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Abstract
Bioactive lipids constitute a large family of molecules considered as inflammatory mediators. Among them, 
lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), and eicosanoids (prostanoids such as PGE2 and 
leukotrienes such as LTB4, LTC4, and LTD4) play a central role in the pathophysiology of several inflammatory 
diseases. However, it has long been known that these bioactive lipids are also involved in cancer, mainly because of 
their ability to control the pro-inflammatory microenvironment of tumors as well as their ability to act directly on 
tumor cells promoting cell proliferation, migration, and survival. Recently, there has been increased interest in 
determining how these lipid mediators orchestrate tumor development and metastasis. Bone metastases result 
from a complex dialogue between tumor cells and bone cells. Recent findings demonstrate that all these bioactive 
lipids can profoundly affect bone metabolism by acting positively or negatively on both osteoblasts and osteoclasts. 
This review gives an overview of previous findings demonstrating direct involvement of LPA, S1P, and PGE2 in bone 
metastasis. This review also emphasizes the recent findings that characterize the activity of these bioactive lipids 
directly on bone cells and how these activities could be integrated into the complex molecular mechanisms leading 
to bone metastasis formation and progression.
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INTRODUCTION
Bone is a highly dynamically regulated tissue which undergoes continuous homeostatic and reactive 
remodeling by the coordinated action of bone cells, namely osteoblasts, osteoclasts, and osteocytes, and 
controlled by endocrine factors, immune cells, and mechanical forces. Sir Paget’s “seed and soil” theory was 
the first still valid concept explaining why certain types of cancers have remarkably high propensity to form 
bone metastases such as breast and prostate cancers[1]. During the 1990s, works released from Greg Mundy’s 
lab led to the development of an additional theory leading to the notion of the “vicious cycle” established at 
the sites of bone metastases, reflecting the reciprocal stimulation between tumor growth and bone 
resorption[2]. The vicious cycle theory is also still valid with even more clinical impact, as it is the current 
target of the best systemic therapies against bone metastases that use anti-resorptive agents (i.e., 
bisphosphonates and denosumab)[3]. Unfortunately, even under these best standards of care, patients with 
bone metastases still have limited overall survival, indicating the existence of additional molecular 
mechanisms. Bioactive lipids are widely present in the organism and affect almost all vital systems. In this 
review, we focus on two lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate 
(S1P), and two classes of eicosanoids, prostanoids and leukotrienes, because all of these molecules can 
regulate cancer progression including bone metastasis as well as important biological processes directly 
related to bone such as skeletal development, mineralization, regulation of bone mass and homeostasis, 
osteoblast-osteoclast coupling, and bone resorption and formation.

LYSOPHOSPHATIDIC ACID
Structure, synthesis, and receptors
LPA is the simplest phospholipid which is composed of a glycerophosphate backbone linked to a single fatty 
acid chain. LPA can be synthesized from two pathways. In the first one, phospholipid precursors such as 
phosphatidylcholine (PC), phosphatidylserine (PS), or phosphatidylethanolamine (PE) can be converted to 
lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), and lysophosphatidylethanolamine (LPE), 
respectively, through the action of phosphatidylserine-specific phospholipase A1 or secretory phospholipase 
A2 such as in blood platelets[4,5] [Figure 1]. LPC appears to be the most abundant LPA precursor in the 
blood. These precursors can then be converted to LPA by a lysophospholipase D (LysoPLD). LPA can also 
be generated by a distinct mechanism, namely the acylation of glycerol-3-phosphate by glycerophosphate 
acyltransferase and the phosphorylation of monoacylglycerol by monoacylglycerol kinase[6]. LPA level is 
tightly tuned by degradation mechanisms mediated by different classes of enzymes such as lipid phosphate 
phosphatases (LPPs)[7] or LPA acyltransferase[8,9].

Autotaxin (ATX or ENPP2) is responsible for LPA levels in the blood, as evidenced by LPA concentrations 
in serum that are half normal values in Enpp2+/- heterozygous mice[10]. As a unique member of the family of 
the seven ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) that hydrolyze pyrophosphate and 
phosphodiester bonds in nucleotides and their derivatives[11], ATX possess a LysoPLD activity, allowing the 
hydrolysis of LPC and other lipid precursors to produce LPA. ATX is present at high concentration in the 
blood circulation[12]. However, the origin of ATX in blood remains to be determined. Nevertheless, adipose 
tissue is likely one of the main sources, as revealed in aP2-Cre/Enpp2fl/fl mice presenting 30% decrease in 
LPA levels in plasma[13]. ATX is also highly expressed in the brain and lymphatic high endothelial 
venules[14]. Although ATX is capable of hydrolyzing nucleotides in vitro, its biological function relies on its 
lysoPLD activity, as the apparent affinity for LPC is 10 times higher than that of nucleotides[15] and as 
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Figure 1. Overview of LPA biosynthesis and receptors. Phospholipase A1 or A2 (PLA1 and PLA2) catabolize membrane phospholipids 
producing LPA either directly or through the release of LPA precursors (LPC, LPE, and LPS) that are metabolized in LPA by autotaxin 
(ATX) due to its lysophospholipase D activity. LPA activates six specific G protein-coupled receptors (LPA1-6). LPC: 
Lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; LPS: lysophosphatidylserine; LPA: lysophosphatidic acid.

extracellular nucleotides are rare.

LPA activates a series of six different G-protein coupled receptors (LPA1-6). Overall, LPA receptors link to all
types of heterotrimeric G proteins, Ga12/13, Gaq/11, Gai/o, and Gas, but, due to specific interactions, 
LPA receptors can have redundant, synergic, or opposite actions. LPA1 is the most ubiquitous LPA 
receptor in adults, with prevalence in brain, heart, testis, ovary, prostate, colon, thymus, and pancreas. 
Eukaryotic cells frequently express multiple LPA receptors. Mature osteoclasts express LPA1, LPA2, LPA4, 
LPA5, and LPA6

[16], whereas osteoblasts express mostly LPA1 and LPA4 and traces of LPA5
[17]. As a marked 

specificity, LPA6 is the sole LPA receptor whose mutation is involved in a human pathology of 
congenital alopecia[18]. The impact of LPA6 mutation on bone homeostasis has not been reported yet.

Role of LPA on bone cells
LPA is produced at the bone site, as we previously showed in the context of bone metastasis [Figure 2].
Through its action on both cancer cells and osteoclasts, LPA promotes the progression of osteolytic
lesions[19]. LPA plays a key role during bone development. However, origin of LPA in bone is still
incompletely understood, although adipocytes[13] and osteoblasts[20] are potential sources that may account
for bone homeostasis and bone metastasis. Lpar1-/- mice revealed growth retardation due multiple alteration
at levels of both the central nervous and the musculoskeletal systems, including inhibition of chondrocyte
proliferation, defects in endochondral ossification, and a low bone mass phenotype linked to decreased
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Figure 2. LPA activity in bone metastasis microenvironment: overview of actions of lysophosphatidic acid (LPA) on bone cells, cancer 
cells, and neurons. Black arrows indicate LPA activity on different cell types from the bone microenvironment (names in orange) 
resulting in multiple biological functions (text in white). Grey arrows indicate LPA or autotaxin (ATX) cell secretion. Dotted black 
arrows indicate cell differentiation and platelet aggregation. Dotted grey arrows indicate LPC catabolism by ATX. LPC: 
Lysophosphatidylcholine.

osteoblast activity[21]. On the other hand, Lpar4-/- animals show increased bone formation[22], suggesting that 
LPA1 and LPA4 may have opposite functions in the control of bone formation during development. LPA4 

activates the G�s pathway, whereas LPA1 signals through G�i, resulting in inverse control of adenylated 
cyclase activation and cAMP accumulation. LPA1 is expressed in chondrocytes and all bone cells including 
osteoblasts, osteoclasts, and osteocytes[21,23]. As a result, the bone phenotype of Lpar1-/- mice is likely due to a 
combination of numerous cellular defects that even individually may impact bone remodeling. To elucidate 
the physiological role of LPA1 expressed by osteoblasts, we generated conditional knockout mice for Lpar1 
in osteoblastic cell lineage (Lpar1-△Ob)[17]. These mice revealed reduced bone mineralization and increase 
in the areas of both osteocytic lacunaes and osteocyte apoptosis. We have known since the release of Karin 
lab’s work that LPA can promote dendrite outgrowth in MLO-Y4 osteocyte cell line[24]. Osteocyte network 
was remarkedly reduced in the cortical bone of Lpar1-△Ob mice and dendrite connections were drastically 
reduced in Lpar1-△Ob osteocytes in vitro in response to fibroblast growth factor 2. These data reveal that, 
by acting on osteoblastic LPA1, LPA produced in the bone environment controls bone quality via bone 
mineralization and osteocyte function [Figure 2].

LPA also acts on osteoclasts by promoting survival and cytoskeleton rearrangement[23], which involves c-
SRC signaling and phosphorylation of Thyroid Hormone Receptor Interactor 6 that drive sealing zone 
formation and bone resorption[25]. Furthermore, we demonstrated that LPA is mandatory at least in vitro for 
macrophage colony-stimulating factor/receptor activator of nuclear factor-kappa B (NF-κB) (RANK)-ligand 
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(RANK-L)-induced osteoclastogenesis. Both genetic ablation and pharmacological inhibition of LPA1 
remarkably alter mineral matrix resorption of mature osteoclasts and prevent ovariectomy-induced bone 
loss[16,26]. These results demonstrate that, under pathophysiological context, the production of LPA in bone 
might profoundly affect osteoclast function. Mice with global deletion of Lpar1 revealed remarkable 
resistance to bone destruction in an arthritis model induced by type II collagen injection[27], confirming the 
LPA-dependence of osteoclast function here under an inflammation context. This study showed decreased 
infiltration of macrophages and differentiation into Th17, but not Th1 or Th2, which were also suppressed 
under pharmacological inhibition of LPA1. Thus, in the context of bone metastasis, in addition to its action 
on osteoclasts by stimulating osteolysis, LPA could also promote the recruitment of immune cells that may 
contribute to the progression of metastases. Furthermore, we recently showed that mature osteoclasts 
produce functionally active ATX, thereby highlighting these cells as an additional source of LPA in bone[28]. 
Intriguingly, although osteoclast-derived ATX was revealed to be dispensable for bone development as well 
as in the classical pathological model of bone loss induced by ovariectomy, we found that autocrine activity 
of ATX on osteoclasts is required for systemic bone loss and bone erosion induced by inflammation, as 
observed in tumor necrosis factor (TNF)-transgenic(tg) mice, or after mouse treatment with LPS as well as 
in the arthritic mouse model using K/BxN-serum transfer[28]. In the context of bone metastasis, treatment 
with BMP22 of mice harboring pre-established bone metastases from the ATX-null MDA-BO2 breast 
cancer cells significantly reduced the progression of osteolytic lesions[29]. This clearly demonstrates that non-
tumoral ATX controls osteoclastic bone resorption. It is of course possible that ATX produced by different 
types of cells from the bone environment could act in a paracrine manner on osteoclasts; however, as we 
found under inflammatory conditions, osteoclast-derived ATX might act in an autocrine manner to 
stimulate malignant osteolysis. However, this assertion requires further investigation.

Role of LPA in cancer and bone metastasis
Autotaxin’s name was originally attributed due to its action on melanoma cells as a new autocrine factor 
stimulating tumor cell invasion[30]. The ATX/LPA axis was later recognized as a major regulator of 
tumorigenesis through its action on cancer cell proliferation and survival, as well as through the promotion 
of angiogenesis and the control of the metastatic cascade by stimulating cell migration and invasion[31,32]. 
Increased LPA levels are found in different types of cancers[33-35]. Endogenous expression of ATX in 4T1 
mouse carcinoma cells as well as high ATX expression in human MDA-BO2-ATX transfected breast cancer 
cells provide a higher propensity to these cells of generating bone metastases[26]. The main reason is likely to 
reside in the fact that these cells express high levels of LPA1 receptor, resulting in high sensitivity to LPA 
stimulation. By activating LPA1, LPA promotes cell motility and proliferation, but the prominent action of 
LPA/LPA1 signaling in the context of bone metastasis might be linked to the increase in the secretion of 
growth factors such as vascular endothelial growth factor (VEGF)[36,37] and cytokines [such as interleukin 
(IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein 1] 
that are known to affect bone remodeling. Osteomimetism was shown to characterize breast cancer bone-
seeking cells[38]. Gene signature of LPA signaling was not associated with osteomimetism. However, cancer 
cells and bone cells (osteoblasts and osteocytes) share the characteristics that, by activating LPA1 receptor, 
LPA also stimulates the secretion of IL-6 and IL-8 [chemokine (C-X-C motif) ligand 15 protein in 
mouse][39,40]. Overexpression of LPA1 in MDA-BO2/LPA1 transfected cells dramatically increases the extent 
of osteolytic lesion areas, whereas pharmacological inhibition of this receptor using Ki16425 and Debio 
0719, two LPA1/3 antagonists, reduced cytokine production and the progression of osteolytic bone 
metastasis. Intriguingly, endogenous expression of ATX was revealed to be dispensable for cancer cells to 
metastasize to bone, as shown by the above-mentioned MDA-BO2 cells that do not express ATX but which 
are a sub-clone of MDA-MB-231 cells isolated in vivo for their exclusive bone tropism[41].
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High ATX expression in primary tumors is frequently associated with a poor prognosis in cancer 
patients[42-44]. Intriguingly, the expression of ATX directly by tumor cells is often low, as found in most breast 
cancer cell lines. It has been well established by Brindley et al.[45] that tumor microenvironment is a major 
source of ATX[45]. We showed that challenging mature osteoclasts with inflammatory molecules such as 
TNF and LPS upregulates the secretion of ATX through a NF-κB pathway[28]. In addition, inflammatory 
cytokines and chemokines released by breast and thyroid cancer cells have been shown to induce the 
expression of ATX in tumor-associated fibroblasts and adipocytes[46]. Furthermore, during our study on the 
role of non-tumoral ATX in the formation of bone metastases, we found that blood platelets uptake 
circulating ATX that is naturally present in the bloodstream and store ATX in their granular compartments, 
which is eventually released under tumor cell-induced platelet aggregation[29]. Non-tumoral ATX released by 
platelets is functionally active as it catalyzes the production of LPA, which ultimately acts on cancer cells to 
promote survival, invasion, and bone metastasis[19,29]. Overall, ATX present in the tumor environment 
appears as a major promoter of tumor growth and metastasis. Therefore, a new paradigm is emerging at the 
level of bone metastasis where multiple vicious cycles establish and interconnect together. The first well-
known vicious cycle was characterized in 1997 by T Guise, establishing the cross talk between tumor growth 
and bone resorption[47] [Figure 2]. We showed that the production and activity of LPA following tumor cell-
induced platelet aggregation constitute a second vicious cycle between tumor cells and blood platelets taking 
place at the bone metastasis site[19]. Non-tumoral ATX released by activated platelets is likely to contribute to 
this bone resorption-independent vicious cycle. Furthermore, by acting on fibroblasts, adipocytes, and, 
potentially, osteoclasts, tumor cell-derived inflammatory cytokines might contribute to an additional vicious 
cycle through the secretion of ATX.

Role of LPA in bone pain
Bone pain is the most common complication of bone metastases for cancer patients[48]. LPA is well known 
to promote neuropathic pain[31], but pain occurring in the context of bone metastasis depends on different 
mechanisms; as shown primarily by Yoneda et al.[49], the release of protons from vacuolar resorption pits 
during osteoclastic resorption create acidic microenvironments that stimulate sensory nociceptive neurons 
that innervate bone. This is likely to explain why anti-resorptive agents, such as bisphosphonates and 
denosumab, efficiently reduce bone pain in bone metastasis patients[3]. Although LPA might indirectly 
promote metastasis-induced bone pain through the stimulation of osteoclast activity, it might also have a 
direct action. Using an osteosarcoma-induced bone pain model in rat, Zhao et al.[50] showed that, two weeks 
after cancer cell implantation in vivo, sural C-fibers become more sensitive to LPA stimulation, an effect 
that was blocked after treatment with VPC32183, an antagonist of LPA1 receptor. The analysis of dorsal root 
ganglion neurons showed increased LPA1 receptor expression two weeks after cancer cell injection into the 
rat tibia[51]. In this context, bone pain was regulated by LPA through LPA1 signaling in dorsal root ganglion 
neurons, potentiating potential vanilloid 1 (TRPV1) receptors via protein kinase Cε pathway. In addition, in 
this rat model, mechanical allodynia and thermal hyperalgesia were alleviated under treatment with 
VPC32183[51]. Furthermore, using paw withdrawal threshold and flinching behavior assays, Wu et al.[52] 
demonstrated that Rho/ROCK signaling mediates P2X3-induced bone cancer pain downstream of LPA1 
activation. Collectively, these results strongly suggest that LPA might play an important role in pain 
associated with bone metastasis. However, which LPA receptor is involved is not well understood. Although 
LPA1 is likely to mediate LPA-induced bone cancer pain, the analysis of conditional knock-out of Lpar1 in 
dorsal root ganglion neurons and its impact on pain in bone metastasis has not been investigated yet.

SPHINGOSINE 1-PHOSPHATE
Structure, synthesis, and receptors
Sphingolipids are another class of phospholipids that are a part of cell membrane. They comprise a polar 
head and two non-polar tail domains. Sphingosine, a long chain amino-alcohol, is an integral component of 
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this class of lipids[53]. Sphingolipid metabolism involves three interconnected pathways, namely the de novo 
synthesis pathway, salvage pathway, and sphingomyelinase (SMase) pathway, all of which generate 
ceramide from complex lipids that is eventually converted into sphingosine and S1P[54,55]. These pathways 
were initially thought to be autonomous of each other in ceramide generation, but the metabolites 
synthesized in these three metabolic pathways are highly reversible, non-distinguishable, and hence 
interdependent.

Ceramide produced by these pathways is converted into sphingosine and eventually S1P by the 
concatenated effect of enzymes such as ceramidase and functionally redundant sphingosine kinases 1 and 2 
(SphK1 and SphK2), respectively[56] [Figure 3]. This process is also reversible and ceramide synthase and 
sphingosine phosphate phosphatase can revert sphingosine into ceramide and S1P to sphingosine, 
respectively. S1P can be irreversibly degraded by S1P lyase (SPL) present on the cytosolic side of the 
endoplasmic reticulum to form non-sphingolipid products: phospho-ethanolamine and hexadecenal (a fatty 
aldehyde). While these enzymes are intracellular, LPPs reside on the cell membrane and keep extracellular 
S1P in check[57,58]. Although minimal roles of intracellular S1P signaling have been reported, the major 
biological functions of S1P (such as embryonic and postnatal vascular development, vascular integrity and 
tone, hematopoiesis and trafficking of immune and stem cells, and platelet formation and activation in 
addition to bone homeostasis) are suggested to be receptor dependent and necessitate an efficient export of 
S1P into the blood and lymph where the levels of S1P are higher as compared to the tissue parenchyma[58-60]. 
The two bona fide transporters of S1P identified thus far are spinster homolog 2 (Spns2) that is expressed 
on lymphatic and blood endothelial cells and major facilitator superfamily transporter 2b that exports S1P 
from erythrocytes and activated platelets[61], therefore making these cells “sources of S1P”. This exported S1P 
needs chaperons to promote aqueous solubility of S1P, increase resistance against degradation and 
dephosphorylation, and accelerate release of S1P from cellular sources, and they may alter receptor 
selectivity and signaling bias[59,62,63]. These chaperons include high-density lipoprotein bound to 
apolipoprotein M, albumin, low-density lipoprotein, very low-density lipoprotein, and the recently 
identified chaperon apolipoprotein A4[64,65]. While blood chaperones are well described, less is known about 
what chaperones S1P associates within the lymph and interstitial fluids.

Highly regulated local differences in the synthesis, export, and intracellular and extracellular degradation of 
S1P lead to marked differences in its abundance among blood (~1 µM), lymph (~0.1 µM), and the tissue 
parenchyma (< 1 nM), as well as the formation of local S1P gradients within tissues. Sensing of this S1P 
gradient by the receptors drives biological processes such as immune cell trafficking and vascular 
homeostasis[58,66,67]. Factors such as presence of de novo synthesis machinery, lack of degradation machinery, 
and expression of S1P transporters govern whether a cell can be deemed as a source of S1P.

S1P binds to and activates a family of cognate G-protein coupled receptors, S1P1-5. Due to overlap and 
divergence in Gα subunit selectivity, S1P receptors can act in synergy or in opposition to each other[68,69]. 
Notable examples include antagonistic activities of the exclusively Gαi-coupled S1P1 and the predominantly 
Gα12/13-coupled S1P2 and sometimes synergistic activities of S1P1 and S1P3, which can also couple to Gαi. S1P1 
is the most widely expressed receptor, which is well studied for its role in maintaining vascular, immune, 
and bone homeostasis. S1PR1, S1PR2, and S1PR3 transcripts in primary osteoblasts and S1PR1 and S1PR2 
in osteoclasts have been detected with negligible or null quantity of S1PR4 and S1PR5, but this could be 
attributed to poor sensitivity of the tools available to detect these receptors rather than the actual absence of 
these receptors.
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Figure 3. Overview of sphingosine 1-phosphate (S1P) biosynthesis and receptors. Ceramides are converted into sphingosine under the 
action of ceramidase. Sphingosine is then metabolized in S1P by the action of two sphingosine kinases (SphK1 and SphK2). All 
biosynthesis steps are reversible in cells. S1P activates five specific G protein-coupled receptors (S1P1-5).

Role of S1P on bone cells
Initially, the S1P contribution to bone homeostasis has been mainly assigned to bone remodeling with 
particular emphasis on possible roles in the circulation of osteoclast progenitors[70-72]. Accordingly, a S1P 
gradient between blood and bone marrow has been proposed that chemoattracts osteoclast progenitors 
away from the bone microenvironment (and hence fewer of them differentiating to mature osteoclasts) 
towards blood through S1P1. Accordingly, mice lacking S1P1 in CD11b+ cells were mildly osteopenic. 
Ishii et al.[73,74] argued that this process was at equilibrium with another regulated by S1P2 causing exactly the 
opposite - chemorepulsion of osteoclast progenitors away from blood towards bone resulting in their 
prolonged dwelling there and hence accelerating osteoclastogenesis. How the two mechanisms may interact 
physiologically remains unclear as S1P1 and S1P2 possess the same Kd for S1P and are expressed to the same 
extent in osteoclast progenitors. On the contrary, we showed that elevating S1P levels in vivo by genetic SPL 
knockout and pharmacological SPL inhibitors resulted in a dramatic increase of bone mass and bone 
mechanical strength in adult mice. If S1P actions on osteoclast progenitors were crucial, bone mass would 
have decreased as high S1P levels under these circumstances would have desensitized S1P1 leading to 
enhanced osteoclastogenesis. In the following years, much more potent mechanisms have been identified 
for how stimulating S1P signaling enhances net bone growth, bone remodeling, and bone mechanical 
strength[75] [Figure 4].



Page 9 of Saier et al. J Cancer Metastasis Treat 2021;7:43 https://dx.doi.org/10.20517/2394-4722.2021.87 24

Figure 4. Sphingosine 1-phosphate (S1P) activity in bone metastasis microenvironment: overview of actions of S1P on bone cells, cancer 
cells, and adipocytes. Black arrows indicate activities of S1P, receptor-activated NF-κB ligand (RANK-L), and tumor growth factor β 
(TGFβ) on different cell types from the bone microenvironment (names in orange) resulting in multiple biological functions (text in 
white). Grey arrows indicate S1P and RANK-L secretions and TGFβ release from resorbed bone matrix. Dotted black arrows indicate cell 
differentiation (adipogenesis and osteoblastogenesis). Red lines indicate S1P and Calcitonin inhibitory activities.

Indeed, we and others demonstrated numerous effects of S1P on osteoblast behavior instead: (1) osteoclast-
secreted S1P stimulated osteoblast production of RANK-L and bone morphogenic protein 6 and promoted 
osteoblast differentiation from mesenchymal stem cells[72,76]; (2) deletion of the bone matrix-degrading 
enzyme cathepsin K in osteoclast increased osteoblastic bone formation by inducing Sphk1 activity and S1P 
production[77]; and (3) the hormone calcitonin induced bone formation by osteoblast through S1P3 and did 
so by controlling osteoclast S1P secretion though regulation of the S1P transporter Spns2[71]. These studies 
have established S1P as a bona fide trophic factor for osteoblasts as well as a novel factor in the functional 
coupling of osteoclasts and osteoblasts [Figure 4].

Nevertheless, despite all the molecular insights, the most relevant question of all remains: What exactly are 
the consequences of pharmacological or genetic alteration of endogenous S1P for bone health and diseases 
in vivo, and which S1P receptors are responsible? This is particularly relevant if S1P-based drugs were to be 
considered for the therapy of osteoporosis or any other bone-related diseases. Studies in preclinical models 
of human diseases have shown that interventions that elevate whole body S1P concentration successfully 
corrected age-related osteoporosis, osteoporosis caused by estrogen deficiency, and the severe genetic 
osteoporosis caused by osteoprotegerin deficiency (a genetic model of human juvenile Paget disease)[75]. At 
least two major mechanisms have been identified behind the potent osteoanabolic actions of S1P. The first 
involves an osteoclast suppressive action of osteoblasts, where S1P/S1P2 signaling stimulated osteoblasts to 
produce Wnt oncogene analog 5 (Wnt5a) and osteoprotegerin through a p38-dependent glycogen synthase 
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kinase-3 (GSK3)/β-catenin pathway, thus inhibiting both osteoclastogenesis and osteoclast activity. The 
second mechanism was even more fundamental: S1P had profound effects on the lineage commitment of 
the common osteoblast/adipocyte stem cell precursor by tilting the differentiation equilibrium in favor of 
osteoblastogenesis at the expense of adipogenesis [Figure 4]. This occurred by S1P activating the 
ostoblastogenic transcription factors osterix and Wnt5a and suppressing major adipogenic ones such as 
peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. 
Accordingly, mice with high S1P had not only a higher bone mass but also less adipose tissue[75].

In humans, data on bone health or disease in relation to S1P are scarce. Several small observational studies 
have negatively associated blood S1P and certain parameters of osteoporosis and have even linked S1P to 
increased risk of bone fracture[78]. In over 4000 participants of the SHIP-Trend population study, we also 
found an inverse relation of plasma S1P to QUS-based bone stiffness as surrogate for classical bone mineral 
density but uncovered a positive association of plasma S1P with clinical bone formation markers[75]. This 
indicated that high S1P is not necessarily causally detrimental for bone mass but, instead, may serve as a 
counter-regulatory measure to boost decreasing bone quality.

As altering S1P metabolism by SPL inhibition has undesired side effects, S1P2 agonists have already been 
successfully used instead to correct osteoporosis caused by estrogen deficiency in mice[79], thereby opening 
new avenues for osteoporosis treatment in men. Considering the lack of drugs aimed at stimulating new 
bone formation rather that inhibiting its degradation (virtually all osteoporosis drugs are anti-resorptive in 
nature), S1P-targeting drugs may become part of the therapeutic quest for the osteoanabolic “Holy Grail” in 
the treatment of osteoporosis. On a broader perspective, any therapy successful at increasing new bone 
growth will certainly find applications not only in the treatment of primary and secondary osteoporosis but 
also in the therapy of rare genetic skeletal diseases, bone trauma and bone regeneration medicine, osteo-
prosthetics, and bone-related tumor and metastasis medicine.

Rolls of S1P in cancer and bone metastasis
SphK/S1P metabolic pathway has been thoroughly investigated because of its implication in all stages of 
tumorigenesis, in cancer cell dissemination, and in the onset and development of metastasis[56,80]. 
Interestingly, the exact role of SphK/S1P/S1P receptor signaling in cancer-derived bone metastasis remains 
somehow unexplored; only a few studies propose the imbalance of S1P metabolism as a central driver of 
bone metastasis.

Recently, the analysis of tumor transcriptome of 3999 breast cancer patients showed that an increase in 
SPHK1, a suppression of SPHK2, and an increase in SPNS2 and S1PR1 were associated with high score 
tumors. All of these protein partners are implicated in the production and secretion of S1P and the 
promotion of angiogenesis[81]. S1PR1 expression was indeed elevated in different models of human breast 
cancer with bone metastatic potential such as luminal and basal/triple-negative subtypes of breast cancer 
cell lines and several breast tumors. Furthermore, breast cancer tumors with a correlation between IL-22R1 
and S1PR1 expression were more prone to cause bone metastases[82]. S1PR3 expression and S1P secretion 
were significantly increased in MDA-MB-231 subline 1833, derived from a breast cancer-derived bone 
metastasis[83]. SphK1 expression was increased by TGF-β and associated to the metastatic potential of MDA-
MB-231 breast cancer cell model[84] [Figure 4].

Up to a third of advanced renal cell carcinoma patients will also develop osteolytic bone metastases[85]. 
SphK/S1P signaling has been implicated in several aspects of the pathophysiology of renal cell carcinoma, 
notably in the regulation of tumor hypoxia and angiogenesis[86,87]. Moreover, upregulation of SphK1 
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expression was correlated to sunitinib resistance and poor prognosis of a large cohort of renal cell 
carcinoma patients[88]. An antibody directed against S1P (sphingomab/sonepcizumab) was proposed as a 
new therapy for resistant renal cell carcinoma after encouraging results in mouse models[89]. Finally, a phase 
2 study of the effect of sonepcizumab in patients with advanced renal cell carcinoma who have previously 
failed up to three therapies, including VEGF and/or mammalian target of rapamycin inhibitors, was 
conducted. This study did not accomplish its primary endpoint (two-month progression-free survival of the 
disease), but a median overall survival of 21.7 months was monitored. Moreover, treatment with 
sonepcizumab was considered as safe[90].

Osteoblastic bone metastases are currently found in lung cancer patients and prostate cancer patients with 
advanced disease. Osteoblasts actively synthetize bone in localized zones such as ribs, clavicles, or spinal 
vertebrae. Newly synthetized bone is extremely fragile, generally provoking fractures and therefore intensive 
pain. In the case of lung cancer, the five S1P receptors were expressed in several non-small and small lung 
cancer-derived cell lines. Exogenous S1P had a pro-metastatic effect in these lung cancer cell models, 
increasing cell migration and their chemotactic responsiveness to different growth factors, especially 
HGF[91]. SphK/S1P metabolic pathway has been extensively studied in the case of prostate cancer[92,93]. 
Importantly, SphK1 activity and expression were increased in human prostate cancer resection specimens 
and correlated with higher prostate specific antigen levels, higher tumor volumes, and disease relapse[94]. 
There is only one study reporting the implication of S1P metabolic pathway in prostate cancer-derived bone 
metastasis. SphK1 activity was significantly increased in murine and human osteoblastic cell models. 
Osteoblasts triggered proliferation of different prostate cancer cell lines through extracellular secretion of 
S1P. In addition, osteoblast-derived S1P was able to induce chemo - or radioresistance of prostate cancer 
cell models. Furthermore, blockade of SphK1 inhibited the proliferative effects of osteoblasts on prostate 
cancer cells[95].

Finally, mixed bone metastases have zones of both active bone resorption and active bone formation. As 
mentioned above, a small population of breast cancer patients can suffer from mixed bone metastasis, and 
they can be found in, for example, colorectal cancer, which is the most common cause of death in these 
patients. SphK/S1P signaling has been extensively described to have oncogenic roles in colorectal cancer or 
colitis-associated colorectal cancer[96,97]. SphK1 activity was important for the promotion of metastasis in 
colorectal cancer[98]. SphK1 expression was indeed significantly increased in patients, and an elevated SphK1 
was an independent predictor of distal metastasis[99]. Other components of S1P signaling such as irreversibly 
S1P-degrading enzyme, SPL[100] and S1P transporter, and Spns2[101] or S1P receptors such as S1P2

[102] or 
S1P4

[103] were recently implicated in different aspects of colorectal cancer or colitis-associated colorectal 
cancer.

PROSTAGLANDINS/LEUKOTRIENES
Prostaglandins and leukotrienes belong to the super-family of eicosanoids. This family is composed of 
bioactive lipids that all derive from arachidonic acid (AA). AA is released from cellular membranes 
predominantly by cytosolic phospholipase A2α activity. Then, AA is processed by cyclooxygenases (COXs) 
to form prostanoids, including prostaglandins (PGs), prostacyclin (PGI2), and thromboxane A2 (TXA2), 
and by 5-lipoxygenase (5-LOX) to form leukotriene B4 (LTB4) and the cysteinyl leukotrienes (CysLTs): 
LTC4, LTD4, and LTE4 [Figure 5].

Structure, synthesis, and receptors
Prostaglandins are generated by the action of prostaglandin G/H synthases, colloquially known as COXs, 
bifunctional enzymes that contain both cyclooxygenase and peroxidase activity and exist as two distinct 
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Figure 5. Overview of eicosanoid biosynthesis and receptor signaling. Arachidonic acid (AA) is liberated from the cellular membranes by 
cytoplasmic phospholipase A2 (cPLA2). Free AA can be metabolized by two main enzymes: cyclooxygenases (COXs) to form various 
prostanoids and 5-lipoxygenase (5-LOX) to form leukotrienes. In the COX pathway, the intermediate PGH2 is sequentially metabolized 
into prostaglandins and thromboxanes by specific prostaglandins and thromboxane synthases. In the 5-LOX pathway, AA is converted 
into the unstable leukotriene A4 (LTA4), which is subsequently converted to leukotriene B4 by LTA4 hydrolase (LTA4H) or to cysteinyl 
leukotriene LTC4 by LTC4 synthase (LTC4S). Each of the prostaglandins and leukotrienes exerts its biological effects through its cognate 
G protein-coupled receptor.

isoforms referred to as COX-1 and COX-2. COX isoenzymes catalyze the conversion of arachidonic acid to 
prostanoids, which include TXA2 and four different PGs: PGD2, PGE2, PGF2�, and PGI2. COX-1 is expressed 
constitutively in most cells. It is the major source of prostanoids with housekeeping functions, whereas 
COX-2, which is induced by inflammatory stimuli, hormones, and growth factors, is the most important 
source of prostanoids in inflammation and cancer[104]. Prostaglandins signal in an autocrine or paracrine 
manner through G-protein-coupled receptors (GPCRs) designated as DP1/2 for PGD2, EP1/2/3/4 for PGE2, FP 
for PGF2�, IP for PGI2, and TP for TXA2

[105] [Figure 5].

Leukotrienes (LT) are generated by the 5-LOX pathway in certain types of leukocytes, such as granulocytes 
(neutrophils, eosinophils, and basophils) and monocytes/macrophages. 5-LOX, in conjunction with 5-LOX-
activating protein (FLAP), generates the unstable intermediate leukotriene A4 (LTA4). Depending on the 
cellular enzymes present, LTA4 can be either converted to dihydroxy-LT LTB4 by LTA4 hydrolase or 
conjugated with glutathione by cysteinyl leukotriene C4 synthase (LTC4S) to generate LTC4. Subsequently, 
LTC4 is exported out of the cell via multidrug resistance-associated proteins 1 and 4 and further processed 
into cysteinyl leukotriene D4 (LTD4) and cysteinyl leukotriene E4 (LTE4). LTB4 and LTD4 are the most 
potent leukotrienes[106]. LTs exert their biological effects by binding to two sets of GPCRs present at the cell 
surface: BLT1/2 for LTB4 and CYSLT1/2 for the CysLTs. Chemotaxis, one of the principal effects of LTB4, 
occurs via activation of the BLT1 receptor subtype, which is the high-affinity LTB4 receptor[107]. BLT2 exhibits 
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low affinity to LTB4 and responds in addition to various eicosanoids[108]. CYSLT1 has a high affinity for 
CysLTs that is higher for LTD4 than LTC4, whereas CYSLT2 has a lower overall affinity that is equal for LTC4 
and LTD4

[109,110]. BLT1 and CysLT1 expression is restricted to myeloid cells, whereas BLT2 and CysLT2 are 
expressed in a wide variety of cells [Figure 5].

Role of prostaglandins/leukotrienes in bone cells
Prostaglandins, particularly PGE2, are major regulators of bone metabolism. However, their mechanisms of 
action are complex as they can stimulate both bone resorption and formation and auto-amplify their effects 
by inducing COX-2 expression [Figure 6]. In bone, PGE2 is primarily produced by osteoblasts and 
contributes indirectly to osteoclastic bone resorption through the upregulation of RANK-L in osteoblasts, 
leading to stimulated osteoclastogenesis and bone resorption[111]. Many cytokines and growth factors known 
to potentiate bone resorption, such as IL-1 and IL-6, enhance PGE2 production by osteoblasts. In contrast, 
IL-4 and IL-13 inhibit bone resorption by suppressing PGE2 production[112]. Analysis of the four EP 
receptor-deficient mice revealed that PGE2 stimulates bone resorption in the cultured calvariae through the 
EP4-cAMP signaling pathway[113]. EP4 expression on mouse osteoblasts is required for osteoclast 
formation[114]. This suggests that PGE2-induced RANK-L expression is mediated through EP4 [Figure 6]. In 
addition, PGE2, synergistically with RANK-L and M-CSF, directly stimulates the differentiation of mouse 
osteoclast precursors into osteoclasts through EP2 and EP4, which are downregulated in mature 
osteoclasts[115,116]. This direct effect of PGE2 on human osteoclasts is however controversial[112]. Paradoxically, 
prostaglandins also have inhibitory effects on bone formation. PGE2 is known to inhibit bone resorption 
in vitro[111] and increase overall bone mass in vivo[117]. The anabolic effect of PGE2 is notably mediated by the 
stimulation of osteoblastic differentiation via EP4 and possibly EP2

[118]. PGE2 has also been implicated in 
several bone-resorptive inflammatory disorders such as osteoarthritis, osteoporosis, and periodontitis[112]. 
PGE2 and COX-2 promote bone formation in response to mechanical loading and endogenous PGE2 

participates in the recovery from osteoporosis and bone fracture[119].

Global deletion of 5-LOX in mice increases bone mass and protects against bone loss in the ovariectomy 
mouse model[120], although high-fat diet-induced bone loss was increased in 5-LOX-/- mice[121], suggesting an 
interaction between estrogen and leukotriene pathways. Both LTB4 and LTD4, in association with RANK-L, 
promote osteoclast differentiation and bone resorption[122]. Thus, 5-LOX metabolites may also act as 
regulators of bone metabolism. LTB4, but not CysLTs, is responsible for Aggregatibacter 
actinomycetemcomitans-induced bone loss in mice[123]. By promoting osteoclastic bone resorption, LTB4 
may thereby inhibit bone formation. Osteoclasts express BLT1, but not BLT2, and produce LTB4, suggesting 
that LTB4/BLT1 signaling increases osteoclastic activity through autocrine and paracrine pathways[112]. LTB4 
is involved in the induction of pain and bone damage in rheumatoid arthritis[124]. CysLTs also regulate 
osteoclast differentiation via CYSLT1 receptor, supporting the role of CysLT in bone loss[125,126]. Importantly, 
LTD4-CYSLT1 signaling activates the mitogen-activated protein kinases (MAPK)/extracellular signal-
regulated kinases (Erk)/c-Jun N-terminal kinase/p38 pathway, which is a key pathway for regulating 
osteoclast differentiation and bone resorption. This may explain why the CYSLT1 antagonist montelukast 
inhibits M-CSF- and RANK-L-induced osteoclast differentiation[127]. In addition, montelukast prevents the 
association of RANK and TNF receptor associated factor 6 and suppresses reactive oxygen species 
generation, which are known to contribute to the pathophysiological development of osteoclastogenesis[128]. 
LTD4/CYSLT1 signaling also plays a role in inducing cellular senescence signaling in osteoblasts, a 
mechanism that has been described to control bone metastasis[129]. Montelukast also inhibits MMP13 
expression in osteoblast, a key factor of proteolytic degradation of membrane-linked RANK-L and 
extracellular matrix components[130]. LTD4 induces chemotaxis and migration of CD34+ bone marrow 
progenitors and induces Erk/MAPK signaling in chronic lymphocytic leukemia (CLL) cells, suggesting that 
CysLTs may contribute to bone marrow accumulation and homing of CLL cells[131,132].
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Figure 6. Prostaglandin E2 (PGE2) activity in bone metastasis microenvironment: overview of actions of PGE2 on bone cells, cancer 
cells, and blood cells. Black arrows indicate activities of PGE2, receptor-activated NF-κB ligand (RANK-L), and tumor growth factor β 
(TGFβ) on different cell types from the bone microenvironment (names in orange) resulting in multiple biological functions (text in 
white). Grey arrows indicate PGE2 and RANK-L secretions and TGFβ release from resorbed bone matrix. Dotted black arrows indicate 
cell differentiation (adipogenesis and osteoclastogenesis). Red lines indicate PGE2 inhibitory activity on osteoclast differentiation and 
activity.

Role of prostaglandins/leukotrienes in cancer and bone metastasis
Prostaglandins
Although negligibly expressed in normal cells, COX-2 is overexpressed in many types of cancers such as 
lung, colorectal, breast, prostate, skin, and hepatic cancers[133]. COX-2 overexpression increases the rate of 
cancer recurrence[134] and reduces survival in patients[135,136]. The use of non-steroidal anti-inflammatory 
drugs, which inhibit PGE2 production, may reduce cancer risk of metastasis[137]. Expression of COX-2 in 
tumors probably occurs as an early event[138] and is related to cancer cell resistance to chemo- and 
radiotherapy[139]. COX-2 exerts most of its functions on tumor cells through PGE2, and elevated urinary 
PGE2 metabolites serve as a biomarker to predict pancreatic cancer risk[140]. PGE2 promotes tumor growth 
through autocrine and paracrine mechanisms by activating EP receptors present in both cancer and stromal 
cells. The variability of EP receptors expressed by cancer cells may influence cell response to PGE2. 
Typically, EP1 and EP4 are associated with tumor cell migration, invasion, and metastasis, whereas EP2 is 
associated with angiogenesis and immunosuppression. PGE2 supports survival and proliferation of cancer 
cells by upregulating Bcl-2 and epidermal growth factor receptor (EGFR). Moreover, PGE2 is an important 
player in tumor microenvironment, where it suppresses antitumor immunity[141]. Many in vivo studies have 
revealed the role of PGE2 in colon cancer carcinogenesis and progression[142-144] and showed that microsomal 
prostaglandin E synthase-1 (mPGES-1) deletion suppresses intestinal and breast cancer progression[145,146]. 
Although clinical and in vitro studies have shown a potential for the use of COX-2 inhibitors to prevent and 
treat malignant diseases, toxicities due to global prostanoid suppression have limited their use[147]. For this 
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reason, EP receptors antagonists are now considered more relevant with some under clinical 
investigation[133] [Figure 6].

Blockade of prostaglandin synthesis with aspirin, in combination with APT102, an ADPase, decreases breast 
cancer and melanoma bone metastasis in mice[55,148]. B16 melanoma bone metastasis is also suppressed in 
mPGES-1-deficient mice, suggesting that prostaglandins may drive tumor invasion and metastasis[149]. Bone 
seeking cells express COX-2 and produce PGE2. TGF-β released from resorbed bone matrix enhances COX-
2 expression in cancer cells, leading to a vicious cycle between bone resorption and tumor growth[150]. In 
addition, PGE2 also indirectly contributes to bone resorption by stimulating the secretion of pro-osteoclastic 
cytokines (IL-8 and IL-11) by cancer cells[151,152]. PGE2/EP4 signaling upregulates matrix metallopeptidase 
(MMP)-2, MMP-9, RANK-L, and Runt-related transcription factor 2 (RUNX2) and contributes to prostate 
cancer cell proliferation and invasion via the cAMP-protein kinase A/phosphoinositide 3-kinase (PI3K)-Akt 
signaling pathway[153]. Overexpression of COX-2 in TM40D mouse breast cancer cells increased bone 
metastasis by recruiting Treg cells through their EP2 and/or EP4 receptors[154], thus providing a favorable 
metastatic environment against immune system surveillance. Nevertheless, in an immunocompromised 
mouse model, the COX-2 inhibitor MF-tricyclic inhibited bone metastasis in mice inoculated with human 
breast cancer cells, suggesting a direct antitumor action of COX-2 inhibitor and/or indirect action on bone 
cells[155]. Blockade of PGE2-EP4 signaling in mice was shown to decrease bone metastasis, in part via the 
abrogation of PGE2-induced RANK-L expression in osteoblasts[156].

Leukotrienes
5-LOX is overexpressed in tissue samples of patients with bladder, breast, esophageal, kidney, oral, 
pancreatic, and prostate cancer, as well as in established cancer cell lines[157-161]. 5-LOX expression is present 
during the early neoplastic changes in cancers such as in pancreatic cancer, well before progression to 
invasive disease[158], supporting the role of 5-LOX in early stages of carcinogenesis. Furthermore, 5-LOX 
correlates with tumor stage and lymph node metastasis in colorectal adenocarcinomas[158]. Leukotrienes may 
modulate the initiation, progression, and metastasis of tumors through regulating the proliferation, 
apoptosis, migration, and invasion of cancer cells. Addition of 5-LOX expression products to tumor cells led 
to increased cell proliferation and activation of anti-apoptotic pathways[162]. CYSLT1 receptor expression 
negatively correlates with survival of patients with prostate, breast, and colon cancers and metastatic uveal 
melanoma[105]. Conversely, low expression of CYSLT2 is associated with poor prognosis in colon cancer. In 
this context, CYSLT2 signaling leads to terminal differentiation of colon carcinoma cells and growth 
inhibition[163]. LTC4S overexpression is found in patients with chronic myeloid leukemia, and high LTC4S 
levels are correlated with tumor aggressiveness in prostate cancer[164,165]. Activation of LTD4/CYSLT1 
signaling has been shown to promote cell proliferation and survival through multiple parallel pathways, 
including GSK3β/β-catenin, PKC/Raf/ERK1, and ERK2 signaling[166,167]. LTD4 increases cancer cell survival 
by upregulating COX-2 expression and PGE2 production[168], indicating a crosstalk between CysLTs and the 
prostaglandins pathways. LTD4/CYSLT1 promotes migration and invasion in colon cancer cells by 
regulating MMP-9 expression[169], whereas CysLT2 signaling reduces cancer cell migration[163], suggesting 
opposing roles of these receptors in cancer cell motility. LTB4 levels are increased in human colon and 
prostate cancers[163]. Inhibition of LTB4 synthesis reduced colon cancer cell growth in patient-derived 
xenograft mouse model and inhibited the burden of esophageal adenocarcinoma in a rat model[170,171]. 
Although in vivo LTB4 may have both direct and indirect pro-tumor action, in vitro LTB4/BLT1 signaling 
directly stimulates colon cancer cell growth and survival through MAPK/ERK- and PI3K-Akt-dependent 
pathways[172,173]. LTB4, by acting on BLT2, increases mesenchymal markers and promotes epithelial-to-
mesenchymal transition in several human cancer cell lines[174,175]. BLT1 appears to also affect cancer 
progression through immune modulation. Notably, PD-1 blockade fails to reduce melanoma growth in 
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BLT1-/- mice due to deficiency in T cell infiltrations[176]. This might contribute to the escape of cancer 
patients to checkpoint inhibitor therapies. Although pharmacological leukotriene inhibitors have 
demonstrated promising cytotoxic and anti-proliferative effects on cancer cell lines and in animal 
models[162], few clinical trials have been conducted. LY293111, a well-tolerated inhibitor of BLT1, showed no 
significant difference in short-term survival in patients with pancreatic cancer and non-small cell lung 
cancer[177,178]. Conversely, cysteinyl leukotriene receptor antagonists (LTRAs), such as montelukast and 
zafirlukast, which are widely prescribed anti-asthmatic drugs, show more promising chemopreventive 
effects. A large epidemiological study on asthmatic patients showed that LTRA treatments decreased the 
risk of cancer development, especially lung, breast, colorectal, and liver cancers[179]. CYSLT1 antagonists also 
confer promising chemopreventive effects in preclinical models[180-184].

Although the role of 5-LOX metabolites in carcinogenesis is well established both in vitro and in murine 
models, few studies have focused on tumor progression and metastasis. MK591, a 5-LOX inhibitor, inhibits 
in vitro invasion of C4-2B human prostate cancer cells[99]. Increased resorption in bone explants induced by 
the breast-cancer cell lines MDA-MB-231 and MCF-7 was inhibited by blocking prostaglandin and 
leukotriene synthesis[185]. These findings suggest that prostaglandins, as well as leukotrienes, may drive 
osteolytic bone lesions. Unexpectedly, 5-LOX deletion in an immunocompetent orthotopic model of lung 
cancer resulted in increased primary tumor growth and metastasis, suggesting an antitumorigenic role for 
some 5-LOX products[186]. Given the crosstalk between the different prostanoid pathways and their possible 
opposing effects, caution should be taken in targeting these pathways in cancer.

CONCLUSIONS
Inflammation plays a prominent role in carcinogenesis and metastasis[187]. Multiples reports have 
demonstrated during the past decade that inflammation can promote tumor initiation, cancer cell growth, 
and metastasis. Remarkably, chemotherapy, radiation therapy, and surgery frequently result in the 
production of pro-inflammatory and pro-angiogenic factors that significantly reduce or even counteract the 
efficacy of those anti-cancer therapies[188-195]. Increased knowledge of the tumor microenvironment 
composition has brought the concept of tumors as inflammatory sites that do not heal. Beyond their direct 
action on both cancer cells and bone cells, LPA, S1P, and eicosanoids also promote inflammation at the 
bone metastatic site by inducing the production of pro-inflammatory cytokines and the recruitment of 
immune cells. Therefore, therapeutic strategies combining anti-inflammatory drugs and blockers of 
bioactive lipids deserve future investigations. However, the recent success of immunotherapies against 
various types of cancers has shifted the paradigm that mobilizing the immune system is beneficial against 
cancer. Meanwhile, loss of resolution of inflammation has recently emerged as a new mechanism of cancer 
pathogenesis[196-202]. This suggests that resolution of inflammation rather than blocking it might be a better 
therapeutic approach[203,204]. Resolution of inflammation relates to the clearance of cellular debris by 
macrophages resulting in reduced localized pro-inflammatory cytokines[205]. Many specialized pro-resolving 
mediators (SPMs) have been characterized based on their endogenous inhibitory action of inflammation 
such as resolvins, lipoxins, protectins, and maresins[205]. Failure of resolution vs. inflammation in 
carcinogenesis has been reviewed in detail[206]. Interestingly, lipoxin A4 (LXA4), which is also a bioactive 
lipid derived from AA following combined activities of 5-LOX and 12-LOX[207], inhibited osteoclast 
differentiation and resorption activity[208]. As expected, in vivo, LXA4 treatment prevented ovariectomy-
induced bone loss in mice. Interestingly, serum levels of pro-osteoclastic cytokines (TNF-α, IL-1β, IL-6, and 
RANKL) were significantly reduced in ovariectomized animals treated with LXA4. These results support the 
hypothesis for direct inhibition of osteoclasts in vivo by LXA4. They also reveal an additional indirect 
osteoclastic action of LXA4 via reducing the production of pro-osteoclastic mediators. Therefore, LXA4 
appears as a potential new tool for the treatment of osteoporosis as well as bone metastasis. Although the 
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number of studies directly linking bioactive lipid/receptor axes to bone metastasis remains limited, the 
constant presence of these lipids in the tumor microenvironment as well as their potent direct activity on 
bone cells suggest a still underestimated action of these molecules among the complex integrated molecular 
mechanisms responsible for bone metastases progression. Even under the best standard of care, current 
targeted bone metastasis therapies are still provided in a palliative purpose with unfortunately no long-term 
curative benefit, highlighting the dramatic need for additional strategies. In this context, targeting bioactive 
lipids in combination with SPMs may potentially lead to the development of novel therapeutic approaches 
that undoubtedly deserve future investigations.
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