγ pathway[195,196]. The 
calcium-activated potassium channel KCa3.1 is also involved in macrophage activation. In mice 
atherosclerotic plaques, KCa3.1 blockade therapy reduces the incidence of plaque rupture, enhances the M2 
macrophage markers, and decreases macrophage polarization towards an M1 phenotype via 
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downregulating STAT-1 phosphorylation[182].

The major pathways involved in M2 macrophage polarization are summarized in Figure 4. IL-4- or IL-13-
induced IL-4 receptor α signals promote M2 macrophage polarization via the JAK/STAT6 pathway[183,197]. It 
has been demonstrated that STAT6 facilitates atherosclerotic plaque stabilization by promoting the 
polarization of macrophages to an M2 subtype and antagonizing ox-LDL-induced cell apoptosis and lipid 
deposition in a Wnt-β-catenin-dependent manner[177]. KLF4 coordinates with STAT6 to promote M2 
genetic program, and it inhibits M1 macrophage polarization via blocking NF-κB pathway[198]. Lack of KLF4 
enhances M1 gene expression and promotes pro-inflammatory activation and foam cell formation 
in vitro[198]. Deletion of KLF4 promotes inflammation and atherosclerotic plaque formation in vivo[199]. 
Kallistatin, a tissue kallikrein-binding protein and a serine protease inhibitor, reduces atherosclerotic plaque 
formation in apolipoprotein E-deficient mice. Mechanistically, kallistatin increases the expression of IL-10 
and ARG1 that are associated with M2 macrophages and decreases iNOS and monocyte chemotactic 
protein 1 that are associated with M1 macrophages in a KLF4-dependent manner[200].

The activation of IL-4 receptor α and other factors may trigger PI3K/AKT signaling, thereby contributing to 
the M2 macrophage polarization[183,201]. Here again, we need to point out that distinct PI3K/AKT isoforms 
play distinct roles in activating macrophage polarization. Class I PI3K/AKT1 and Class III PI3K/AKT2 may 
promote M2 and M1 macrophage polarization, respectively[178-181]. miRNAs also participate in macrophage 
polarization. For instance, miR-135b promotes inflammation in atherosclerotic plaques, while its inhibition 
attenuates inflammation via inactivating the PI3K/Akt signaling pathway[202]. Furthermore, activation of 
PPARγ by its endogenous agonists, such as by fatty acids, can antagonize the activities of the transcription 
factors STAT and NF-κB, contributing to the anti-inflammatory effect in macrophages[203]. Of note, ligand-
dependent SUMOylation of the PPARγ ligand-binding domain is important for PPARγ-mediated 
suppression of inflammatory response[204]. IL-19 treatment induces a reduction in plaque macrophage 
numbers and an enrichment in M2 macrophage markers, suggesting an atherosclerosis regression[205]. 
Mechanistic studies revealed that IL-19 or recombinant IL-19 promotes the activation of the key pathways 
involved in M2 macrophage polarization, including STAT3/6, KLF4, and PPARγ in vivo[135,205-207]. 
Additionally, bone morphogenetic proteins, members of the TGF-β superfamily, play a key role in cell fate 
and differentiation[208,209]. For instance, bone morphogenetic protein-7 directs cellular plasticity, specifically 
THP-1 monocytes differentiation into M2 macrophages, and enhances the levels of anti-inflammatory 
cytokines in vitro. Furthermore, this molecule can inhibit plaque formation in vivo[208,210,211].

Finally, ABC transporters also contribute to macrophage polarization towards an M2 phenotype by 
promoting cholesterol efflux and the subsequent reduction of inflammation. Human atherosclerotic plaques 
contain a relatively high concentration of desmosterol, which is an endogenous LXR agonist even in the 
absence of sterol hydroxylases. LXR activation promotes the expression of ABC transporters, thereby 
enhancing cholesterol efflux accompanied with anti-inflammatory effect. These data suggest that 
desmosterol might promote macrophage polarization towards an M2 phenotype[212]. miR-23a-5p is 
positively correlated with plaque progression and vulnerability. Transfection of miR-23a-5p inhibitors can 
increase the expression of ABCA1/G1 to promote cholesterol efflux and reduce the formation of foam 
cells[213]. Therefore, lipid-lowering may enhance macrophage polarization towards an M2 phenotype by 
improving the plaque microenvironment.

TREATMENT DIRECTED MACROPHAGE POLARIZATION
Presently, lipid-lowering strategies cannot completely inhibit atherosclerosis. Macrophages are involved in 
all stages of this chronic and multifaceted disease. As described above, the dynamic atherosclerotic plaque 
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Figure 4. The signaling pathways involved in M2 macrophage polarization. S1P: Sphingosine-1-phosphate; PI3K: phosphoinositide 3-
kinase; AKT: serine/threonine-protein kinases; mTOR: mechanistic target of rapamycin; ERK: extracellular regulated protein kinases; 
JAK: janus kinase; STAT: signal transducers and activators of transcription; M-CSF: macrophage colony stimulating factor; NFkB: nuclear 
factor kappa-B; SP1: specificity protein 1; IL: interleukin; AMPK: AMP-activated protein kinase; PPAR: peroxisome proliferator-activated 
receptor;  RTK: receptor tyrosine kinase; TGF-β: transforming growth factor-β; CSF1: colony-stimulating factor 1; CXCL: chemokine (C-X-
C motif) ligand; GPCR: G-protein-coupled receptor; KLF4: kruppel-like factor 4.

microenvironment determines the activation states of the macrophages. More importantly, macrophages 
have a good plasticity and play key roles in plaque instability and regression[214,215]. Therefore, a new idea for 
the treatment of atherosclerosis is through regulating macrophage polarization from the pro-atherogenic 
M1 phenotype to the anti-atherogenic M2 phenotype. Theoretically, compounds that regulate the dynamic 
plaque microenvironment or trigger the signaling pathways involved in macrophage polarization may 
promote macrophage phenotype shift, contributing to the progression or regression of atherosclerosis.

Melatonin, an indoleamine hormone, shows cardioprotective activity in several animal models[216-220]. Of 
note, this molecule can inhibit the development of atherosclerosis[221]. Mechanistically, melatonin 
ameliorates intraplaque inflammation by suppressing macrophage differentiation towards the pro-
inflammatory M1 phenotype and improving M2 macrophage polarization as well as RORα-mediated anti-
inflammatory effects in vulnerable plaques[222]. It is suggested that the melatonin-RORα axis regulates 
macrophage polarization by differentially regulating the AMPKα/STATs pathway[222]. The natural product 
Ginsenoside Rb1 reduces M1 macrophage markers and increases M2 macrophage markers via promoting 
phosphorylation of STAT6 in vitro. This molecule enhances plaque stability by promoting the anti-
inflammatory M2 macrophage polarization in an STAT6-dependent manner in apolipoprotein E-deficient 
mice[223,224].

Oleoylethanolamide (OEA), an endogenous PPARα agonist, enhances the expression of two classic M2 
macrophage markers, CD206 and TGF-β, and decreases the expression of iNOS, an M1 macrophage 
marker, in THP-1-derived macrophages[225,226]. More importantly, OEA inhibits M1 macrophage 
polarization in atherosclerotic plaques and promotes the polarization of M2 macrophages through 
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AMPK/PPARα/STAT3 pathway[225,226]. Blocking of PPARα using siRNA or inhibition of AMPK by its 
inhibitor attenuates the OEA-induced expression of M2 macrophage markers[225,226]. Furthermore, OEA 
increases collagen content and decreases necrotic core size in atherosclerotic plaques in mice via 
PPARα[225,226]. Ginsenoside Rg3 (GRg3) has potential vascular protective effects. In vitro study demonstrated 
that GRg3 reverses the macrophage polarization towards an M1 phenotype induced by advanced glycation 
end-products. In vivo, it improves the stability of atherosclerotic plaques, reduces M1 macrophages, and 
increases M2 macrophages through the PPARγ pathway[227]. These results suggest that PPARα or PPARγ 
agonists have potential effects on promoting M2 macrophage polarization.

Natural products exhibit attractive effects on promoting macrophage polarization towards an M2 
phenotype. Curcumin, a polyphenol component in turmeric, has multiple pharmacological activities, 
including regulation of cholesterol homeostasis, inflammatory response, and especially modulatory effects 
on macrophage polarization[20,228,229]. In vitro data indicate that curcumin inhibit polarization of RAW264.7 
cells (M0) to M1 phenotype and switch M1 or M0 macrophages to the M2 phenotype[228]. Mechanistically, 
curcumin could suppress M1 inflammatory phenotype through activation of IκBα in M0 macrophages and 
promote polarization of M1 or M0 phenotypes to M2 macrophages through activation of PPAR-γ[228,229]. 
Furthermore, accumulating studies demonstrated that curcumin shifts M1 macrophages to an M2 
phenotype via downregulating TLR4 and the phosphorylation of MAPKs (ERK, JNK, and p38) and 
NF-κB[230-232]. The polyphenols of pomegranate inhibit the inflammatory response of macrophages and 
promote macrophage switch from M1 to M2 phenotype, contributing to their anti-inflammatory and anti-
atherosclerosis effects in mice[233]. These results indicate that polyphenols are effective at promoting M2 
macrophage polarization. Furthermore, tanshinone IIA and astragaloside IV, two compounds from 
traditional Chinese medicine, reinforce plaque stability via activating PI3K/AKT and inhibiting TLR4/NF-κ
B signaling that are involved in modulating macrophage polarization[234].

Some synthesized compounds or clinically used drugs also induce macrophage polarization. Activated 
factor X contributes to the pathophysiology of chronic inflammation besides its roles in coagulation 
cascade. Rivaroxaban, an inhibitor of factor X, can inhibit inflammation in the atherosclerotic plaques and 
in RAW264.7 macrophages except for its antithrombotic effect[235]. Angiotensin 1-7 exhibits cardiovascular 
protective effect, and its non-peptide mimic AVE0991 can inhibit monocytes/macrophages differentiation 
towards an M1 phenotype and their recruitment to the perivascular space, thereby retarding inflammation 
and early atherosclerosis[236]. Dipeptidyl peptidase inhibitors used for treating patients with type 2 diabetes 
have been found to reduce cholesterol levels and downregulate the formation of atherosclerosis[237,238]. 
Mechanistically, these inhibitors may promote monocyte polarization towards M2 macrophages through 
the SDF-1/CXCR4 signaling pathway[238]. Additionally, treatment with RXRα modulator K-80003 decreases 
7-ketocholesterol-induced p65 nuclear translocation, IκBα degradation, and transcription of NF-κB target 
genes, contributing to the reduced plaque size, plaque rupture, macrophage infiltration, and inflammatory 
cytokine levels[239]. Finally, we should pay attention to some drugs that can promote macrophage 
polarization towards M1 phenotype. For instance, doxorubicin, a drug used to treat cancers, induces 
adverse cardiotoxic effects. Mechanistically, doxorubicin treatment increases expression of TLR4 and 
NLRP3 and downstream MAPK cell signaling proteins, such as MyD88, p-P38, and p-JNK, contributing to 
the polarization of pro-inflammatory M1 macrophages and secretion of inflammatory cytokines[240]. These 
drugs need to be carefully used when patients are suffering from cardiovascular disease and cancer at the 
same time.
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CONCLUSIONS AND PERSPECTIVES
Macrophages play important roles in the progression and regression of atherosclerosis, and each subtype of 
macrophage has distinct functions. These heterogenous and plastic cells can switch from one phenotype to 
another in response to distinct microenvironmental stimuli, which differentially activate the signaling 
pathways involved in macrophage polarization. Accumulating data demonstrate that macrophage 
polarization towards the atheroprotective M2 phenotype may contribute to plaque stability and regression. 
Theoretically, molecules that positively regulate M2 polarization and/or negatively modulate M1 
polarization may benefit atherosclerosis stability and regression. These findings provide a hope for reversing 
this chronic disease because the present therapeutic strategies cannot completely retard the progression of 
atherosclerosis. Of note, there are still many questions that need to be resolved to reach this clinical goal.

Macrophages can undergo distinct polarization states, but we do not clearly know the functions of each 
subtype. At present, the majority of available data are limited to the M1 and M2 phenotypes, which have 
been simply classified a decade ago. It is worth noting that M2 phenotype macrophages are not always 
protective, which further increases the complexity of macrophage phenotype and function. Combined 
proteomic and transcriptomic single-cell analysis is likely to resolve this problem. Furthermore, most 
studies are carried out in rodents, whose macrophage phenotypes and atherosclerosis progression are 
different from ours. Therefore, these data cannot be translated directly into clinical application. Novel 
technologies, such as non-invasive detection, are needed to improve our understanding of human 
macrophage phenotypic diversity and its roles in atherosclerotic plaques.
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