Supplementary Material

Computational exploration of two-dimensional vacancy-free boridene sheet and its derivatives: High stabilities and the promise for hydrogen evolution reaction

Yuying Zhao^{1,#}, Jincan Zhang^{1,#}, Fengxian Ma¹, Hongbo Wu¹, Weizhen Meng¹, Ying Liu¹, Yalong Jiao¹, Aijun Du²

 ¹College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
²School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.

[#]Authors contributed equally.

Correspondence to: Prof. Fengxian Ma, College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, Hebei, China. E-mail: fengxianma@hebtu.edu.cn; Prof. Yalong Jiao, College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, Hebei, China. E-mail: yalong.jiao@hebtu.edu.cn

How to cite this article: Zhao Y, Zhang J, Ma F, Wu H, Meng W, Liu Y, Jiao Y, Du A. Computational exploration of two-dimensional vacancy-free boridene sheet and its derivatives: High stabilities and the promise for hydrogen evolution reaction. *Microstructures* 2024;4:xx. <u>http://dx.doi.org/10.20517/microstructures.2023.80</u>

Figure S1. (a-c) Top view and side view of the Mo_2B_6 structure with three different vacancy distributions. Dashed circles represent the vacancy sites. The vacancy concentration (V_m) and cohesive energy (E_{co}) of each configuration are also indicated.

Figure S2. (a-b) Top view and side view of the Mo_3B_6 structure with two different vacancy distributions. Dashed circles represent the vacancy sites. The vacancy concentration (V_m) and cohesive energy (E_{co}) of each configuration are also indicated.

Figure S3. Vacancy distributions of (a) Mo_5B_6 , and (b-c) $Mo_{10}B_{12}$ sheets. Dashed circles represent the vacancy sites. The vacancy concentration (V_m) and cohesive energy (E_{co}) of each configuration are also indicated.

Figure S4. Vacancy distributions of (a-b) $Mo_{16}B_{18}$, and (c-d) $Mo_{22}B_{24}$ sheets. Dashed circles represent the vacancy sites. The vacancy concentration (V_m) and cohesive energy (E_{co}) of each configuration are also indicated.

Figure S5. Top view and side view of the Mo₆B₆ structure.

Figure S6. (a) Band structure, (b) partial density of states, (c) phonon spectrum and (d) ELF along (001) plane for the $W_6B_6(OH)_6$ sheet.

Figure S7. AIMD simulated results of $W_6B_6(OH)_6$ at 300 K for 5 ps. The initial and final structures (side and top views) are shown for illustrations.

In our study, we found that the $W_6B_6(OH)_6$ sheet displays dynamic stability as evident from Fig. S6c. However, through the implementation of AIMD simulation captured in Fig. S7, it became apparent that the structure of the sheet fails. Consequently, we have chosen to exclude its discussion from the main text.

	atom	charge transfer
01 02 03	Ta1	+2.09e
	Ta2	+1.64e
Tal Ta5 Ta4	Ta3	+2.00e
	Ta4	+2.19e
B1 B4 B2	Ta5	+1.41e
	Ta6	+2.33e
	01	-1.38e
Ta2 Ta6 Ta3	02	-1.38e
	O3	-1.18e
	04	-1.32e
	O5	-1.28e
	06	-1.42e

Figure S8. Bader charge analysis for the Ta₆B₆O₆ sheet.

Figure S9. Bader charge analysis for the $Ta_6B_6F_6$ sheet.

Figure S10. Bader charge analysis for the W₆B₆O₆ sheet.

Figure S11. Bader charge analysis for the Nb₆B₆F₆ sheet.

Figure S12. Bader charge analysis for the Mo₆B₆(OH)₆ sheet.

Figure S13. Bader charge analysis for the Mo₆B₆O₆ sheet.

Figure S14. Band structures for different M₆B₆T₆ sheets on HSE06 level.

Figure S15. Band structures for different Mo_xB_y sheets on PBE level.

Figure S16. Gibbs free energy (ΔG_{H}^{*}) at the O sites of the Mo₆B₆(OH)₆ monolayer under different strains(ϵ).

Figure S17. Gibbs free energy (ΔG_H^*) for Nb₆B₆F₆ and W₆B₆O₆ sheet under neutral or charged states.

Figure S18. Gibbs free energy (ΔG_H^*) for $Mo_x B_y$ sheets with different vacancy concentrations.

Table S1. Lattice constants (in Å), cohesive energies (in eV), elastic constants (N/m), Poisson's ratio ν , and Young's modulus (in GPa·nm) for the W₆B₆(OH)₆ sheet.

System	а	b	Cohesive Energy	C ₁₁	C ₂₂	C ₁₂	C44	ν	Young's modules
W ₆ B ₆ (OH) ₆	5.50	5.24	-5.98	191.18	242.39	54.71	76.80	0.29	226.73

System	C ₁₁	C ₂₂	C12	C44	v	Young's modules
Mo ₂ B ₆	111.76	111.47	15.53	46.16	0.14	109.60
Mo ₃ B ₆	155.19	155.69	38.15	58.54	0.25	144.12
Mo ₄ B ₆	115.02	115.32	39.78	36.96	0.35	101.57
Mo ₅ B ₆	219.98	218.59	54.85	82.10	0.25	206.21
Mo ₆ B ₆	236.87	239.82	43.34	97.72	0.18	231.90
Mo ₁₀ B ₁₂	177.17	190.06	36.54	72.80	0.21	182.51
Mo ₁₆ B ₁₈	200.20	207.66	46.20	77.13	0.23	196.99
M022B24	208.14	209.84	46.64	80.54	0.22	199.39

Table S2. The elastic constants (N/m), Poisson's ratio ν , and Young's modulus (in GPa·nm) for the Mo_xB_y sheets.

The structure file (POSCAR) for the Mo_6B_6 sheet

 Mo_6B_6

1.0

	5.3826999664	0.0000000000	0.0000000000
	-2.6913499832	4.6615549119	0.0000000000
	0.0000000000	0.0000000000	22.3838996887
Mo	В		
6	6		
Direct			
	0.000000000	0.000000000	0.564570010
	0.333330005	0.666670024	0.437169999
	0.000000000	0.000000000	0.435429990
	0.666670024	0.333330005	0.562829971
	0.338310003	0.684140027	0.562049985
	0.648469985	0.322970003	0.438919991
	0.335139990	0.000000000	0.500000000
	0.000000000	0.335139990	0.500000000
	0.664860010	0.664860010	0.500000000
	0.664860010	0.000000000	0.500000000
	0.000000000	0.664860010	0.500000000
	0.335139990	0.335139990	0.500000000