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Supplementary Figure 1. SEM images with EDS mapping for (A) UiO-66-COOH and

(B) MOF@CS core-shell nanoparticles.

Supplementary Figure 2. SEM images of PES substrate.

Supplementary Figure 3. The water contact angles of (A) GO and (B) MOF@CS.

https://www.sciencedirect.com/topics/materials-science/energy-dispersive-x-ray-spectroscopy


Supplementary Figure 4. Zeta potential data of M3.

Supplementary Figure 5. (A) GO nanochannel; (B) MOF@CS-GO nanochannel.



All-atom molecular dynamics (MD) simulations were performed to study the physical

insights of the motion of water inside the membrane using the Materials Studio

software. The initial models are given in Supplementary Figure 4. The GO sheets

forming the nanochannel were constrained during MD simulations. All the Zr atoms

forming the UiO-66 cluster were also constrained, while the connecters

(1,2,4-benzenetricarboxylic acid) and grafted chitosan segments were allowed to move,

during MD simulations. Periodic boundary conditions were applied to all three

directions of the simulation boxes. The COMPASSII force field was used to describe

all the inter- and intramolecular interactions. The summation methods for electrostatic

and van der Waals interactions were Ewald (accuracy = 0.001 kcal/mol, buffer width =

0.5 Å) and Atom based (cutoff distance = 12.5 Å, cubic spline width = 1 Å, buffer

width = 0.5 Å), respectively. Long range correction was applied to the calculation of

van der Waals interactions. The simulation models were first optimized using the Smart

algorithm (energy: 0.001 kcal/mol, force: 0.5 kcal/mol/Å). Then MD simulations were

conducted on the optimized models. The NVT ensemble was applied, and the NHL

thermostat (Q ration = 0.01, decay constant = 1.0 ps) was used to control the system

temperature at 300 K. The total simulation time was 1 ns, while the last 500 ps was

used for result analysis. The time step was set to 1 fs.



Supplementary Table 1. The detailed information of dyes

Dye Crystal violet Methylene blue Congo Red

Chemical structure

Molecular formula C25H31N3 C16H18ClN3S C32H22N6Na2O6S2
Charge Positive Positive Negative

Size 13.1 × 13.1 Å 13.2 × 5.3 Å 25.6 × 7.3 Å

Molecular weight 373.85 g·mol-1 319.85 g·mol-1 696.68 g·mol-1



Supplementary Table 2. The performance comparison of M3 with other NF

membranes prepared in literatures

Membrane Dye
Pressure

(bar)

Permeance

(Lm-2h-1 bar-1)

Rejection

(%)
Ref.

MWCNT@CS-PEBA/PES CRa 2 5.3 95 [1]

Fe3O4/CS/PES DRb 4 9 99 [2]

TiO2/GO DR 5 10.8 87.2 [3]

GO MBc 1 11.5 96.29 [4]

GO CR 8 11.34 79 [5]

PA/UiO-66 CVd 5 13 90 [6]

SiO2/GO MB 1 14.8 88.92 [7]

MOF@GO-CS CR 3 14.62 99 [8]

GO/NH2-Fe3O4 CR 5 15.6 94 [9]

UiO-66@GO/PES MOe - 15.7 88.6 [10]

GO/PES DR 3 16 88.8 [11]

UiO-66-(COOH)2/prGO MB 1 20 92.55 [12]

GO/MXene CR 0.5 25 90 [13]

Sm-MOF/GO MB - 26 91 [14]

GO MB 3.4 27.6 66 [15]

MOF@CS-GO CR 2 34. 95.6
This

work
aCongo red; bDirect red; cMethylene blue; dCrystal violet; eMethyl orange.
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