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Professional Terminology Explanations

The thermodynamic theoretical calculation of stacking fault energy is based on

the thermodynamic model proposed by Olson-Cohen, which is a formal solution

model. This model views the occurrence of stacking faults in crystals as a

transformation between FCC (face-centered cubic) and HCP (hexagonal close-packed)

structures, allowing for the calculation of energy changes per unit area. As shown in

Equation S1, these three physical parameters are derived from the empirical formula

used to calculate stacking fault energy. We have calculated the values of these PM

parameters such as the phase transformation driving force (DF), and the Gibbs free

energies of the FCC (GFCC) and HCP (GHCP) phases separately using the

Thermo-Calc®. The empirical formulas for calculating the physical parameters

related to the thermodynamic model of stacking fault energy are listed in

Supplementary Table 1.

γ = 2ρA △ Gγ→ε + 2σγ→ε （S1）

△ Gγ→ε =△ Gche
γ→ε +△ Gmg

γ→ε +△ Gseg
γ→ε

（S2）
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△ Gmg
γ→ε = △ Gm

ε − △ Gm
γ

（S4）

Gm
φ = RT ln β + 1 f(τ) （S5）

σγ→ε = 10(2ρA △ Gche
γ→ε +△ Gmg

γ→ε )2 + 0.0095 （S6）

Where ρA represents the molar surface density of the closest-packed plane in a

face-centered cubic (FCC) crystal. △ Gche
γ→ε is the molar thermochemical free energy

difference; △ Gmg
γ→ε is the magnetic free energy difference, which is related to the Néel

temperatures of the respective phases; △ Gseg
γ→ε is the free energy difference arising

from the Suzuki effect between the γ and ε phases, which is negligible at 300K due to

its small magnitude. Xi is the molar fraction; △ Gi
γ→ε is the free energy change for the

γ→ε transition in pure component i; and △ Ωij
γ→ε represents the interaction energy

between components i and j. The specific empirical formulas for these calculations are

shown in Supplementary Table 1, where φ denotes either the γ or ε phase; R is the gas



constant; and τ = T/TN, where T is the room temperature and TN is the

antiferromagnetic transition temperature for the R phase. For both FCC and HCP

structures, p = 0.28.

Supplementary Table 1. Empirical Formulas for Calculating Physical Parameters

Related to the Thermodynamic Model of SFE

Parameter Function (J /mol)

△ GFe
γ→ε -2243.38+4.309T

△ GCr
γ→ε 1370-0.163T

△ GNi
γ→ε 1046+1.255T

△ GMn
γ→ε -1000.00+1.123T

△ GSi
γ→ε -560-8T

ΩFeCr
γ→ε 2095

ΩFeNi
γ→ε 2095

ΩFeMn
γ→ε 2873-717 (XFe − XMn)

ΩFeSi
γ→ε 2850 + 3520 (XFe − XSi)

f(τ)
when τ<1, 1 − [ 79τ−1

140p
+ 474

497
1
p

− 1 τ3

6
+ τ9

135
+ τ15

600
]/A

when τ>1, − τ−5

10
+ τ−15

315
+ τ−25

1500
]/A

The SHAP, which is based on game theory and local explanations, can explain

the relationship between the inputs and targets using the Shapley value. The Shapley

value can be expressed as Equation S7:

φi =

S⊆F\ i

S ! F − S − 1
F !

(νS∪ i� xS∪ i − νS(xS)) （S7）

where φi is the Shapley value of the ith input value, S is the set of input values

with the ith input value excluded, |S| is the magnitude of S (for example, S = x1,

x2, . . . , xi−1, xi+1, . . . ,xn−1, xn and |S| = n − 1), F is the set of input values, and v(x) is

calculated based on the marginal contribution of the input values.

The MDA, which is a feature selection method within the realm of machine

learning, quantifies the importance of each input feature by measuring the decrease in



model accuracy, as shown in the Equation S8:
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j 2
�� −

Xi∈Dt k

Rk Xi − yi
k 2��� （S8）

where T is the total number of decision trees in the Random Forest model, Dt

means the out-of-bag (OOB) sample set for the tth decision tree. The OOB data is used to estimate

the model's accuracy without using the same data for both training and validation, thus providing

an unbiased estimate of the model's performance. Xi
j is the i th sample with the j th feature

permuted. Dt
j is the OOB sample set for the tth decision tree with the jth feature permuted.

Rk(Xi) is the predicted output of the Random Forest model for the ith sample on the kth target

variable, and yi
k is the actual kth target variable value for the ith sample.

Conventional SFE calculation results

Before using ML models, we attempted to calculate the SFE using the

thermodynamic model. To assess the validity of the empirical formulas in calculating

SFE, we conducted SFE calculations for 188 alloy compositions in the database and

conducted a detailed comparative analysis of these calculated results with

experimentally obtained SFE values. Supplementary Figure 1 shows the distribution

of calculated and actual SFE values for the alloy compositions in the database, with

the effectiveness evaluated using R² and MAE indicators. The comparison revealed

significant differences between the calculated values obtained using the

thermodynamic empirical formulas and the experimentally measured values.

Specifically, the R² of the model was only 17.7%, indicating a very poor model fit.

Additionally, the MAE was as high as 12.42 mJ·m⁻², further demonstrating the

significant challenges in predicting SFE for alloy compositions in the thermodynamic

database. Given the rigorous and complex process of determining interfacial energy,

we attempted to evaluate a subset of 54 austenitic stainless steel compositions in the

database separately, as shown in Supplementary Figure 1C. After this segmentation,

the R² value improved significantly to 60%. However, the MAE increased to 15.04

mJ·m⁻², suggesting that although the model fit improved to some extent, there was an

overall numerical shift between the predicted and actual values.



Supplementary Figure 1. The distribution of calculated and actual SFE values for

the alloy compositions in the database. A: austenitic steels before fit; B: austenitic

steels after fit; C: austenitic stainless steels before fit; D: austenitic stainless steels

after fit.

Taking into account the fact that the two key variables are subject to some error

due to the empirical formulae, we decided to introduce a coefficient (as in Equation

S9) in front of each variable in order to analyze the subsequent fitting work.

γ = α ∗ 2ρA △ Gγ→ε + β ∗ 2σγ→ε （S9）

When fitting the austenitic steel compositions, by determining a set of

parameters (α= 0.4335, β= 1.6129), we find that the MAE value decreases to 10.49

mJ·m⁻², while for the austenitic stainless steels, it decreases significantly from 15.04

mJ·m⁻² to 2.82 mJ·m⁻², but the fitting was not as effective as expected. There are still

challenges in realizing accurate prediction of the SFE in a wider range of

compositions.



Detailed results of the SFE modeling approach

In the process of constructing a Convolutional Neural Network (CNN) model, a

systematic and rigorous methodology was followed to determine the sizes of

convolutional layers and fully connected layers. Here are the detailed steps: Firstly, to

explore the optimal model structure, we conducted a series of parameter tuning

experiments. These experiments involved altering key parameters such as the size and

number of convolution kernels in the convolutional layers, as well as the number of

neurons in the fully connected layers. To evaluate model performance, we adopted R²

and MAE as metrics to help us compare the pros and cons of different model

structures.

As shown in Supplementary Figure 2, after trying various parameter

configurations, we found that introducing PM parameters into the fully connected

layers did not significantly improve model performance. The role of these PM

parameters was difficult to clearly identify, and their effect on enhancing prediction

performance was minimal. This finding prompted us to recognize that the current

introduction strategy had limited effectiveness in improving model performance and

motivated us to consider how to reduce computational complexity while maintaining

model performance. Supplementary Table 2 lists the corresponding architectural

details for the model shapes depicted in Supplementary Figure 2. Based on the best

training results, we gradually adjusted the sizes of the model's structural layers,

aiming to reduce computational complexity while ensuring performance, so that the

model could be trained within a reasonable timeframe.



Supplementary Figure 2. The R² and MAE of models under different model shapes.

Supplementary Table 2. The CNN model architecture details of layer (type)

Shape1 Shape2 Shape3 Shape4

conv2d_1 (Conv2D)：
(4, 4, 8)
conv2d_1 (Conv2D)：
(4, 4, 32)
flatten (Flatten):2336
dense_1 (Dense): 256
dense_2 (Dense): 128

dense_3 (Dense): 8

conv2d_1 (Conv2D)：
(4, 4, 16)
conv2d_1 (Conv2D)：
(4, 4, 32)
flatten (Flatten):4640
dense_1 (Dense): 256
dense_2 (Dense): 128

dense_3 (Dense): 8

conv2d_1 (Conv2D)：
(4, 4, 8)
conv2d_1 (Conv2D)：
(4, 4, 16)
flatten (Flatten):1168
dense_2 (Dense): 128

dense_3 (Dense): 8

conv2d_1 (Conv2D)：
(4, 4, 8)
conv2d_1 (Conv2D)：
(4, 4, 16)
flatten (Flatten):1168
dense_1 (Dense): 64

dense_2 (Dense): 8

The results of the transfer learning model after expanding the database are shown

in Supplementary Figure 3.

Supplementary Figure 3. Comparing the results of the transfer training model after

expanding the data volume. A: source model; B: transfer model; C: distribution of

predicted and measured values of SFE for austenitic stainless steels.


