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Abstract
The cancer stem cell (CSC) state and epithelial-mesenchymal transition (EMT) activation are tightly 
interconnected. Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes 
to maintain low reactive oxygen species levels and stemness, enhanced drug transporters, anti-apoptotic 
machinery and DNA repair system. Factors present in the tumor microenvironment such as hypoxia and the 
communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display 
related resistance. ATP, particularly the high levels of intratumoral extracellular ATP functioning through both 
signaling pathways and ATP internalization, induces and regulates EMT and CSC. The three of them work together 
to enhance drug resistance. New findings in each of these factors will help us explore deeper into mechanisms of 
drug resistance and suggest new resistance-associated markers and therapeutic targets.
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INTRODUCTION
Drug resistance in cancer is a very complicated process with numerous participating components. These 
include cancer cells in the tumor as well as stromal cells in the tumor microenvironment (TME) and their 
communications and interactions. Both cancer cells and TME are evolving and ever changing, making drug 
resistance a dynamic process. Within TME and cancer cells, proteins and small molecules are also involved 
in drug resistance, working as functional factors to regulate drug resistance. Our recent studies have shown 
that extracellular ATP (eATP) in TME is found in concentrations 103 to 104 times higher than eATP found 
in normal tissues[1-5]. The greatly elevated concentration of eATP plays much larger and diverse roles than 
previously realized in augmenting drug resistance in cancer cells through internalization[6-8], promoting cell 
survival[6-9], accelerating ATP-binding cassette (ABC) transporter activities[10,11], inducing epithelial-
mesenchymal transition (EMT)[12] and possibly the formation of cancer stem cells (CSC). With these new 
advancements in mind, in this review, we summarize recent findings in these fields in an attempt to 
generate a clearer and more cohesive picture for CSC, EMT, ATP, and their distinctive and interactive 
relationships for creating increased drug resistance as a phenotype for cancer cells. Better anticancer 
therapies are likely to be developed by improved understanding of these factors and their roles in drug 
resistance.

CANCER STEM CELLS
CSCs refer to a subset of tumor cells that have an unlimited self-renewal capacity and an intense 
tumorigenic potential (stemness) to differentiate into their non-tumorigenic progenies which comprise the 
rest of the tumor bulk[13,14]. Among tumor cells, CSCs are a subpopulation that constitutes varied 
percentages of the total tumor cells, and this fraction can dramatically increase upon anticancer therapy 
correlating with therapy resistance and tumor rebound[13,15]. CSCs are believed to reside stochastically in a 
tumor but be predominantly induced in hypoxic, low pH, and fewer nutrient regions such as the tumor 
niche[16]. One study discovered that cancer cells can reprogram into CSCs when receiving DNA damage 
signals, suggesting the potential risk of genotoxic therapies in inducing CSC and tumor relapse[17]. 
Substantial studies have shown that CSCs have enhanced resistance to conventional radio-/chemo-therapy 
and targeted therapies and play essential roles in cancer relapse and metastasis[14,18]. Tumors with a high CSC 
signature tend to have a poorer prognosis compared with those with decreased CSC populations[19]. CSCs 
have the nature to be slow-cycling or quiescent, spending the majority of time in G0 and thus can 
circumvent the chemotherapy or radiotherapy targeting the rapidly dividing tumor cells[20]. Other cellular 
mechanisms of therapy resistance in CSCs will be discussed in the following sections.

The intratumoral heterogeneity and its implication in therapy resistance (tumor recurrence) was explained 
by two models: clonal evolution (CE or stochastic) and CSC (hierarchy). In the CE model, tumor cells all 
have equivalent potential to accumulate mutations over time to gain resistance-related traits. The selection 
of the traits leads to increased tumor heterogeneity and disease progression[21]. On the contrary, in the CSC 
model, tumors are initiated with a heterogeneous mixture of genetically distinct subclones of CSCs that each 
gives rise to their fast-dividing progeny cancer cells and ultimately leads to the functional and phenotypical 
heterogeneity of the tumor[22]. According to the CSC model, CSCs contribute to drug resistance and tumor 
progression by the intrinsic resistance possessed by CSCs combined with genetic changes that occur during 
therapy[22]. The main target of conventional cytotoxic therapies are the rapidly-dividing and apoptosis-
sensitive cancer cells, but resistant CSCs can survive, enrich in number, accumulate oncogenic genetic 
changes during therapy and finally expand even under drug treatment, functioning as the precursors of new 
resistant tumor masses and ultimately leading to clinical relapse[22-24]. More recently, several studies 
questioned the unidirectional hierarchic CSC model by showing cancer cells are plastic[25]. A famous 
example is that cell population isolated from breast cancer cell lines displayed stem-, basal-, or luminal-like 
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phenotypes[26]. Each phenotype was capable to convert into the other two phenotypes and over time 
produced all three phenotypes with the same proportions of cell types in the original cell line, but only 
stem-like cells could form tumors upon xenotransplantation[26]. One recent study showed that glioblastoma 
cells expressing CSC markers represented a plastic state that can be adopted by most of the cells in response 
to various microenvironmental cues, which may contribute to enhanced tumorigenic potential[27]. With the 
CSC plasticity, a more fluid hierarchic CSC model is now accepted, where cancer cells can undergo a 
dynamic transition from a non-CSC to CSC phenotype and vice versa to adapt to different stimuli in 
TME[25,28]. The activation of EMT serves as one of the mechanisms for switching phenotypes.

ABC transporters are functional markers of CSCs
Forty-nine ABC transporters have been identified in the human genome and are classified in seven 
subfamilies (ABC A-G) based on amino acid sequence similarities and protein structural organization[29]. 
Most ABC transporters are membrane-bound and function as active transporters that catalyze the transport 
of diverse substrates, including anticancer agents across the plasma and intracellular membrane, using ATP-
provided energy. Three major ABC transporters are frequently implicated in multidrug resistance (MDR), 
namely, P-glycoprotein (P-gp/ABCB1), breast cancer resistance protein (BCRP/ABCG2), and multidrug 
resistance-associated proteins (MRPs/ABCCs). These ABC transporters can mediate resistance to a wide 
range of chemotherapeutics, EGF receptor-tyrosine kinase inhibitors (EGFR-TKIs) and other targeted 
drugs[30], thereby predicting recurrence and poor survival[31,32]. Moreover, co-expression of multiple ABC 
transporters correlates with decreased overall survival[33]. The robust cell-surface expression of ABC 
transporters, especially P-gp and BCRP, is recognized as a key feature of CSCs[13]. Patrawala et al.[34] first 
characterized “side population” cells from human cancer cells purified by flow cytometry-based technique 
isolating for the side population of cells which exclude dye via ABC transporters. These side population cells 
possessed stem cell properties mediated by BCRP[34]. As of now, several studies have demonstrated P-gp and 
BCRP play a key role in maintaining cell viability as well as stemness features[35-38]. On the other hand, the 
expression of ABC transporters is under the regulation of multiple signaling pathways associated with CSC 
phenotypes and EMT activation, contributing to CSC and EMT-related resistance. This will be described in 
later sections. Although potentially life-threatening adverse events remain a major obstacle for the first-, 
second- and third-generation of small molecule ABC transporter inhibitors, therapies combating ABC 
transporter-mediated drug efflux continue to be developed[39]. One advanced strategy is to use TKIs as ABC 
transporter inhibitors, because most TKIs (e.g., imatinib, erlotinib, nilotinib and lapatinib) can target more 
than one ABC transporter and such a multi-target approach might be promising[39]. Another strategy is to 
deplete intracellular ATP molecules, which cuts down the energy supply of ABC transporters and reduces 
MDR. Several approaches of this strategy will be discussed in section V.

ALDH-associated drug resistance
The ALDH family of proteins are cytosolic enzymes that scavenge intracellular highly toxic aldehydes to 
carboxylic acids. ALDH activity measured by Aldefluor assay is a hallmark of CSCs. Though these proteins 
have minimal metabolic activity in normal cancer cells, quiescent CSCs exhibit high ALDH activity to 
catalyze drug metabolism and turn the drugs into less toxic agents[13]. Among 19 members of ALDHs, 
aldehyde dehydrogenase 1 (ALDH1) is considered a CSC biomarker, which indicates stemness and 
resistance to chemotherapy[40,41] and predicts poor clinical outcomes in breast and prostate cancer[42]. High 
expression of ALDH in CSCs have been characterized to play key roles in resistance to chemotherapeutics 
(cisplatin, doxorubicin, etoposide, and fluorouracil), TKIs (Gefitinib and Erlotinib) and radiation in various 
cancer cell lines including breast, lung, gastric, and head/neck cancers[42]. High ALDH activity also correlates 
with EMT, tumor invasion and metastasis. Ovarian cancer stem-like cells sorted by high expression of 
ALDH are prone to activate stemness, invasiveness, EMT and anti-apoptotic properties compared to those 
with low ALDH[43]. Mechanistically, ALDH1 and aldehyde dehydrogenase 3 family member A1 (ALDH3A1) 



Page 687 Zhang et al. Cancer Drug Resist 2021;4:684-709 https://dx.doi.org/10.20517/cdr.2021.32

can act as a detoxifying enzyme and protect cells from increased reactive oxygen species (ROS) by direct 
scavenging of radiation-induced free radicals or by producing the antioxidant reduced nicotinamide 
adenine dinucleotide phosphate (NADPH), suggesting a pivotal role in resistance to radiation and 
chemotherapy[44]. High ALDH1 family member A1 (ALDH1A1) led to nuclear factor-erythroid 2-related 
factor 2 (Nrf2) activation via p62-associated pathway in ALDH1-high CSC-like ovarian cancer cells. Nrf2 
activation in these cells contributed to CSC-like properties including high levels of P-gp and BCRP and 
chemo resistance[45]. Additionally, enhanced ALDH activity is associated with the activation of the pro-
survival signaling pathways such as transforming growth factor beta (TGF-β), platelet-derived growth factor 
(PDGF), Notch, and the mechanistic target of rapamycin (mTOR)[42]. For example, ALDH activity was 
regulated by another putative CSC marker Nanog, through the Notch1/Akt signaling pathway in breast 
cancer stem cells[46]. Additionally, the enhanced ALDH activity led to cellular radio-resistance by simulating 
double-strand break repair[46]. Inhibitors directly targeting isoforms of ALDH, such as ALDH1A1 and 
ALDH3A1 have been developed, which hold promise for eliminating CSCs particularly in gynecologic 
cancers[47]. Challenges of using ALDH inhibitors include limited in vivo activity and the need of using 
ALDH inhibitors in combination with other anticancer therapies[47].

Oxidative stress-associated resistance
ROS can induce therapy resistance at both high and low levels[13,48]. Compared to more differentiated cells, 
CSCs have a robust ROS scavenging system and maintain ROS at low levels, which may be attributable to an 
increase in ROS scavenging molecules or/and enhanced mitochondrial respiratory capacity[49-51]. On the one 
hand, the low ROS levels serve to prevent cell death from ROS overloading and maintain stemness, 
tumorigenic capacity and tumor radio- and chemo-resistance[48,50-53]. On the other hand, elevated ROS levels 
emerge as a potential factor to induce EMT particularly under hypoxia, and such induction of EMT can 
contribute to the acquisition of stemness features[48,54]. Whereas excessive oxidative stress can cause damage 
to DNA, proteins and lipids and lead to apoptosis[55].

Glutathione (GSH) is vitally important for the maintenance of cellular redox homeostasis and is important 
for various signaling processes in cell apoptosis and proliferation[56]. Survival through radio- and chemo-
therapy may trigger the synthesis of GSH at high amounts, which can enhance cell survival[19] as well as 
function as a signaling molecule to induce CSC phenotype[57], thus serving as one way to integrate ROS with 
CSC signaling[57]. Interestingly, one study reported that exogenous administration of GSH can increase 
intracellular GSH levels and induce resistance to cisplatin by suppressing apoptosis[58]. GSH conjugation is 
the first step of the cell detoxifying mercapturic acid pathway, in which Glutathione S-transferases (GSTs) 
binds to GSH and cytotoxic compounds (include certain chemotherapeutics), forming conjugates readily 
excreted via membrane transporters[56]. Several members of the MRP transporter family are responsible for 
this excretion, including MRP1, MRP2, MRP3, MRP4, MRP5, MRP7[56]. Moreover, ABC transporters such 
as MRP1 are often upregulated in drug-resistant cancer cells along with GSH or GSTs[59,60], whereas some 
ABC transporters like ABCB6 can regulate ROS via porphyrin biosynthesis and diminish the ROS-inductive 
effect of chemotherapeutics[61]. Notably, the overexpression of GSTs and MRP1 has been recognized as one 
underlying mechanism for therapeutic resistance in various cancers (breast, colorectal, lung, ovarian, 
pancreatic), with overexpressed GST pi 1, a member of the GST family, showing intense correlation with 
CSCs-related resistance and being considered as a biomarker for cancer[56,62-65].

Metabolic reprograming, CSC plasticity, and hypoxia
Cancer cells display a rapid metabolic adaptation in response to low-nutrient and hypoxia in the 
surrounding tumor microenvironment. This adaptation, namely “metabolic reprogramming”, refers to the 
shift of cellular bioenergetics, a new hallmark of cancer[66] and is utilized by CSCs[67]. CSCs can fulfill their 
energy demands by shifting their phenotypes[13]. The CSC phenotype is believed to be a plastic state that can 
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be adopted by most cancer cells[27] and is capable of transitioning between a stem, mesenchymal-like 
phenotype and a non-stem, epithelial-like one[68]. Different CSC phenotypes can correlate with metabolic 
differences and add to the heterogeneity of cancer cells, and thereby ease their adaptation to TME and limit 
the efficacy of conventional therapies[27,69]. Activation of EMT in non-CSCs is a predominant driver to 
convert them into the CSC state[70]. EMT induces metabolic reprogramming to accommodate cellular 
changes during EMT, and imparts cancer cells with the phenotypic and metabolic plasticity of CSC, which 
is required for drug resistance.

Hypoxia has been recognized as a key factor in TME that contributes to the plasticity and heterogeneity of 
CSCs[71]. Cancer cells localized in hypoxic regions tend to display CSC-like phenotypes and are more 
invasive than cells in oxygenated regions within tumors[72]. The non-CSCs grow and proliferate rapidly, 
which leads to hypoxia in the nearby milieu[13]. The poor oxygen availability may reasonably shift the 
metabolism from disadvantaged oxidative pathways to glycolysis[73].

Chemoresistant pancreatic cancer cells rely on glycolysis to maintain low ROS levels and consequent CSC 
and EMT phenotypes[74]. This correlation of hypoxia and CSC features have been demonstrated in various 
tumor types[73]. One central mediator of this adaptive metabolic shift is hypoxia-inducible factor 1 (Hif-1)[75]. 
Hif-1α is stabilized under hypoxia and can stimulate glycolysis by upregulating glycolytic enzymes such as 
GLUT1, lactate dehydrogenase A, and pyruvate dehydrogenase kinase 1 (PDK1)[28]. Further, Hif-1α 
promotes CSC formation and maintenance under hypoxia by activating Notch signaling in 
glioblastomas[76]. Hif-1α is also an emerging activator EMT under hypoxia[77,78] and the activation of EMT 
triggers the conversion to CSCs[27]. Moreover, Hif-1 shifts metabolic flux to enhanced glycolysis, serine 
synthesis pathway and mitochondrial one-carbon metabolism to increase mitochondrial antioxidant 
production (NADPH and glutathione), serving to reduce mitochondrial ROS levels and thus coupling redox 
regulation with the induction of CSC phenotype[75]. Besides, Hif-1α is a crucial transcriptional activator of P-
gp and has implications in enhanced activities of MRP1 and BCRP, contributing to chemoresistance[79]. 
Along with Hif-1, El-Sahli et al.[67] summarized other pathways involved in metabolic reprogramming of 
CSCs. Among which, yes-associated protein 1/transcriptional coactivator with PDZ-binding motif 
(YAP/TAZ), Janus kinases/signal transducer and activator of transcription proteins (JAK/STATs), and 
nuclear factor-κB (NF-κB) are also implicated in drug resistance[67,80].

Furthermore, the metabolic reprogramming of CSCs is a flexible mechanism which allows CSCs to either 
rely on glycolysis or mitochondrial OXPHOS, depending on the tumor type and the adaptation to a 
particular condition (such as hypoxia) within the TME[13]. The metabolic switch to glycolysis was 
demonstrated in CD44+CD24lowEPCAM+ CSCs in breast cancer, radioresistant CSCs in nasopharyngeal 
carcinoma, and CD133+CD49f+ CSCs in hepatocellular carcinoma. The underlying mechanisms include Hif-
1α-mediated enhanced glycolysis, STAT3-mediated induction of aerobic glycolysis[81], and c-Myc-driven 
glycolytic programme[82]. In contrast, CSCs in other cancer types adopt OXPHOS as the preferred process 
for energy production. This notion is exemplified in CD133+ CSCs in glioblastoma and pancreatic 
adenocarcinoma, low reactive oxygen species quiescent stem cells in leukemia, and side population of lung 
and breast cancer[83]. One study demonstrated diverse oncogene-addicted cancer cells and CSCs (lung, 
melanoma, leukemia, breast) showed selective reliance on OXPHOS and resistance to EGFR-TKIs[84]. 
Invasive ovarian cancer and ovarian CSCs were also recently found to prefer OXPHOS, and chemoresistant 
ovarian cancer cells exhibited adaptability to switch between OXPHOS and glycolysis under different 
stress[85]. In addition to glycolytic and OXPHOS phenotypes, CSCs can also rely on mitochondrial fatty acid 
oxidation for ATP and NADPH generation[83].
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Given the crucial role of hypoxia in CSC metabolism and plasticity, targeting Hif-1α and downstream Hif 
signaling pathways to overcome hypoxia is a reasonable approach to reduce CSCs. Strategies inhibiting Hif-
1α has been well summarized by Onnis et al.[86]. Inhibition of glycolysis also serves as a promising approach 
in combination with chemotherapy, which was shown to effectively eradicate chemoresistant glioblastoma 
CSCs which reside in their hypoxic niches and rely on glycolysis for ATP generation[87]. Additionally, 
inhibition of glycolysis by dichloroacetate may reverse the metabolic shift to OXPHOS, leading to increased 
ROS and promoted apoptosis in CSCs of several cancer types[72].

Acidic TME induces CSC phenotypes and chemoresistance
Acidosis, meaning extracellular pH ranging from 6.2 to 6.8, is a hallmark of TME in solid tumors[88]. Tumor 
acidosis is a consequence of the exacerbated aerobic glycolysis and hydration of CO2 derived from 
mitochondrial respiration[89]. Acidosis can activate EMT by modulating the expression of EMT-related 
proteins[90]. The adaptive CSC-like phenotypes are likely triggered and maintained by the EMT 
activation[91,92]. When exposed to acidic conditions, cancer cells have been reported to show reduced 
proliferation and even quiescence, and increased resistance to apoptosis[93]. Acidosis may regulate CSC-
associated gene expression via hypoxia-inducible factor 2α (Hif-2α)[91], which is considered as a master 
regulator of gene expression and a marker of CSC in glioma[94]. Both the abundance and transcription 
activity of Hif-2α was documented to be increased by acute acidosis[91]. Acidosis is related to the metabolic 
shift towards a dependence on mitochondrial OXPHOS, which is an adaptative mechanism for efficient 
ATP generation[95], particularly in therapy-resistant CSCs of certain types of cancers as described above. 
Altered lipid metabolism is another result of acidosis and is correlated with chemoresistance. For instance, 
acidosis activated partial EMT and increased ATP generation through enhanced fatty acid uptake in various 
cancer types[96]. Additionally, under acidosis, increased lipid desaturation was found to be essential to the 
maintenance of stemness in ovarian cancer cells[97]. Acidosis can also contribute to resistance by enhancing 
drug efflux activities of P-gp[98] and BCRP[99]. Finally, cancer cells undergo autophagy as a survival 
mechanism when stimulated by acute acidosis[91], and this increased autophagic flux is associated with 
stemness, quiescence, and chemotherapy resistance in a variety of cancers[100].

The adaptive metabolism under tumor acidosis sustains resistance-related CSC phenotypes, which can be 
targeted by inhibiting key enzymes/transporters in the metabolic pathway. Moreover, many pH sensitive 
nanoparticles have been developed with the goal to selectively deliver anticancer drugs to TME[101]. A 
combination of such a delivery system and siRNA of key enzymes/transporters (e.g., ASCT2) might 
significantly inhibit tumor growth and reduce drug resistance[102].

Autophagy in CSCs and resistance
Autophagy is an arising player in the maintenance of CSC stemness[100]. Autophagy can be stimulated by the 
same range of stressors in CSC and EMT induction, including oxidative stress, hypoxia, nutrient-
deprivation, as well as genotoxic therapies[48,100]. Many EMT inducers like TGF-β and CSC related 
transcription factors such as sex determining region Y-box 2 (SOX2), and Nanog are also capable of 
inducing autophagy[100]. On the other hand, CSCs show dependence on autophagy. Autophagy promotes the 
expression of stem cell markers CD44 and mesenchymal markers vimentin, as well as in vivo tumorigenesis 
and CSC related drug resistance[100]. Autophagy acts as a double-edged sword for resistance to therapies: it 
protects cancer cells from stressors by recycling metabolites degraded from damaged organelles and 
mediates MDR, thus protecting cancer cells from anticancer drugs. On the contrary, it may also induce 
autophagic cell death and thus kill MDR cancer cells with deficient apoptosis pathways[30,100].
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Forkhead box (FOX) O3a, a transcription factor suppressing protective autophagy particularly in CSCs, was 
identified to form a negative feedback loop in which its turnover was controlled by autophagy. Upon 
autophagy inhibition, FOXO3a protein increased and accumulated in the nucleus, and transcriptionally 
activated the pro-apoptotic gene, p53 upregulated modulator of apoptosis, leading to p53-independent 
apoptosis and consequently sensitizing colorectal cancer (CRC) cells to chemotherapy drugs such as 
doxorubicin and etoposide[103]. This study suggested that a homeostasis of autophagy is maintained by 
FOXO3a and is crucial to cancer cell survival. In contradiction to what is described above, FOXO3a was 
reported to play a promoting role in both hypoxia-induced and sorafenib-induced autophagy and sorafenib 
resistance in hepatocellular carcinoma, while the knockout of FOXO3a significantly inhibited autophagy 
and restored sorafenib sensitivity[104].

Nrf2 is an important activator of protective autophagy. In response to chemotherapy-induced oxidative 
stress, the accumulation of Nrf2 transcriptionally upregulates genes involved in the activation of protective 
autophagy such as an autophagy cargo receptor p62. Such autophagy eliminates cellular cytotoxic products 
and thus promotes tumor survival and chemoresistance[105]. High CD44 expression in breast cancer stem-
like cells led to p62-associated Nrf2 elevation, possibly due to the activation of autophagy. Nrf2 activation 
consequently contributed to the promotion of tumor initiating capability, migration and invasion, and 
anticancer drug resistance[106]. In leukemia stem cells, inhibition of histone methyltransferase G9a induced 
ROS and apoptosis, which was bypassed by the activation of the protein kinase RNA-like endoplasmic 
reticulum kinase (PERK)/Nrf2 pathway[107]. Autophagy was also found to be induced upon G9a inhibition 
and autophagy inhibitors significantly increased apoptosis, suggesting PERK/Nrf2 might suppress ROS-
induced apoptosis by induction of pro-survival autophagy, although the autophagy was not abrogated by 
PERK/Nrf2 inhibition[107].

Mitophagy is one of the mitochondria quality control systems which selectively targets damaged 
mitochondria for autophagy-mediated degradation. Mitophagy can lead to reduced ROS and promote cell 
survival and resistance in cancer cells[108,109]. In CSCs, mitophagy is involved in the maintenance of stemness 
by suppressing mitochondria-mediated p53 phosphorylation and allows the expression of downstream CSC 
transcription factor Nanog[110]. Mitophagy also prompts a quiescent state by enhancing mitochondrial 
turnover and forces the energy metabolism from OXPHOS to glycolysis[100]. A recent study found that 
mitophagy can be induced by doxorubicin in CD133+/CD44+ CRC CSCs, and inhibition of mitophagy 
significantly enhanced doxorubicin sensitivity, suggesting a role of mitophagy in CSC-related 
chemoresistance[111]. Autophagy and mitophagy are believed to be maintained in equilibrium in CSCs to 
promote resistance, therefore either autophagy/mitophagy inhibition or overactivation in order to disrupt 
the equilibrium would be a therapeutic strategy[13], Table 1 summarizes drug resistance factors discussed in 
this section.

EPITHELIAL-MESENCHYMAL TRANSITION
The mechanisms taken by CSCs to confer drug resistance are believed to be largely attributable to the 
activation of EMT[70]. EMT is a development process during embryogenesis and epithelial wound healing. 
As hijacked by cancer cells, EMT endows epithelial cells with malignant traits such as loss of cell-cell 
adhesion and apical-basal polarity, transition to a mesenchymal phenotype, and enhanced migratory and 
invasive potentials. EMT can be triggered by hypoxia[112], mechanical stress[113], and inflammatory cytokines 
(e.g., TGF‐β, TNF‐α, IL‐1β, IL‐6)[114], among which TGF-β/SMAD signaling is established in multiple EMT 
models to play a central role[70]. Cells undergoing EMT display decreased expression levels of epithelial 
markers such as E-cadherin, zonula occludens-1 (ZO-1), occluding, laminin-1, claudin, and increased 
mesenchymal markers such as N-cadherin, vimentin and fibronectin[115]. Such a switch in gene expression is 
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Table 1. Major factors involved in cancer stem cell-related drug resistance

Associated factor Major normal biological 
function

Functions in cancer 
drug resistance Major Ref. Additional remarks

ABC transporters Efflux toxic metabolites Efflux anticancer drugs, 
reducing ROS

[30,31,33,35,38,56,62,64] 
[61]

Functional marker of CSC

Low oxidative stress Anti-apoptosis, 
detoxification

Maintaining stemness, 
preventing therapy-
induced apoptosis

[48,50,51] 
[19,49,50,53,56,58]

ALDH Oxidation of aldehydes, 
detoxification

Detoxification, 
reducing ROS, 
inducing CSC

[13,41,42] 
[42,44] 
[45]

Hallmark of CSC

Metabolic 
reprogramming

Not applicable Reducing ROS, 
adaptation to TME

[73,75] 
[13,27,69,84,85]

Hallmark for cancer 
metabolism

Autophagy Removal and recycling 
cellular components

Inducing CSC, 
promoting survival

[48,100] 
[30,100,103,105-109]

Mitophagy reduces ROS and 
promotes survival

under the control of multiple key signaling pathways, including TGF-β, Notch, Wnt, Hedgehog (Hh), 
PI3K/Akt/mTOR, MAPK/ERK, NF-κB[115]. These signaling pathways ultimately converge on a relatively 
small group of transcription factors that orchestrate the changes in gene-expression associated with 
EMT[70]. These transcription factors are often referred to as “EMT-inducing transcription factors”, such as 
Snail, Slug, zinc finger E-box binding homeobox 1/2 (Zeb1/2), Twist1/2, FOXC2, and FOXM1. Besides 
transcriptional control, EMT is also regulated by post-transcriptional mechanisms, including microRNAs, 
long non-coding RNAs, alternative splicing, epigenetics, and post-translational protein stability[116].

An important notion brought by Shibue and Weinberg[70] is that the EMT program is usually partially 
activated and concurrently expresses epithelial and mesenchymal markers, and the partial EMT phenotypes 
are highly diverse even within individual tumors. Remarkably, cancer cells that undergo partial EMT are 
recognized to have a higher metastatic risk than complete EMT, probably due to cell migration by clusters 
and enhanced attachment to the extracellular matrix[70,116]. The induction of partial EMT phenotype is also 
associated with CSC expansion[117]. Jolly et al.[116] summarized evidence for the existence of the partial EMT 
phenotype and its implication in resistance to chemo- and targeted therapies in multiple carcinomas.

EMT induces CSC phenotypes and resistance
EMT is a critical regulator of CSC phenotypes, with emerging evidence indicating therapy-resistant cells 
enter the CSC state via the activation of EMT[70] and thus display resistance to radio- and chemo-therapy by 
the gained CSC properties. Though the elucidation of the precise mechanisms of how EMT induces 
stemness needs further efforts, current studies suggest several EMT-TFs can promote stemness via the 
activation of CSC regulatory signaling pathways (Notch, Hh, Wnt, Mitofusin) and epigenetic regulators 
such as microRNA (miR)-200 family members and polycomb complex protein BMI1, a key player in CSC 
maintenance[118]. For instance, Slug enhances CSC self-renewal capacity; Zeb1 can directly inhibit miR-200 
family members and induce stemness by Zeb1/miR-200/BMI1 or Zeb1/miR-200/Notch axis; Twist 
transcriptionally activates BMI1[118]. One newly recognized connective player is the mitochondrial fusion 
pathway: upregulation of mitofusin proteins can be triggered by EMT and lead to segregation of the fused 
mitochondria into CSC upon asymmetric cell division, which provided CSCs with enhanced glutathione 
synthesis and ROS scavenging to maintain stemness[52]. In turn, CSCs can provoke EMT in non-CSCs via 
exosome-mediated mechanism and shape the latter to CSCs with an apoptosis-resistant feature[119].

The cellular mechanisms of resistance tightly linked to EMT are attributable to the roles of TGF-β and some 
EMT-TFs in activating pro-survival signaling, enhancing DNA damage repair, and promoting MDR by 
ABC transporters. TGF-β and EMT-TFs are also implicated in CSC induction, maintenance of stemness and 
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modulation of metabolism, demonstrating the links among EMT, CSC, and drug resistance.

TGF-� associated drug resistance
TGF-β is a well-established EMT-inducing cytokine that functions as a double-edged sword in relation to 
drug resistance. At early stages of tumor progression, TGF-β functions as an important tumor suppressor in 
epithelial cells by inducing apoptosis; however, during later stages, the pro-metastatic role of TGF-β often 
contributes to resistance[120,121]. A recent study revealed one mechanism of opposing responses of cell 
survival and apoptosis mediated by TGF-β: by alternative splicing of TGF-β-activated kinase 1 (Tak1). The 
short isoform of Tak1 was constitutively active and supported TGF-β-induced EMT and NF-κB signaling, 
whereas the full-length isoform of Tak1 promoted TGF-β-induced apoptosis[122]. Chronic exposure to 
chemotherapy induced an increase in TGF-β, EMT markers, stem cell markers CD44+/CD24-, sphere 
formation, and anti-apoptosis protein Bcl-2 in triple negative breast cancer cells, indicating a role of TGF-β 
in chemo-resistance by regulating EMT, stemness, and apoptosis[123]. TGF-β prompts EMT in epithelial non-
CSCs, and the activated EMT-regulatory genes can be crucial in driving cellular plasticity towards 
mesenchymal CSC states. This is exemplified by Zeb1: in non-CSCs the transcription of Zeb1 was 
maintained in a poised chromatin configuration which readily enabled the conversion to a stem-like state in 
response to TGF-β[124]. Moreover, TGF-β can modulate CSC metabolism and promote tumor heterogeneity, 
leading to drug resistance[125]. For instance, a high concentration of TGF-β near the tumor-vasculature 
bestowed slower-cycling properties to neighboring squamous cell carcinoma stem cells, which 
transcriptionally activates p21 and stabilized Nrf2 thereby markedly enhances glutathione metabolism to 
diminish the effectiveness of cisplatin[125]. In addition, TGF-β can induce EMT-mediated resistance to 
EGFR-TKI by activating the MAPK, which can be blocked by the MEK1/2 inhibitor[126].

Drug resistance induced by overexpression of EMT-TFs
EMT-TFs such as Snail, Slug, Twist, Zeb, FOXM1 and FOXC2 act as bridges connecting EMT and drug 
resistance. One major mechanism is the overexpression of EMT-TFs enhances the efflux activity of ABC 
transporters and thereby promotes MDR. EMT-TFs are known to have binding sites on the promoter 
regions of multiple ABC transporter genes[127]. In sorafenib-resistant HCC with increased metastasis and 
enhanced MDR by upregulated P-gp, MDR was suggested as a downstream event from EMT and directly 
triggered by EMT, as the siRNA knockdown of Snail blocked EMT and partially reversed MDR[128]. 
PI3K/Akt signaling pathway can induce EMT-associated resistance by the direct regulation on Snail, which 
then activates P-gp-mediated MDR[128,129]. Overexpression of Slug in HCC cells induced chemo-resistance 
via upregulation of BCRP but downregulation of P-gp, as well as by the increased expression of stem cell 
marker CD133 in both complete and partial EMT phenotypes[130]. Chemotherapeutics like doxorubicin can 
induce FOXM1, which directly activates BCRP to increase the drug efflux and resistance in bladder cancer 
cells[131].

Moreover, EMT-TFs can enhance antiapoptotic or suppress apoptotic signaling, either independent of or 
dependent on their role in the induction of CSC phenotype. For example, Twist1 induces resistance to 
EGFR-TKI by transcriptional suppression of pro-apoptotic gene BCL2L11 (BIM), and the addition of a pan-
Bcl-2 inhibitor overcame the resistance[132]. Prostate cancer cells resistant to androgen deprivation (AD) 
therapy were characterized by elevated FOXC2, the associated EMT/CSC phenotype and increased drug 
resistance, which were related to the activation of p38 MAPK signaling, a key pathway in promoting cell 
survival and proliferation[133].The study of the mechanism suggested that FOXC2 augmented p38 
phosphorylation[133].
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Furthermore, EMT-TFs increase DNA damage repair and promote tumor cell survival under anticancer 
treatment. Overexpression of transcription factor 4 promoted doxorubicin resistance and stemness, likely 
by the upregulation of Zeb1 and Zeb2 in CRC cells[134]. Zeb1 promoted DNA repair via ATM- checkpoint 
kinase 1 (CHK1)- the mediated mechanism and was required for the clearance of DNA breaks, thereby 
inducing resistance to chemotherapy and radiotherapy[135]. Overexpression of Zeb1 activated ATM kinase by 
recruiting the transcriptional coactivators p300/PCAF to the ATM promoter, thus rendering 
chemoresistance in breast cancer cells[136]. In addition, the activated ATM was previously described to 
phosphorylate and stabilize Zeb1, indicating a positive feedback loop between Zeb1 and ATM 
regulation[136,137]. Activation of YAP and FOXM1 axis induced EMT-associated EGFR-TKI resistance in lung 
cancer by dysregulating mitosis. This was indicated by an increased abundance of spindle assembly 
checkpoint components including polo-like kinase 1, aurora kinases, survivin, and kinesin spindle 
protein[80]. FOXM1 was suggested as a potential biomarker for resistant lung cancers and its presence 
predicted a worse clinical outcome[80].

EMT is associated with activation of alternative pathways in acquired resistance to TKIs
Besides the resistance to conventional chemotherapeutics, EMT also contributes to the resistance of EGFR-
targeted agents in many types of cancer cells[138]. Other than metabolic changes such as ROS or 
environmental cues like hypoxia, EMT can be induced by the activation of alternative pathways involved in 
acquired resistance to EGFR-TKIs, and the induced EMT further exaggerates the resistance. Poh et al.[139] 
reported a case of EMT causatively inducing acquired resistance to the second-generation EGFR-TKI, 
afatinib in a patient with advanced non-small cell lung cancer (NSCLC), but negative for a secondary EGFR 
mutation. AXL is a receptor tyrosine kinase and its correlation with EMT has been demonstrated in 
NSCLC, breast cancer, and pancreatic cancer[140]. Acquisition of EMT phenotypes and AXL kinase activation 
were reported in the osimertinib-resistant cell line[140]. The insulin-like growth factor (IGF) signaling is 
crucial in growth, development and apoptosis. Upregulation of IGF1 receptor (IGF1R) was found to 
correlate with EMT and EGFR-TKIs resistance[141]. Notably, either silencing of IGF1R or direct inhibition of 
EMT by overexpression of E-cadherin substantially reduced EMT and resistance[141]. The mechanistic study 
suggested the activation of MAPK/ERK pathway downstream IGF1R induced EMT, which is indicated by 
increased nuclear β-catenin and Snail; the induction of EMT is associated with promoted resistance to 
EGFR-TKIs[141]. Sato et al.[142] reported a feedback loop between MEK/ERK and PI3K/Akt pathways in 
EGFR-TKI-resistant NSCLC cell lines, suggesting resistance to EGFR inhibition may be a result and also a 
cause of the activation of PI3K/Akt-induced EMT. In advanced hepatocellular carcinoma, the sorafenib-
activated Akt is thought to account for EMT and resistance to sorafenib via EMT-related upregulation of P-
gp[107]. Treatment with a combined inhibition of MEK and PI3K pathways reversed EMT to MET and 
restored sensitivity to EGFR-TKIs[128,142].

Inhibiting EMT to reduce drug resistance can be achieved by targeting characteristics associated with EMT, 
including TGF-β signaling, mesenchymal markers (vimentin, Slug, and Snail), AXL, EGFR[143,144], and IGF 
signaling[141,145]. The development of therapeutics has been intensively reviewed[143,144]. In our recent study 
aiming at understanding the mechanistic roles of eATP in promoting EMT, we compared the gene 
expression changes induced by eATP and TGF-β, which would identify potential therapeutic targets (e.g., 
Stanniocalcin-1) involved in EMT and drug resistance. Table 2 is included below to summarize 
factors/pathways described in this section.

PATHWAYS CONNNECTING EMT AND CSC AND THE IMPLICATION IN DRUG 
RESISTANCE
Many recent studies suggest that EMT and CSC are intimately interconnected and their involvements in 
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Table 2. Major factors and pathways involved in EMT-related drug resistance in cancer

Involved factor Normal biological 
function

Functions in cancer drug 
resistance Major Ref. Additional remarks

CSC induction Not applicable Promoting stemness [52,70,118]

TGF-β Inducing EMT and metastasis Inducing drug resistant state of 
EMT and CSC

[120-126] A master inducer of EMT and 
CSC

EMT-associated  
transcription factors

Expression of EMT-related 
genes

Upregulating drug transporters, 
anti-apoptosis 
Enhancing DNA damage repair

[127-131] 
[132,133] 
[134-137]

Snail, Slug, Twist, Zeb, FOXM1 
and FOXC2

Alternative RTK 
signaling 

Cell growth, proliferation and 
survival

Activating EMT and related 
resistance

[128,140-142] AXL, IGF, MEK/ERK and 
PI3K/Akt

drug resistance represent different manifestations of a combined EMT/CSC phenotype[11,70,146]. One possible 
mechanism is that the activation of EMT and induction of CSC during tumor development are associated 
with activation of numerous signaling pathways that control CSC functions including self-renewal, 
differentiation, survival and metastatic potential. Among them, the Akt, Notch, Hh, Wnt/β-catenin, and 
NF-κB signaling pathways are responsible for inducing drug resistance. A better understanding of the 
mechanistic linkage between EMT, CSC and drug resistance would smooth the path for the identification of 
anticancer targets and promote therapeutic efficacy.

Akt
Akt promotes cell survival, cell proliferation, induction of EMT and maintenance of stemness, it is 
considered as the master regulator of drug resistance[147]. Dysregulation of PI3K/Akt signaling prevails in 
human cancer and Akt often interacts with other signaling pathways involved in EMT/CSC to confer drug 
resistance. For instance, hypoxia synergistically enhanced gemcitabine-induced interaction between Akt and 
notch1, which in turn promoted cell stemness and chemoresistance[148]. Akt/glycogen synthase kinase 3-β 
activated Wnt signaling and promoted stemness and cisplatin resistance[149]. Akt cross talks with MAPK and 
NF-κB inducing overexpression of P-gp and MDR in cancer cells with EMT/CSC phenotypes[128,150], as well 
as activating programmed death-ligand 1 expression which leads to immunosuppression[147]. Under hypoxia, 
PI3K/Akt coupled with mTOR and activated Hif-1α and Hif-2α, which promoted quiescence and 
chemoresistance via ABC transporters[79]. Combined therapy using PI3K inhibitor with inhibitors of other 
pathways that interact with AKT, like MAPK, might be a potent therapeutic strategy against drug 
resistance[142].

Notch
Notch signaling plays a crucial role in cell to cell communications, cell fate, angiogenesis, and CSCs of 
several tumors[151,152]. Notch signaling consists of two types of membrane-bound ligands: Delta-like ligands, 
and Jagged ligands. The binding of Notch ligands with four trans-membrane notch receptors (notch 1-4) 
leads to coordinated communication between adjacent cells[151]. Firstly, Notch cross talks with EMT: Notch 
induces EMT by upregulating EMT-TFs such as Twist, Snail, Slug, and Zeb; while Notch can be regulated 
by growth factors relevant to EMT such as fibroblast growth factor (FGF) and PDGF[138]. Further, Notch is 
an important mediator of CSC-related chemoresistance. For instance, CD133+/CD24+ high renal cell 
carcinoma CSCs showed enhanced notch signaling, and blockage of Notch-1 or notch-2 reversed the 
stemness, invasiveness, migratory potential, and chemoresistance to cisplatin and sorafenib[153]. Also, Notch 
directly activates the transcription of the anti-apoptotic survivin, which serves as a Notch effector and 
contributes to CSC maintenance[154]. Moreover, activation of Notch signaling enhances the efflux activity of 
ABC transporters and promotes MDR. In NSCLC, Notch-1 contributes to chemoresistance via a Notch-
1/AP-1/miR-451/MDR-1 axis, and inhibition of Notch-1 led to increased miR-451 and sensitized tumors to 
taxane-based treatment[155]. Patients of Stage II CRC with overexpression of hairy and enhancer of split-1 
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(HES1), a downstream transcriptional factor of Notch, showed higher recurrence rates after 
chemotherapy[156]. The over-expressed HES1 was found to correlate with increased MRP1, MRP2 and P-gp 
expression and chemoresistance in CRC cells[156]. Finally, Notch mediates resistance to EGFR-targeted 
agents by enhancing DNA damage repair and/or activating pro-survival signaling pathways. For instance, a 
combined blockade of EGFR and Notch-2/3 prevented acquired resistance to EGFR inhibitors and 
radiation, by reducing EGFR-TKI-induced ALDH+ and radiation-induced CD133+ stem cell subpopulations 
and expression of EMT and DNA repair genes[157]. In another example, Notch1 was necessary to induce 
trastuzumab resistance in breast cancer in vitro and in vivo[158]. Notch1 suppressed PTEN expression to 
activate ERK1/2 signaling, leading to breast CSC survival and bulk cell proliferation[158]. High Notch-1 
protein expression was suggested as a marker to predict poorer survival in women with HER2+ breast 
cancer[158]. In gastric cancer cells, long-term treatment with trastuzumab resulted in upregulation of Notch 
ligand Jagged-1, leading to acquired resistance with EMT and CSC phenotypes through an IL-
6/STAT3/Jagged-1/Notch positive feedback loop[159]. STAT3 is a well-known major cell survival factor and 
its activation in this axis contributed to the enhanced survival signaling and resistance to trastuzumab[159].

Hh
Hh signaling is central to embryogenesis, hyperactivation of this pathway has been found to be tumorigenic 
in many cancers[151]. Binding of Hh ligand to its receptor, Patched induces the activation of Smoothened 
(SMO) and Gli1; the SMO-mediated translocation of Gli1 into the cell nucleus drives the transcription of 
Hh target genes[151]. Hh signaling plays a key role in the maintenance of CSCs and chemo-resistance. In a 
study with an organoid culture model from patient-derived colorectal tumors, treatment with Hh inhibitors 
reduced expression of stem cell markers c-Myc, CD44, and Nanog, together with their transcription factor 
Gli1[160]. Combined treatment of Hh inhibitors with chemotherapeutics decreased the cell viability of 
organoids compared with the treatment of a single drug[160]. Finally, Hh signaling promotes drug resistance 
by inducing overexpression of P-gp and BCRP[161]. Approved SMO inhibitors are capable of reversing 
chemoresistance in gastric cancer and basal cell carcinomas[161]. Likewise in ovarian cancer cells, Hh 
signaling enhanced resistance to cisplatin, which was probably mediated by Hh transcription factor Gli2 
which activated gene expression of P-gp[162]. Besides, BCRP was reported to mediate drug resistance in 
hepatoma cells under the transcriptional control of Gli1/2, and the inhibition of Gli1 or ABCB2 gene 
expression ameliorated resistance to various chemotherapies in hepatoma cells[163]. Other ABC transporters 
were also found to confer chemoresistance as transcriptional targets of Hh/Gli signaling in CRC cells, 
including ABCA2, P-gp, ABCB4, ABCB7, ABCC2 and ABCG1[164]. These findings suggest a connecting role 
of Hh signaling in CSC, EMT and chemo-resistance.

Wnt
Wnt signaling helps determine cell fate during embryogenesis and regulates the homeostasis of many tissues 
in adults[151]. Aside from its function in normal cells, Wnt also plays a major role in maintaining CSCs in 
various cancer types. The binding of Wnt to frizzled receptors initiates two distinct signaling cascades, 
termed canonical or noncanonical. The activation of the canonical pathway results in translocation of β-
catenin into the nucleus which transcriptionally controls a set of genes involved in cell migration [matrix 
metallopeptidases (MMPs)], survival (Myc) and proliferation (peroxisome proliferator-activated 
receptors-δ). Unlike the canonical pathway, the non-canonical pathway does not involve β-catenin[151]. Wnt 
signaling contributes to therapeutic resistance in various cancers by inducing several factors associated with 
CSC-like phenotypes. Radiation, chemotherapy and targeted therapy can stimulate Wnt signaling, which 
protects cancer cells from cell cycle arrest or apoptosis. Such apoptosis-protective effects are attributable to 
survivin and c-Myc, two downstream effectors of Wnt/β-catenin signaling[165]. Moreover, Wnt/β-catenin 
signaling is associated with drug resistance due to the overexpression of ABC transporters. Vesel et al.[166] 
revisited cisplatin-induced multidrug resistance in NSCLC and found cisplatin up-regulated P-gp and 
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BCRP by the induction of canonical β-catenin dependent Wnt7b signaling. Though P-gp and BCRP are not 
the drug transporters for cisplatin itself, they are transporters for drugs that are frequently used in 
combination with cisplatin (e.g., paclitaxel, doxorubicin and gemcitabine), putting forward the role of 
cisplatin in modulating drug response[166]. Next, Wnt signaling can prevent apoptosis by crosstalk with cell 
cycle checkpoint controls[167]. In chemoresistant CRC cells with a normal p53 pathway, the Wnt signaling 
inhibited CHK1 and suppressed CHK1-induced cell cycle arrest and apoptosis, leading to decreased 
stabilization of p53 and cell survival[167]. Furthermore, two recent studies reported that enhanced Wnt 
signaling promoted DNA damage repair and thereby induced resistance to the PARP inhibitor olaparib in 
ovarian cancers[168,169]. This mechanism may also protect cancer cells from DNA damage induced by other 
chemo- or radio-therapy[170]. Additionally, WNT/β-catenin serves as an alternative pathway in acquiring 
resistance to EGFR-TKIs. In preclinical studies, β-catenin was upregulated in CRC cells treated with BRAF 
inhibition by the activation of focal adhesion kinase[171]. Also in CRC cells, blocking Wnt/β-catenin signaling 
by tankyrase inhibitor enhanced the efficacy of the small molecular inhibitors targeting the PI3K and EGFR 
signaling pathways[172]. The TCF7 frameshift mutation in CRC cells induced aberrant regulation of WNT/β-
catenin signaling and activation of GSK3, which promoted resistance to the dual PI3K/mTOR inhibitor 
gedatolisib[173]. Finally, Wnt signaling is one crucial player in the resistance to AD. Preclinical study results 
showed Wnt/β-catenin signaling was activated after AD and promoted androgen-independent growth[174]. 
Wnt activation induced expression of stemness markers (CD44, CD9, SOX10) which eventually reactivated 
androgen receptor (AR) signaling and contributed to enzalutamide resistance[175]. The strong correlation 
between AR and β-catenin levels can be used as a predictable indicator for resistance to chemotherapy 
during treatment[175]. Targeting the Notch, Hh, and Wnt pathways can control cancer stem cell replication, 
survival and differentiation as well as inhibit EMT, and thus reduce CSC-associated drug resistance[176,177]. 
Major approaches targeting Notch include γ-Secretase inhibitors and antibodies against the Notch receptor 
or ligand[177]. SMO inhibitors have been developed to target the signaling cascade of Hh[177]. Inhibition of the 
Wnt pathway can be achieved via neutralizing Wnt ligands or inhibiting the Wnt receptors, or targeting β-
catenin by increasing its degradation or suppressing its function[176,177].

NF-κB
NF-κB is a well-documented mediator of the inflammatory response, during which the activation of NF-κB 
via toll-like receptors stimulation promotes stemness[178], providing a link between inflammation and CSC 
phenotypes. Under hypoxic conditions, Hif-1α and Hif-2α induce the CSC features likely via NF-κB 
signaling pathway activation[179,180]. NF-κB is also suggested as a direct regulator of EMT-TFs and is 
associated with metastatic potential[181]. Resistance to radiotherapy correlates with increased EMT/CSC 
phenotypes induced via NF-κB[182]. Inhibition of NF-κB activity by metformin was associated with reduction 
of stemness and synergistically sensitized resistant lung cancer cells to EGFR-TKIs[183]. All the major 
pathways discussed in this section are summarized in Table 3.

TME regulation on EMT, CSC and drug resistance
Drug resistance can be induced by non-cancer cells present within the TME. Environmental stress due to 
anticancer therapies can initiate cancer cell secretion of chemoattractants, which recruit various cells like 
macrophages into the TME and assist in the differentiation of the latter in a paracrine manner[184]. The 
newly differentiating non-cancer cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated 
macrophages (TAMs), provide feedback to the cancer cells to promote stemness and resistance. CAF 
secretion of either exosome containing miRNA, Wnt proteins[185], Interleukin (IL)-1B, TNFα or fibrillar 
collagen can activate EMT of cancer cells[186]. For example, exosome transfer of miR-92 from CAFs releases 
the inhibition of the Wnt/β-catenin pathway, which promotes stemness, EMT and chemoresistance[187]. 
CAFs can be activated by Hh ligand produced by tumor cells, leading to the expression of FGF5 and 
production of fibrillar collagen, which forms a supportive niche to facilitate cancer cells to acquire 
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Table 3. Major pathways connecting EMT with CSC in drug resistance in cancer

Contributing 
factor

Normal biological 
function

Function in cancer drug 
resistance Major Ref. Additional remarks

Akt Cell growth and cell survival Promoting stemness and related 
resistance

[79,128,147-149] Crosstalk with other signaling 
pathways

Notch Embryogenesis and tissue 
homeostasis

Inducing CSC and EMT, 
anti-apoptosis, 
promoting MDR

[138,153,157,159
] 
[153] 
[155,156]

Hedgehog Embryogenesis and tissue 
homeostasis

CSC maintenance, 
promoting MDR

[160] 
[161-164]

Wnt Embryogenesis and tissue 
homeostasis

CSC maintenance, 
anti-apoptosis, 
enhancing DNA damage repair, 
promoting MDR

[176] 
[165,167] 
[168,169] 
[166]

Alternative pathway in resistance to 
EGFR inhibition

NF-κB Gene expression, cytokine 
production 
Immune regulation

Promoting stemness, EMT and 
related resistance

[178-183] Master inducer and regulator

EMT/CSC phenotype and chemoresistance[15]. Combination of SMO inhibitor and chemotherapy improved 
response for 3 of 12 patients in a clinical trial[15]. TAMs can induce EMT and stemness of cancer cells and 
related treatment resistance by the secretion of Wnt proteins[188], TGF-β, IL-6, IL-10 and TNFα[189]. In 
addition, The higher proportion of M2-like TAMS to M1-like TAMs creates an immunosuppressive TME 
possibly by releasing immunosuppressive cytokines, IL-10 and TGF-β, and activating induced regulatory T 
cells which inhibit the cytotoxic function of effector T and NK cells[190,191].

All these discussed drug resistance mechanisms are schematically shown in Figure 1.

ATP AND ATP-MEDIATED DRUG RESISTANCE
Intracellular ATP promotes drug resistance
Adenosine 5’-triphosphate (ATP) is a multifunctional molecule participating in a myriad of cellular 
processes. ATP, as an energy supplier, signaling transducer, extracellular messenger, has been proven to be a 
significant player in tumor growth, survival and resistance[192-195]. Cancer cells are known to have higher 
levels of intracellular ATP (iATP) compared with their non-cancerous counterparts, likely due to the 
elevated glucose transport and aerobic glycolysis, namely the Warburg effect[196,197]. Notably, resistant cancer 
cell lines are found to have even higher iATP levels than their parental cancer cells, and the increased iATP 
levels have been demonstrated to contribute to the establishment and maintenance of resistance[198]. In colon 
cancer, direct delivery of ATP into cancer cells induced conversion of drug-sensitive cancer cells to drug-
resistant cancer cells, while ATP depletion by glycolysis inhibition restored their sensitivity to 
chemotherapy[198]. This suggests iATP levels are a core determinant of chemoresistance[198].

Accordingly, depleting iATP levels emerges as a promising strategy to restore drug sensitivity. Metformin, 
an AMPK activator and a prescription drug used to treat type 2 diabetes, significantly hampered the 
production of iATP, leading to a critical energy crisis which impaired the capability of the breast CSCs to 
repair chemotherapy-induced DNA damage in vitro. The addition of eATP completely abrogated such 
synergistic effects of metformin on the sensitivity to chemotherapeutics[199]. In one attempt, a covalent 
conjugate of nucleobases and peptides, or nucleopeptides, was engineered, which can selectively sequester 
ATP over ADP. This nucleopeptide slowed down efflux pumps in multidrug resistance cancer cells and 
boosted the efficacy of doxorubicin[200]. A recently described estrogen receptor α biomodulator, BHPI, is 
capable of inducing toxic hyperactivation of the endoplasmic reticulum stress sensor, the unfolded protein 
response. By this action, BHPI depleted iATP and nearly blocked P-gp-mediated drug efflux, which restored 
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Figure 1. Mechanisms related to CSC and EMT involved in drug resistance in cancer described in this review. The CSC phenotype is a 
plastic state and can be adopted by most cancer cells. CSCs are slow-cycling or quiescent, and circumvent therapies targeting rapidly-
dividing cells. CSCs exhibit increased activities of detoxifying proteins including ALDH and ABC transporters (P-gp, BCRP). CSCs 
maintain low levels of ROS by metabolic reprogramming and/or auto/mitophagy to protect from radio- and chemo-therapies. Hypoxia 
and Hifα are crucial regulators of metabolic reprogramming primarily by increasing flux to glycolysis and antioxidant production (e.g., 
GSH) and inducing autophagy. Hypoxia and Hifα are also emerging inducers of EMT/CSC phenotype, one of the mechanisms is via NF-κ
B signaling pathway activation (not shown in the figure). EMT is a crucial regulator of and tightly interconnected with CSC, their 
involvement in drug resistance may represent different manifestations of the EMT/CSC phenotype. Activation of diverse signaling 
pathways are involved in the induction of EMT/CSC phenotype, including developmental pathways (e.g., Wnt/β-catenin, Hh/Gli1, 
Notch), cell survival pathways (e.g., GFR), and EMT-related pathways (e.g., TGF-β/SMAD signaling). The above pathways act 
independently or cross talk with each other to induce EMT/CSC phenotypes, leading to elevated drug resistance by various 
mechanisms: (1) The activation of these pathways allows the maintenance of CSC properties, including enhanced drug resistance. (2) 
These pathways converge on EMT-TFs (e.g., Snail, Slug, Zeb, Twist, FOX, etc.) to alter the expression of EMT markers (e.g., increase in 
N-cadherin, vimentin; decrease in E-cadherin) and induce EMT; the downstream transcription factor of the above pathways, as well as 
EMT-TFs, can upregulate ABC transporters, leading to enhanced drug efflux. EMT-TFs also enhance stemness and anti-apoptotic 
signaling. (3) The activation of these pathways is associated with enhanced anti-apoptotic machinery and thereby promotes tumor cell 
survival. (4) Certain pathways and EMT-TFs like Zeb1 can enhance ATM and CHK1/2-mediated DNA-damage repair and promote 
resistance to genotoxic therapies. (5) Non-cancer cells such as CAFs and TAMs in the TME can also activate these signaling pathways 
by secreted proteins and thus promote drug resistance. CSC: Cancer stem cell; EMT: epithelial-mesenchymal transition; ALDH: 
aldehyde dehydrogenase; ABC transporters: ATP-binding cassette (ABC) transporters; P-gp: P-glycoprotein; BCRP: breast cancer 
resistance protein; ROS: reactive oxygen species; Hifα: hypoxia-inducible factors α; GSH: glutathione; NF-κB: nuclear factor-κB; Hh: 
Hedgehog; GFR: growth factor receptor; TGF-β: transforming growth factor-β; EMT-TFs: EMT-inducing transcriptional factors; Zeb: zinc 
finger E-box binding homeobox; FOX: forkhead box; ATM: ataxia telangiectasia mutated; CHK: checkpoint kinase; CAF: cancer-
associated fibroblasts; TAM: tumor-associated macrophages; TME: tumor microenvironment.

doxorubicin and paclitaxel sensitivity in ovarian cancer cells[201]. A novel nanoparticle was described, which 
independently encapsulated doxorubicin in the core and glucose oxidase (GOx) in the shell[202]. The fast 
release of GOx by acid-sensitive degradation of the shell consumed glucose and deprived ATP, which 
suppressed ATP-dependent drug efflux and facilitated the sequential accumulation of doxorubicin in breast 
cancer cells and dramatically improved the efficacy of anticancer drugs for MDR cells[202].

Extracellular ATP induces drug resistance
eATP levels of various cancer types are 103 to 104 times higher than those in their corresponding normal 
tissues[1]. The abnormally high concentration of eATP is majorly released from dying tumor cells, which can 
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be induced by cellular stress, hypoxia, inflammation, platelet aggregation and anticancer therapies[203]. The 
functions of high eATP levels have been primarily revealed by our study. We investigated the role of eATP 
related to resistance: eight anticancer drugs, including both targeted and chemotherapeutic drugs, were 
tested in five cancer cell lines of five different organ origins. We found that eATP can promote the increase 
of iATP and cancer cell survival in most cases[10]. When studying promoted drug resistance to sunitinib due 
to eATP in NSCLC A549 cells, we saw that eATP can be internalized by cancer cells through clathrin- and 
caveolae-mediated endocytosis, but mainly by macropinocytosis indicated by colocalization of fluorescent-
ATP with a macropinocytosis tracer (high molecular weight Dextran), resulting in substantially elevated 
iATP levels from 150% to 200% of the original iATP concentrations[8-10]. ATP levels increased by eATP is not 
a transient effect. The level elevation persists as long as the eATP is present[9]. Activation of 
macropinocytosis is a hallmark of some cancers, particularly for those harboring oncogenic Ras 
mutations[204]. We inhibited macropinocytosis by either siRNA knockdown of macropinocytosis-essential 
enzyme PAK1 or a macropinocytosis inhibitor IPA3, and the inhibition resulted in the reduction of iATP 
levels and survival of eATP and sunitinib treated A549 cells[10]. Thus, the elevated iATP level from 
macropinocytosis and other endocytosis-mediated eATP internalization is responsible, at least in part, for 
the observed drug resistance. One of the possible drug resistance mechanisms induced by the internalization 
of eATP is that more abundant iATP molecules compete with tyrosine kinase inhibitors, which are ATP 
competitors for the ATP binding site located on RTKs, leading to increased phosphorylation and activation 
of downstream signaling pathways[10]. Besides, the enhanced iATP is found to affect cancer cell metabolism, 
particularly those related to energy metabolism (unpublished observation).

In the five cell lines studied, increased iATP was found to correlate with drug resistance status when the 
ABC transporters expressed by the cell line matched those required for the efflux of a given drug[10]. Indeed, 
our results showed that the eATP molecules being internalized served as an energy supplement and 
enhanced efflux activity of ABC transporters in two cancer cell lines, resulting in increased cell survival[10]. 
In addition to directly providing energy, eATP was also shown to regulate expression levels of ABC 
transporters[10]. These results indicated the profound effects of eATP on modulating ABC transporter 
activity to potentiate efflux of anticancer drugs and enhancing drug resistance. Wang et al.[205] reported a 
lipid membrane-coated silica carbon nanoparticle engineered to produce ROS in mitochondria under near-
infrared laser irradiation. The introduced ROS species reduced iATP by oxidizing available NADH for ATP 
synthesis, and thereby suppressed the efflux of chemotherapeutics as well as reduced the expression of P-gp 
and its distribution on the plasma membrane, which is consistent with our findings[205].

Additionally, our recent study demonstrated that eATP induced cancer cell migration and invasion. When 
exposing lung cancer cells to an ATP concentration equivalent to that in intratumoral extracellular space, 
we found accelerated detachment, EMT, migration, and invasion of lung cancer cells[12]. Mechanistically, we 
detected an increase in expression levels of MMPs, mesenchymal-phenotype molecules, EMT-TFs 
(vimentin, Snail and Slug) and decreased levels of epithelial phenotype markers (E-cadherin, β-catenin and 
ZO-1)[12]. Notably, these effects did not require TGF-β and were semi-independent of the activation of 
purinergic signaling (P2X7)[12]. Moreover, the knockout of a key macropinocytosis-associated gene, sorting 
nexin 5, significantly reduced micropinocytosis and the resulted iATP levels, cell growth, 
migration/invasion rates in vitro, and slowed down tumor formation and growth in nude mice[12]. As 
summarized in the previous content, EMT is intimately associated with the acquisition of resistance, and 
thus these results may reveal new mechanisms of the eATP-induced drug resistance. Overall, our studies 
suggested the multifunctional roles of ATP as an energy supplier facilitating drug efflux and a signaling 
transducer activating signaling pathways related to cell survival and resistance, drug efflux and tumor 
migration/invasion.
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eATP can also contribute to cancer drug resistance as an extracellular messenger through P2 purinergic 
signaling, which is composed of nucleotides/nucleosides (mainly ATP and adenosine) acting as signaling 
ligands with their corresponding membrane receptors and modulating diverse signaling pathways[206]. There 
are two P2 receptor families: P2X receptors which are ATP-gated ion channels and P2Y receptors which are 
mainly activated by ATP or ADP. P2X and P2Y family members emerge as players in resistance to 
chemotherapies[207,208]. Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) eATPase 
activity, which converts eATP to AMP, coordinately activated mitochondrial stress response via the 
downstream P2RY13/cAMP/PKA axis and promoted cytarabine resistance by enhancing mitochondrial 
OXPHOS activity in acute myeloid leukemia (AML). With such evidence, eATP was proposed as a key 
factor in chemoresistance of AML and CD39 as a new marker associated with a poor response to 
chemotherapy[207]. In the extracellular compartment, tumor cells can induce platelet activation and 
aggregation. Activated platelets release ADP and ATP, which activated ADP purinergic receptor P2Y12 
expressed on pancreatic ductal adenocarcinoma and hence promoted expression of gemcitabine resistance 
markers Slug and cytidine deaminase (CDD)[209]. Exogenous ADP and ATP (100 µM) also increased the 
expression levels of Slug and CDD while P2Y12 inhibition completely blocked the survival signals initiated 
in cancer cells by platelet-derived ADP and ATP[209]. P2X7 receptor behaves as a bi-functional receptor. 
Tumor cell killing by mmol/L ATP concentration is in most cases mediated by the overstimulation of P2X7 
and large pores opening on the plasma membrane. In contrast, low level of P2X7 stimulation often 
promotes cell survival and proliferation. P2X7 can potentiate OXPHOS, aerobic glycolysis and biosynthesis, 
which endows P2X7-expressing cells with a striking proliferative advantage[210]. A recent study described a 
distinct conformational form of P2X7, termed non-pore functional P2X7 (nfP2X7), which is unable to form 
a pore upon eATP stimulation. The exposure to a high ATP concentration (0.5-1 mM) drove nfP2X7 
expression and was essential for tumor cell survival[211]. These results suggest a role of P2X7 in resistance to 
apoptosis-inducing chemotherapies. Besides, P2X7 expression is intimately associated with cancer cell 
metastatic potential and invasiveness[210,212]. In addition to P2X7, Some other purinergic receptors (PRs) are 
likely to be involved in drug resistance as well. These PRs have different EC50s compared with P2X7, they 
respond to different levels of extracellular ATP and mediates presently-poorly defined actions in drug 
resistance.

Nevertheless, several chemotherapeutic agents have the capacity to induce immunogenic cell death (ICD) 
which can lead to the generation of immunological memory and improve relapse-free survival[213]. In this 
scenario, the release of eATP from stressed or dying tumor cells during ICD is recognized as a damage-
associated molecular pattern and is indispensable for the ICD[213]. For example, released eATP can ligate 
P2RX7 on dendritic cells to drive its recruitment and activation, which then generate adaptive anticancer 
immunity by the process of tumor-derived antigens and secretion of interleukin-1β[214]. eATP also executes 
immune-activating functions by communicating with other immune cells such as monocytes, macrophages, 
T cells, eosinophils, neutrophils and B cells[203]. Importantly, ICD depends not only on the release of eATP 
but also on its stability in the TME[215]. CD39 and cell surface purinergic enzyme ecto-5’-nucleotidase 
(NT5E, or CD73) can ultimately convert eATP to adenosine (ADO). While eATP promotes antitumor 
immunity, ADO attenuates immune response against tumors. Adenosine induced signaling would 
upregulate anti-inflammatory molecules, decrease anti-tumor function of immune cells (e.g., T cells, B cells, 
dendritic cells, mast cells, natural killer, macrophages) and activate immunoregulatory cells (e.g., regulatory 
T cells), shaping an immunosuppressive environment and diminishing the effect of immunotherapies[203,216]. 
In addition, autophagy of tumor cells is required for chemotherapy-induced ICD, in which it facilitates the 
release of eATP over the generation of adenosine[217].
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Figure 2. Mechanisms of drug resistance in cancer related to ATP described in this review. eATP can be degraded to ADP, AMP by ecto-
nucleotidase CD39 or sequentially to immunosuppressive adenosine by ecto-nucleotidase CD73. eATP acts as messengers outside of 
cancer cells through purinergic signaling including P2X receptor (P2XR, e.g., P2X7) while ADP/AMP act through P2Y receptor (P2XR, 
e.g., P2Y12, P2Y13) to promote cell survival signals, energy generation or/and EMT, contributing to drug resistance. eATP is also 
internalized by cancer cells via macropinocytosis, which results in significantly elevated iATP levels. The increased iATP molecules 
become more competitive against ATP analog anticancer drugs for the intracellular ATP binding domain of RTKs of GFRs on cancer cell 
plasma membrane, and thereby reduce RTK phosphorylation and downstream signaling involved in cell growth, proliferation and 
survival. Elevated iATP levels also enhance the efflux activity of ABC transporters for out-pumping anticancer drugs from cancer cells. 
Additionally, our recent study identified a role of iATP directly inducing EMT, and EMT confers drug resistance by numbers of 
mechanisms including upregulating ABC transporters. All these mechanisms work together to promote drug resistance by increasing 
cell survival signaling, reducing intracellular drug concentration, and inducing EMT. Further studies are needed for the final validation of 
ATP-mediated mechanisms of drug resistance. eATP: Intratumoral extracellular ATP; ENTPD1: ectonucleoside triphosphate 
diphosphohydrolase 1 (CD39); NT5E: ecto-5’-nucleotidase (CD73); EMT: epithelial-mesenchymal transition; iATP: intracellular ATP; 
RTK: receptor tyrosine kinase; GFR: growth factor receptor; ABC transporters: ATP-binding cassette (ABC) transporters.

Therefore, inhibition of purinergic signaling might improve the response to anticancer drugs. Among 
purinergic receptors, P2X7 receptor is a potential candidate, as the application of its antagonists was 
suggested in the inhibition of tumor growth and migration[203]. To limit the conversion from eATP to 
adenosine, CD39 and CD73 emerge as targets for anticancer immunotherapy[213]. One study reported CD39 
blockade augmented eATP/P2X7-mediated proinflammatory antitumor responses and the ultimate release 
of IL18, which facilitated the significant expansion and infiltration of intratumor effector T cells, and 
reversed anti-PD-1 resistance[208]. Furthermore, depletion of eATP may also reduce drug resistance. One 
novel approach described nanoparticles that can simultaneously release Fe3+ and doxorubicin at the TME 
upon near infrared laser irradiation, and Fe3+ can deplete eATP through metal ion-triphosphate 
coordination, sensitizing chemotherapy[218]. The potential inhibitory approaches may include pH-dependent 
activation of ATPase introduced in a prodrug form to reduce TME eATP levels or by inhibiting pathways or 
factors downstream from eATP’s purinergic receptor signaling. The former approach is based on the 
observation that the TME is more acidic compared to the normal tissues while the latter strategy relies on 
the identification and testing of key players in the eATP induced EMT and CSC. Finally, inhibition of 
macropinocytosis can reduce cell uptake of eATP and thus iATP levels, which might alleviate the drug 
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resistance and EMT promoted by eATP.

All these discussed ATP-related drug resistance mechanisms are shown in Figure 2.

CONCLUSIONS
Through this review, we show that eATP, which has been found to be present in TME with concentrations 
in hundreds of micromolar, is an emerging inducer and regulator of drug resistance in cancer. eATP has 
been shown by us and others to be an inducer and regulator for EMT, which is closely associated with the 
formation of increasing CSC subpopulations in tumors. EMT/CSC phenotypes work together to increase 
therapy resistance by various mechanisms discussed above. Thus, eATP in TME is a factor, along with TGF-
β, working through inducing EMT and CSC, and leading to a drug resistance state in cells and tumors. To 
reduce drug resistance and enhance anticancer therapeutic effects, inhibiting and blocking eATP is likely to 
be a promising approach[219].
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