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Abstract
Aim: To investigate the effects of cisplatin on the human non-small cell lung carcinoma (NCI-H460) cell line regarding 
cytotoxicity, genotoxicity, and expression of genes associated with apoptosis (BIRC5) and autophagy (BECN1). 

Methods: Cell cultures were treated with cisplatin concentrations (0.16-33.3 μmol/L) for 48 h. Mutagenicity and acute 
and chronic cytotoxicities were assessed using the MTT, clonogenic, and cytokinesis-block micronucleus assays. Gene 

expression of BIRC5  and BECN1  was evaluated by reverse transcription-polymerase chain reaction. 

Results: Cisplatin IC50 (0.33 μmol/L) increased micronucleus frequency 2.50 times. Cisplatin was also cytotoxic in the 
0.6-33.3 μmol/L range, with reduced expression of the BIRC5  gene, suggesting induction of apoptosis. Besides reducing 

the expression of the BIRC5  gene, 33.3 μmol/L cisplatin increased the expression of the BECN1  gene, suggesting that 

autophagy can be related to cisplatin resistance. 

Conclusion: Cisplatin inhibited NCI-H460 growth, and cisplatin IC50 induced genotoxic damage. When higher cisplatin 
concentrations are used, the expression of genes associated with apoptosis and autophagy was changed. This results 



points to a further investigation of the role of autophagy in cisplatin resistance.
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INTRODUCTION
Lung cancer is the most common cause of death from cancer worldwide, accounting for 1.69 million deaths 
in 2015[1]. As an aggressive tumor with poor prognosis and a cumulative mean total survival of over 5 years, 
it is most prevalent in men between 65-70 years of age and chronic tobacco users[2,3]. Lung cancer is divided 
into two types: small cell lung carcinoma and non-small cell lung carcinoma (NSCLC). The latter accounts 
for 85% to 90% of all lung cancer cases[4,5].

The choice of treatment for NSCLC has to consider a number of factors, such as tumor type, staging, 
and the overall clinical condition of the patient. For more than two decades, the most effective systemic 
chemotherapy for NSCLC included cisplatin or other platinum-based combinations, which remains the 
standard first-line chemotherapy for advanced NSCLC until today[6,7]. Cisplatin monotherapy in patients 
with advanced NSCLC is usually given at a dosage of 50-120 mg.m-2 per cycle[8]. 

Cisplatin binds to DNA, forming adducts that will turn into intra- and inter-chain cross-links, twisting 
the DNA helix, inhibiting replication, interfering with DNA repair mechanisms, and directing cells to 
apoptosis[9]. Cisplatin also inhibits RNA transcription and induced G2 cell cycle arrest, and/or apoptosis. 
Previous studies have shown that platinum complexes may be carcinogenic and mutagenic. They are able 
to induce chromosomal aberrations and increase micronucleus (MN) frequency in human lymphocytes 
and mice and rat bone marrow cell cultures. Importantly, it is believed that genotoxicity is an important 
mechanism in the development of cisplatin toxicity[10,11].

Despite the efficacy of this antineoplastic drug in NSCLC treatment protocols, the clinical uses of cisplatin 
are limited due to its toxic effect and development of cellular resistance, which significantly restricts the 
tolerable range of therapeutic doses[12,13]. In this sense, low sensitivity or even chemoresistance indicate the 
risk of poor prognosis, increasing the economic burden to patients. Resistance to cisplatin is frequently 
reported in cancer patients[14], and may be caused by overexpression of multidrug resistance transport genes, 
activation of DNA repair mechanism, glutathione conjugation, defects in cell cycle arrest, and apoptosis[15]. 
More recently it was postulated that cisplatin induces autophagy as a resistance mechanism for cancer cell 
survival[16].

Considering that platinum complexes still have potentially interesting chemotherapeutic properties, efforts 
to understand the mechanisms of both resistance and sensitivity to cisplatin are of great importance in 
NSCLC treatment. Thus, the objective of this study was to evaluate cytotoxicity, genotoxicity, and expression 
of genes associated with apoptosis (BIRC5) and autophagy (BECN1) in response to treatment with cisplatin 
in human NSCLC NCI-H460 cell line.

METHODS
Cell line and cultures maintenance
The human NSCLC NCI-H460 cell line was purchased from the American Type Culture Collection (Rockville, 
MD, USA). Cells were maintained in 25-cm2 or 75-cm2 culture flasks with Eagle modified Dulbecco’s culture 
medium (DMEM, Invitrogen Corporation, Carlsbad, CA, USA) supplemented with 10% heat-inactivated 
fetal calf bovine serum (FBS, Cultilab, Campinas, SP, Brazil) at 37 ºC in a humid atmosphere containing 5% 
CO

2
.
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Cisplatin treatment and cytotoxicity assessment
Acute cytotoxicity was evaluated using the colorimetric MTT assay [3- (4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide; Life Technologies, Oregon, USA][17,18]. For this evaluation, 3 × 104 cells 
were inoculated in 96-well microplates and submitted to serial dilutions (0.16-33.3 μmol/L) of cisplatin 
(LIBBS Pharmaceuticals, São Paulo, SP, Brazil). After 48 h of exposure, the cells were incubated with 100 μL 
of a MTT solution in serum-free and phenol-free culture medium at 37 °C for 3 h. After, the supernatant was 
removed and the violet formazan crystals formed were solubilized in 100 μL DMSO. The assay was carried out 
in a microplate reader (Multiskan, Uniscience, São Paulo, SP, Brazil) at an optical density of 540 nm. The IC

50
 

value was derived from the dose-response profile.

Cell colony formation assay
Cell cultures were submitted to treatment with cisplatin (0.33-33.3 μmol/L) for 48 h. Next, they were removed 
using trypsin-EDTA 0.10%, and 300 cells/well were seeded in 6-well plates. Incubation at 37 ºC for 7 days 
ensued, when the culture medium was removed, washed with phosphate buffered saline (PBS) and then 
ethanol 70% (2 mL/well) for 1 h at 4 ºC for colony fixation[19]. Then, ethanol was removed and plates were left to 
dry at room temperature. Subsequently, colonies were stained with crystal violet (1 mL/well) for 30 min at room 
temperature and quantified using an inverted microscope. The results were expressed as survival fraction 
(SF) using the formula SF = T/C ∙ 100, where T is the number of colonies after treatment and C is the number 
of colonies in non-treated controls.

Evaluation of genotoxicity using the cytokinesis-block micronucleus assay
Briefly, NCI-H460 cells (105 cells per well) were seeded in 24-well plates in Dulbecco’s medium supplemented 
with 10% FBS and incubated at 37 ºC for 24 h in 5% CO

2
. The cisplatin concentrations tested were determined 

using the MTT assay. The concentrations used were IC
50

 (0.33 μmol/L), half the IC
50

 value (0.16 μmol/L), and 
half this value again (0.08 μmol/L). After treatment for 48 h, cells were washed with Dulbecco’s phosphate 
buffered saline (DPBS). Cytochalasin B (Cyt B, Sigma-Aldrich, St. Louis, MO, USA) was added to a final 
concentration of 5 μg/mL in complete medium. After 28 h, Cyt B was removed and cells were washed twice 
with DPBS at 37 ºC, trypsinized, and gently resuspended in complete culture medium. Subsequently, cells 
were harvested by cytocentrifugation for 5 min at 700 rpm to produce one smear per slide. Slides were 
removed, fixed, and stained with Instant Prov (Newprov, Pinhais, PR, Brazil). After, slides were left to dry 
at room temperature and analyzed in an optical microscope (1000×). Micronuclei were scored according to 
Fenech[20].

Gene expression analysis
After treatment with cisplatin for 48 h, cells were stored in 1 mL of RNA stabilizing solution (RNAlater®, 
Ambion, Austin, TX, USA). RNA was extracted according to a standard silica-based procedure[21]. cDNA 
was obtained from total RNA, and gene expression was quantified using StepOnePlus™ Real-Time PCR 
System (Life Technologies, Carlsbad, CA, USA). 

The expression of BECN1 and BIRC5 genes was evaluated using probe-based gene expression assays (Hs.
PT.51.20133642 and Hs.PT.51.3536061, respectively; Integrated DNA Technologies, Coralville, IA, USA). 
Amplification of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene was performed as internal 
control (Hs.PT.39a.22214836; Integrated DNA Technologies, Coralville, IA, USA). The conditions for the 
PCR were 95 °C for 3 min and 40 cycles at 95 °C for 15 s and 60 °C for 1 min. Three independent experiments 
were performed and the algorithm 2-ΔΔCt was used to analyze the data from gene expression assays[22].

Statistical analyses
The data obtained were analyzed using Student’s t test or analysis of variance (one-way ANOVA) with 
Dunnett’s test as post hoc, depending on the case. All P-values are two-way and P < 0.05 indicates statistically 
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significant differences. The statistical analyses were carried out in the Graph Prism 5.01 software (Graphpad 
Software Inc., La Jolla, CA, USA).

RESULTS
Cytotoxic effect of cisplatin on NCI-H460 cell line
The cytotoxic effect of cisplatin on NCI-H460 cells was assessed after 48 h. All concentrations tested inhibited 
cell growth, with an IC

50
 of 0.33 ± 0.06 µmol/L [Figure 1]. Cisplatin (1.6 to 16.6 µmol/L) was highly cytotoxic 

(around 70% cytotoxicity); and the 33.3 µmol/L cisplatin concentration induced high antiproliferative effect 
(95% cytotoxicity). 

Effect of cisplatin on the formation of cell colonies
Considering that much of the cell damage induced by cisplatin may be repaired, the evaluation of the late 
effect of the administration of the pharmacological drug on cell proliferation should be taken into account 
in treatment protocols. With that in mind, the late effect of cisplatin was investigated using the clonogenic 
assay 7 days (without cisplatin) after treatment. Compared to the non-treated control, 0.3 μmol/L cisplatin 
reduced survival fraction by approximately 30%. This effect was more pronounced when the 0.6 μmol/L 
(50%), 1.6 μmol/L (60%), and 3.3 μmol/L (70%) concentrations were used. But cisplatin concentrations of 16.6 
and 33.3 μmol/L did not allow the formation of NCI-H460 colonies [Figure 2]. 

Effect of cisplatin on micronucleus formation
MN induction was analyzed 48 h after treatment with cisplatin. Two independent experiments were carried 
out in duplicate, which accounted for the analysis of 4000 binucleated cells per treatment. MN frequency 
increased statistically only after treatment with 0.33 μmol/L cisplatin [Figure 3]. 

Gene expression evaluation
Whether intrinsic or acquired, resistance to antineoplastic agents is an important clinical issue, which may 
lead to the failure of treatment of NSCLC. Therefore, the role of apoptosis and autophagy related genes was 
assessed in the response to treatment with cisplatin.

The changes in expression of the anti-apoptotic gene BIRC5, which expresses the protein survivin, indicated 
a dose-dependent decrease in BIRC5 expression in NCI-H460 cells (P < 0.001). For BECN1, which codifies the 
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Figure 1. Cytotoxic effect of cisplatin on NCI-H460 cell line. Results are expressed as percent of cell growth according to negative control 
(mean ± standard deviation of three different experiments in triplicate)



protein Beclin-1 and plays a role in autophagy, tumorigenesis, and neurodegeneration, expression increased 
only after treatment with 33.3 µmol/L cisplatin [Table 1].

DISCUSSION
Cisplatin is commonly used to treat a wide variety of tumors. This chemotherapeutic agent is considered 
the treatment of choice for NSCLC, though some patients do not respond appropriately due to cellular 
resistance. Therefore, it is extremely important to establish the effects of cisplatin, shedding more light on 
the active underlying mechanisms and markers in this cell phenotype, which currently restricts the clinical 
use of this pharmaceutical drug in patients with lung cancer[23].

In the present study, all cisplatin concentrations (0.16-33.3 μmol/L) induced a dose-dependent antiproliferative 
effect in human NSCLC NCI-H460 cells. Our results confirm the findings published in a study that evaluated 
the cytotoxic effect of platinum complexes after 48 h of exposure of the same cell line used in our work, also 
using the MTT assay. The authors observed that 6 of 11 platinum complexes were significantly cytotoxic to 
the cell line tested, with IC

50
 values between 0.115 and 1.10 mmol/L[24]. Also, in non-small cell lung cancer, 
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Figure 2. Survival fraction of cell line NCI-H460 treated with cisplatin for 48 h. Values are expressed as mean ± standard deviation 
of three independent experiments with n  ≥ 6. Data are presented as survival fraction obtained from the ratio of the number of treated 
colonies to the number of control colonies, expressed as percent values. Controls represent 100% survival fraction. *Statistically different 
from the control (P  < 0.05). ND: not detected
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Figure 3. Effect of cisplatin exposure (0.08-0.33 μmol/L) on the frequencies of binucleated cells with micronuclei. Significant difference 
(one-way ANOVA and Dunnett’s test as post hoc ) is indicated by **P  < 0.01. NC: negative control 



A459 cell line, the IC
50

 of cisplatin after 72 h exposure, was 9.13 µmol/L[25]. In other study using M059K 
glioblastoma cell line the IC

50
 of cisplatin was determined as 1 µmol/L[26]. The concentrations used in our 

study can also be compared with plasma concentration achieved after administration of cisplatin as a single 
agent, which ranges from 0.1-5 µmol/L[27,28]. 

In line with our results, it was also shown that cisplatin was not cytotoxic to NCI-H460 cells after a 24-h 
incubation period, though the compound induced significant inhibition of cell proliferation 48 and 72 h after 
treatment[29]. Similarly, no cisplatin cytotoxicity was observed after 24 h treatment of bladder carcinoma RT4, 
5637, and T24 cells[30]. Also, in a human laryngeal cancer cell line Hep-2, cisplatin demonstrated cytotoxicity 
after 48 h exposure[31]. 

The percentage of cytotoxicity using MTT assay was used to indicate cell death, once when cells die, they lose 
the ability to convert MTT into formazan[32,33]. Based on this we can suggest that the cytotoxicity observed 
can indicate cell death.

The clonogenic assay was carried out to better analyze the antiproliferative effect of cisplatin on NCI-H460 
cell growth. It is known that cells respond to a toxin reducing cell proliferation, when they form smaller 
colonies or a lower number thereof[34]. In this test, the colony-forming potential of human NSCLC NCI-H460 
cells treated with 1.6 and 3.3 μmol/L cisplatin was low, suggesting that the damage caused within 48 h is 
permanent. The clonogenic assay determines the potential of a single cell to proliferate, when it maintains its 
reproductive function and may therefore form a large colony or a clone[19]. Cisplatin (0.3 and 0.6 μmol/L) also 
induced a significant decrease in formed colonies, endorsing previous results that indicated that cisplatin 
reduced clonogenic survival of strains H460 and A549 in a dose-dependent way[35]. In another study on 
the antiproliferative effect of cisplatin, it was observed that colony formation rate of NSCLC A459 was 
significantly reduced after treatment, also in a dose-dependent fashion[36]. Therefore, it is possible to conclude 
that the behavior of NCI-H460 cells after 7 days in culture is similar to the one observed after immediate 
treatment with cisplatin. 

Although cisplatin has been reported to be genotoxic, studies discussing this effect on human NSCLC 
NCI-H460 cells are scarce. We tested the potential of cisplatin to induce MN using the IC

50
 and lower 

concentrations of the compound, since the highest concentration employed in the MN test should aim to 
achieve 55% ± 5% cytotoxicity[37]. The results of the present study show that 0.33 μmol/L cisplatin (IC

50
) 

increased MN frequency by 2.5 times, compared to the non-treated control group. This indicates that 
cisplatin causes chromosomal mutations associated with aneugenic and/or clastogenic events in human 
NSCLC NCI-H460 cells. Similarly, a previous study evaluated the genotoxic potential of cisplatin using 
the MN assay and showed that the compound and carboplatin were the most potent MN inducers (mean 
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Table 1. Changes in gene expression of BIRC5  and BECN1  after exposure of H460 cells to different concentrations of cisplatin 
(0.3-33.3 µmol/L) for 48 h

Gene Cisplatin concentration (µmol/L) Relative concentration
BIRC5 0.3 0.74 ± 0.22

0.6    0.30 ± 0.08**
3.3  0.27 ± 0.01*
6.6     0.21 ± 0.06**

  33.3     0.12 ± 0.02**
BECN1 0.3  1.25 ± 0.24

0.6  1.08 ± 0.37
3.3  1.45 ± 0.08
6.6  1.79 ± 0.45

  33.3   2.68 ± 0.60*

The results (mean ± standard deviation) were calculated from three experiments using the algorithm 2-ΔΔCt. *Significant difference 
between cisplatin-treated groups and the untreated control (Student’s t  test: *P  < 0.05; **P  < 0.01)



13.5 and 6.0 MN/1000 binucleated cells induced by carboplatin and cisplatin, respectively)[10]. Research also 
shows that cisplatin induced MN formation in rat bone marrow cells[11]. 

Results of such relevance may be explained based on the fact that cisplatin causes DNA damage, which is 
measured as the presence of covalent platinum-DNA adducts. The formation of these adducts may be the 
preceding step to DNA cleavage during repair processes, with MN formation as a possible consequence. On 
the other hand, cisplatin may defunctionalize the mitotic spindle, in which case it may be considered an 
aneugenic compound[38,39]. 

BIRC5 expression regulates the mitotic spindle checkpoint and inhibits apoptosis[40]. One of the cisplatin 
resistance mechanisms includes the changes in regulatory pathways that control the start and progression of 
apoptosis. In the present study, 0.3 μmol/L cisplatin did not change BIRC5 expression significantly, suggesting 
that, in this concecntration, apoptosis was not induced. On the other hand, we observed a significant 
decrease in BIRC5 gene expression after treatment with 0.6 to 33.3 μmol/L cisplatin. This result suggests 
that cisplatin may inhibit BIRC5 expression, increasing the susceptibility of human NSCLC NCI-H460 
cells to chemotherapy and apoptosis induction[41-43]. In this sense, it was shown, also using NCI-H460 cells, 
that the combination of cisplatin and arctigenin (a dibenzylbutyrolactone lignin with anti-tumor and anti-
inflammatory activities) reduces survinin expression by more than 50%[41]. Recently, in lymphocytes from 
colon cancer patients and healthy individuals, another platinum compound, oxaliplatin, reduced surviving 
expression in a concentration-dependent manner, resulting in large numbers of multinucleated cells[44]. 

Autophagy, which is activated during metabolic stress, is a process of degradation and homeostatic 
cellular recycling of unnecessary or dysfunctional cytoplasmic components for energy utilization in all 
living cells[45,46]. Deregulation of autophagy is common among a wide range of cancers, including NSCLC, 
and today stands as a novel mechanism for enhancing current anticancer treatments and overcoming 
chemotherapy resistance[47,48]. The relationship between autophagy and apoptosis is controversial, since 
autophagy is sometimes treated as a mechanism that suppresses tumor development or as a tumor growth 
factor, providing substrates for the degradation of cell components. It has been proposed that, depending on 
the extension of the damage to the membranes or organelles such as mitochondria and lysosomes, autophagy 
causes either cell death or regeneration. If damage occurs in the membranes of the two organelles, then this 
effect may be associated with cell death[49].

Beclin-1, which is encoded by the BECN1 gene, plays an important role in the activation of autophagy and 
the regulation of multiple cellular signaling pathways of tumors[50,51]. The expression of the BECN1 gene 
after treatment with 0.3 to 16.6 μmol/L cisplatin did not vary, suggesting that autophagy did not occur. In 
this sense, it has been shown that downregulating BECN1 resensitized drug-resistant cells to chemotherapy, 
when autophagy was inhibited and apoptosis was induced[52]. Nevertheless, 33.3 μmol/L cisplatin induced 
a significant increase in BECN1 expression, meaning that autophagy was more significantly activated after 
exposure to high concentrations of the compound. Autophagy may be induced by antitumor therapies, and 
is evaluated as a prosurvival strategy to prevent cell death. Moreover, the induction of autophagic cell death 
has been proposed as a possible tumor suppression mechanism[53]. Similarly to the present study, it was 
shown that sepantronium bromide (YM155), a selective survivin target, increases apoptotic and autophagic 
cell death in human head neck cancer cell lines SCC4, SCC9, SCC15, SCC25, and CAL27[54]. 

In conclusion, all concentrations of cisplatin used were cytotoxic to human NSCLC NCI-H460 cells in a 
dose-dependent manner. The toxicity of cisplatin IC

50
 seems to be associated with MN, suggesting genotoxic 

damage. Cisplatin may induce apoptosis, based on the inhibition of the antiapoptotic BIRC5 gene. Also, high 
cisplatin concentration (33.3 µmol/L) induced BECN1 upregulation, which can result in enhanced activity of 
autophagy and drug resistance to treatment. 
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