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Abstract
Cancer is one of the leading causes of mortality and morbidity globally. Many types of cancer treatments have 
been developed, such as chemotherapy, surgery, radiotherapy, and immunotherapy. However, these therapies 
can also kill healthy cells and lead to severe side effects. Therefore, scientists are looking for new strategies to 
eliminate cancerous cells specifically. Exosomes, nanometer-sized lipid bilayer-enclosed vesicles secreted from 
various cell types, exist in nearly all body fluids, including blood, breast milk, saliva, urine, bile, pancreatic juice, 
cerebrospinal, and peritoneal fluids. They carry myriad donor cell-derived bioactive molecules such as proteins, 
lipids, and RNAs (including microRNA and lncRNA) and can deliver them to both nearby and distant recipient 
cells. Due to these characteristics, exosomes have attracted great interest in cancer treatment (especially serving 
as a biological carrier for some drugs, microRNA, lncRNA, inhibitors, and antibodies). In this paper, we will review 
the current knowledge of exosome therapeutic applications in cancer.
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INTRODUCTION
Cancer remains the leading cause of death globally. There are over 200 types of cancer which claim more 
than 10 million lives annually[1]. Despite a lot of research focusing on this grave disease, cancer therapeutics 
still have the lowest clinical trial success rate of all major diseases. This is likely due to the fact that it is hard 
for our immune system to distinguish cancerous cells from healthy cells. For instance, current therapeutics 
like radiotherapy and chemotherapy not only kill the cancerous cells, but also healthy cells[1]. Therefore, 
developing new therapeutic strategies in order to precisely eliminate cancerous cells is an urgent need.
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Exosomes are nanosized extracellular vesicles which are secreted by various cells throughout the body[2-5]. 
They carry important bioactive molecules including proteins, lipids, DNA (e.g., mitochondrial DNA 
and genomic DNA), and RNAs [e.g., microRNAs (miRNAs), long non coding RNAs (lncRNAs), and 
messenger RNA (mRNA)], and can transfer them to the recipient cells - thus playing a crucial role in cell-
cell communication[2-6]. Exosomes are present in most bodily fluids including blood, breast milk, saliva, 
urine, bile, pancreatic juice, cerebrospinal, and peritoneal fluids[2-6]. Through the circulating flow, they 
can transfer from their original cells to distant tissues where they localize to target cells by binding their 
surface molecules to receptors on the surface of the target cells[2-6]. Due to the advantage of their unique 
biocompatibility and high stability, exosomes have attracted great interest in cancer treatment as an 
effective anti-cancer drug delivery carrier or gene carrier. In this review, we provide an overview for studies 
of exosomes application in cancer therapies, as well as their advantages and challenges.

DUAL ROLES OF EXOSOMES IN TUMORIGENESIS
According to the exosome database ExoCarta (www.exocarta.org), 9,769 proteins, 3,408 mRNA, 2,838 miRNA, 
and 1,116 lipids have been identified in exosomes from different organisms and bodily fluids[7]. By 
transferring bioactive molecules from the donor cells to the recipient cells, exosomes play crucial roles in 
cell-cell communication[2-5]. Many studies have shown that cancer cells release a larger number of exosomes 
to exchange information with other cells both nearby and at distance[8-10]. Through delivering their 
bioactive cargoes (including proteins, miRNAs, and lncRNAs), cancer cell-derived exosomes contribute to 
the formation of the pre-metastatic microenvironment, tumor growth and progression, immune escape, 
angiogenesis, anti-apoptotic signaling, drug-resistance, and so on[8-10] [Figure 1]. Meanwhile, exosomes 
from healthy cells, such as dendritic cells (DCs), B cells, and T cells, play an important role in inhibiting 
tumor growth[11-14] [Figure 1]. To date, numerous miRNAs, lncRNAs, and proteins have been found to 
play important roles in cancer progression [Table 1]. Therefore, depending on their cell of origin and their 
bioactive cargo, exosomes can play dual roles in cancer regulation, either inhibiting or promoting growth.

EXOSOME-BASED CANCER THERAPIES
Since exosomes can unload bioactive cargo to cancer cells, they have attracted great interest in cancer 
treatment[66-72]. Currently, several different methods have been developed for cancer therapies: (1) using 
naturally derived exosomes from immune cells to suppress cancer cells[66]; (2) inhibiting the release of 
cancer-derived exosomes; (3) using exosomes as gene carriers[69]; and (4) using exosomes as anti-cancer 
drug carriers[68,71] [Figure 2].

Naturally derived exosomes for cancer therapy
In cancer-immunity, DCs are involved in the first step of tumor cell growth inhibition by capturing 
neoantigens and triggering the tumor-specific cytotoxic lymphocyte response[73]. DC-derived exosomes 
(Dex) contain various bioactive cargoes responsible for antigen presentation, making them ideal for the 
treatment of cancer[74,75]. In 1998, Zitvogel et al.[76] found that tumor peptide-pulsed Dex were able to 
activate the antigen-specific cytotoxic T lymphocytes response in vivo and eradicate or suppress growth of 
established murine tumors in a T cell-dependent manner. Moreover, Munich et al.[77] found that Dex can 
directly kill tumor cells and activate naturel killer (NK) cells through TNF superfamily ligands. It has also 
been found that cancer cell-derived exosomes have an immunostimulatory effect on anti-tumor DCs[66]. 
Thus, Dex represent an important strategy for cancer therapy.

Interfering with cancer cell-derived exosomes for cancer therapy
Cancer cell-derived exosomes are considered to accelerate cancer pathogenesis by contributing to the 
formation of the pre-metastatic microenvironment, tumor growth and progression, immune escape, 
angiogenesis, anti-apoptotic signaling, and drug-resistance[8-10]. Therefore, inhibition of the cancer cell-
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derived exosomes synthesis, release, and uptake may serve as an effective cancer therapy[78]. With the use 
of a mouse model, Bobrie et al.[78] found that blockade of Rab27a, a key mediator of exosome secretion, 
resulted in decreased primary tumor growth and lung dissemination of metastatic carcinoma (4T1) cells. 
It was found that miR‐494 is enriched in melanoma‐derived exosomes, and that exosomal transport of 
miR‐494 promotes metastasis[79]. More specifically, inhibiting the function of Rab27a blocked exosomal 
transfer of miR-494 and resulted in inhibiting melanoma growth and metastasis[79]. Another possible way 
to mitigate tumor growth is to simple remove circulating exosomes via a hemofiltration system (such as the 
Aethlon ADAPTTM system). This alternative may also serve as another possible therapeutic approach for 
reversing immune dysfunction and improving the immune responses to tumor growth[80]. Finally, multiple 
studies have discovered that blocking exosomal uptake is another potentially effective method for cancer 
therapy[81,82]. For example, the heparan sulfate (HS) proteoglycans has been discovered as internalizing 
receptors of cancer cell-derived exosomes[82]. HSPG deficiency, or the HS mimetic (heparin) treatment, 
significantly reduced exosome uptake and exosome-mediated stimulation of cancer cell migration[82]. In all 
three cases (blocking exosomal secretion, exosomal removal, and blocking exosomal uptake), disrupting 

Figure 1. Dual role of exosomes in cancer progression. Cancer cell-derived exosomes contribute to the formation of the pre-metastatic 
microenvironment, tumor growth and progression, immune escape, angiogenesis, anti-apoptotic signaling, drug-resistance, and so on. 
While exosomes from healthy cells including dendritic cells, B cells, and T cells, play crucial role in inhibiting tumor growth (This figure 
was created with BioRender.com)
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Exosome cargos Function in cancer progression
MicroRNAs

miR-122 Promotes metastasis[15]

miR-9 Promotes tumor angiogenesis[16]

miR-105 Induces vascular leakiness and promoting metastasis[17]

miR-135b Enhances angiogenesis[18]

miR-93-5P Promotes the proliferation of esophageal cancer cells[19]

miR-132 Promotes angiogenesis[20]

miR-23 Enhances angiogenesis and vascular permeability[21]

miR-200 Promotes cancer cell metastasis[22]

miR-126 Promotes the anti-tumor response[23]

miR-92a Regulates hepatic pre-metastatic niche in lung cancer[24]

miR-210 Increases angiogenesis and tumor progression[25]

miR-221 Promotes oncogenic activity in gastric cancer[26]

miR-141 Associates with the presence of cancer[27]

miR-375 Associates with the presence of cancer[27]

miR-494 Enhances angiogenesis through the suppression of PTEN and the Akt/eNOS pathway[28,29]

miR-21 Promotes hepatocellular carcinoma growth[30]

miR-103 Promotes tumor progression and angiogenesis[31]

miR-542-3p Regulates tumor growth/Wnt signaling through targeting cdh17 and TRAF4[29]

miR-19a Metastatic colonization through specifically silencing PTEN[32]

miR-92 Metastatic colonization through specifically silencing PTEN[32]

miR-17 Metastatic colonization through specifically silencing PTEN[32]

miR-373 Raises the invasion and metastasis of tumor[33]

miR-501 confers doxorubicin resistance and tumorigenesis[34]

miR-1247-3p Promotes cancer progression[35]

hsa-miR-940 Induces extensive osteoblastic lesions in the resulting tumors[36]

Long noncoding RNAs
lncRNA-HOTTIP Promotes cisplatin resistance[37]

lncRNA-ZFAS1 Enhances gastric cancer cell proliferation and migration[38]

LncRNAs-MALAT-1 Promotes cell proliferation and migration in non-small cell lung cancer[39]

lncRNA-TUC339 Promotes cell proliferation, clonogenic growth and tumor growth[40]

LncRNA-PART1 Induces gefitinib resistance[41]

LncRNA-UCA1 Enhances UCA1 expression and resistance to cetuximab[42]; Induce tamoxifen resistance[43]

lncRNA-Sox2ot Promotes EMT and stemness[44]

lincRNA-ROR Suppresses cell apoptosis[45]

lncRNA-AFAP1-AS1 Induces resistance to trastuzumab[46]

lncRNA-ARSR Induces resistance to the sunitinib[47]

lncRNA‑SNHG14 Induces resistance to trastuzumab[48]

lncRNA PCSEAT Enhances cellular proliferation and motility[49]

lncRNA-SBF2-AS1 Enhances temozolomide resistance[50]

lncRNA-H19 Enhances resistance of doxorubicin[51]

lncRNA-RP11838N2.4 Promotes erlotinib resistance[52]

Proteins
MIF Initiates pro-metastatic effect[53]

EGFR vIII Activates the VEGF signaling[54]

TGF-β Suppresses T cell proliferation[55]

ANXA6 Facilitates the establishment of lung metastasis[56]

Integrins Promotes cancer progression[57]

Tspan8 Essential for the crosstalk between cancer initiating cells and their surrounding[58]

CD151 Essential for the crosstalk between cancer initiating cells and their surrounding[58]

MICA Prevents NK cell-mediated tumor elimination[59]

TNF-α Induces immune cells death[60]

CEMIP Promotes cancer cell colonization in brain metastasis[61]

PD-L1 Inhibits immune responses[62,63], promotes tumor growth[64,65]

Table 1. List of exosomal bioactive molecules involved in various cancer progression

PTEN: phosphatase and tensin homolog; EMT: epithelial-mesenchymal transition; VEGF: vascular endothelial growth factor; TNF-α: 
tumor necrosis factor-α; TGF-β: transforming growth factor-β; PD-L1: programmed death-ligand 1; EGFR: epidermal growth factor 
receptor
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cell-cell communication from cancer-cell derived exosomes appears to offer an exciting new way to treat 
cancer.

Exosomes as gene carriers for cancer therapy
Although, there is great potential for exosomes in cancer therapy, the use of natural exosomes is hard and 
rarely achieves the expected therapeutic result. Fortunately, engineered exosomes carrying specific proteins, 
RNAs, or drugs have been found to possess great potential for effective cancer treatment.

Exosomes as miRNA carrier for cancer therapy
miRNAs are endogenous, small, non-coding RNAs that can regulate gene expression by binding to target 
mRNAs. Therefore, miRNAs could be a powerful tool for cancer therapy. However, miRNAs are easily 
degraded in vivo and delivery of miRNAs to their specific target cells/tissue/organ is a major challenge. 
As exosomes are stable small vesicles that can carry functional bioactive molecules long distances with a 
high degree of target specificity[2-6], they have been suggested as a potential carrier for miRNAs in cancer 
therapy. Over the last few years, many scientists have focused on exosomal-based delivery of miRNAs and 
miRNA inhibitors for cancer therapy[83-88]. For instance, in 2013, Katakowski et al.[83] reported that exosomes 
enriched with the anti-glioma miRNA (miRNA-146b) can suppress glioma growth in vitro and can also 
significantly reduce glioma xenograft growth in rats. Similarly, miR-101-enriched exosomes can suppress 
osteosarcoma cell invasion/migration in vitro and suppress metastasis in vivo[84]. Wang et al.[85] also reported 
that exosomes loaded with miR‐335‐5p can decrease cancer growth and invasion both in vitro and in vivo. 

Figure 2. Exosome-based cancer therapies. Currently, four different methods have been developed for cancer therapies: (1) natural 
exosomes from some immune cells to suppress cancer cells; (2) inhibition of cancer cells-derived exosomes; (3) exosomes as gene 
carriers; and (4) exosomes as anti-cancer drug carriers (This figure was created with BioRender.com)
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Interestingly, O’Brien et al.[86] used engineered mesenchymal stem cells to secrete exosomes enriched 
with miR-379 for in vivo therapy of breast cancer. Importantly, they found that systemic administration 
of miR-379 enriched exosomes can significantly reduce tumor activity. Another miRNA, miR-145-5p, 
was also found to inhibit pancreatic ductal adenocarcinoma cell proliferation and invasion, as well as 
increased apoptosis. Moreover, exosomes transfected with miR-145-5p were able to inhibit pancreatic 
ductal adenocarcinoma cell proliferation and invasion through TGF-β/Smad3 pathways[87]. On the other 
hand, inhibitors of exosomal miRNAs, which play key roles in cancer progression through exosome, have 
become another effective method for cancer therapy. For example, exosomal miR-25-3p is a metastasis-
promoting miRNA of colorectal cancer. Exosomes enriched with miR-25-3p dramatically promoted 
vascular permeability and colorectal cancer metastasis in mice liver and lung. Nevertheless, these effects 
can be rescued by blockage of exosomal miR-25-3p by a miR-25-3p inhibitor[88].

Exosomes as protein carrier for cancer therapy
Recently, many scientists have begun to develop an exosomal-based cancer vaccine[89-91]. For example, 
TNF-alpha-related-apoptosis-inducing-ligand (TRAIL), a cytokine, functions as a ligand that induces 
cell apoptosis[92,93]. Rivoltini et al.[94] reported that TRAIL-armed exosomes could promote apoptosis in 
cancer cells and control tumor progression in vivo. Furthermore, IL-18 enriched exosomes enhance Th1 
cytokine release and proliferation of peripheral blood mononuclear cells, suggesting that IL-18 enriched 
exosomes harbor more capability to induce specific anti-tumor immunity as they trigger a bigger immune 
response[95]. Yang et al.[96] also found that IL-2 enriched exosomes induce the antigen-specific Th1-polarized 
immune response and cytotoxic T lymphocyte response more efficiently, leading a significant inhibition 
of tumor growth in mice. Exosomes can also be used as carriers of protein antagonists. For example, 
signal regulatory protein α (SIRPα) can interact with CD47, a “don’t eat me” signal that limits the ability 
of macrophages to engulf tumor cells. Exosomes carrying SIRPα antagonists could significantly increase 
tumor phagocytosis, as has been observed in tumor-bearing mice[97]. 

Exosomes as chemotherapeutic drug carriers for cancer therapy
Anti-tumor chemotherapeutic drugs can effectively kill fast-growing tumor cells. However, these drugs 
can also kill the normal, healthy cells that are fast-growing, causing serious side effects. Besides, for 
some hydrophobic drugs, it is a challenge for them to target tumor cells with any kind of specificity. 
Therefore, an effective carrier for these drugs is badly needed. Due to their naturally derived origin and 
their stable lipid bilayer structure, exosomes have the great potential to serve as an effective carrier for 
chemotherapeutic agents. As early as 2012, Tang et al.[98] reported that tumor cell-derived microparticles 
can be used as chemotherapeutic drug carriers. They found that chemotherapeutic drugs loaded onto 
microparticles had a potent anti-tumor effect both in vitro and in vivo[98]. In 2015, Kim et al.[99] developed a 
exosome-based formulation of paclitaxel (PTX), a commonly used chemotherapeutic agent, to overcome 
multiple drug resistance (MDR) in cancer cells. Three methods including incubation at room temperature, 
electroporation, and mild sonication were used to incorporate PTX into exosomes; among which, the mild 
sonication method resulted in the highest loading efficiency and sustained drug release[99]. PTX-loaded 
exosomes (exoPTX) increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp +) cells[99]. 
Furthermore, through a similar in vivo mice model, Kim et al.[99] found that exoPTX can efficiently target 
cancer cells and produce strong antineoplastic effects in mice with lung metastases. Similarly, Saari et al.[100] 
also found that delivery of PTX via cancer cell-derived exosomes enhances the cytotoxicity of PTX in 
autologous prostate cancer cells. Furthermore, by modifying the exosome surface proteins, exosomes can 
deliver chemotherapeutic drugs to cancer cells with a high degree of specificity. For example, Tian et al.[101] 
engineered Lamp2b-iRGD peptide (αv integrin-specific) expressing mouse immature DCs (imDCs), 
isolated their exosomes and used them to deliver doxorubicin (Dox). Using this approach, they found that 
iRGD-exosomes can efficiently target and deliver Dox to αv integrin-positive breast cancer cells in vitro, 
and specifically to tumor tissues, resulting in inhibition of tumor growth in vivo[101].
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CONCLUSION AND FUTURE DIRECTIONS
Due to their role in cancer progression and biological features, exosomes possess promising potential for 
cancer therapy. To date, numerous exosomes-based cancer therapies have been studied and developed 
including applying naturally derived immune cell exosomes to suppress cancer cells, inhibiting cancer 
cells-derived exosomal activity, and using exosomes as gene/drug carriers. However, there are considerable 
challenges to be solved. First, the difference among exosomes from different sources is still not clear. 
Second, the exosome number to get a therapeutic effect may be significantly different among different 
cancers. Third, scalability and heterogeneity of tumor may influence therapeutic outcome. Moreover, 
different functions of exosomes derived from different sources are not fully studied. Furthermore, 
knowledge on how exosomes can be modified so that they possess a high degree of specificity to particular 
cancer cells remains unclear. Finally, the storage and the stability of exosomes remains ill-defined. With 
these challenges, there is a vital need to systematically characterize exosomes derived from different cells/
tissue to choose the most efficient cells for specific cancer therapy. There is a further need to identify the 
specific cancer cell surface markers for designing exosomes as drug carriers with high specificity to cancer 
cells. Moreover, because of the complexity and the heterogeneity of the tumor, exosome-based cancer 
may need to combine with other approaches. Finally, clinical trials of exosome-based cancer therapy are 
urgently needed to determine the efficacy of the application. While there are still challenges ahead, it is 
clear that exosomes offer novel and important applications for the treatment of cancer.
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