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Abstract
Neurogenic dysphagia (ND) is characterized by a swallowing disorder where nervous system, muscle, and 
neuromuscular diseases are involved. DRD1, COMT, BDNF, and APOE are genes that may have a predictive role in 
the occurrence and evolution of ND. Many drugs that improve swallowing or can induce or exacerbate swallowing 
difficulties are related to dopamine metabolism and substance P. These pharmacological treatments for ND include 
dopamine precursors (levodopa), dopamine agonists (amantadine, apomorphine, cabergoline, and rotigotine), and 
TRP channel activators (capsaicin, piperine, and menthol). Since treatment outcomes are highly dependent on the 
genomic profiles of ND patients, personalized treatments should rely on pharmacogenetic procedures to optimize 
therapeutic interventions. Knowledge of the pharmacogenetic profiles of these drugs would minimize the 
occurrence of adverse drug reactions (especially to antidopaminergic medications) that may induce dysphagia and 
optimize pharmacological treatment that can ameliorate it. This knowledge should also be applied to the use of 
medications that control symptoms associated with dysphagia, such as sialorrhea, xerostomia, reflux, or hiccups.
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INTRODUCTION
Neurogenic dysphagia (ND) refers to any swallowing disorder associated with central and peripheral 
nervous system conditions, as well as muscle and neuromuscular diseases. ND is linked to multiple 
degenerative and nondegenerative congenital, traumatic, vascular, neoplastic, and iatrogenic disorders as 
diverse as cerebral palsy, traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), multiple sclerosis 
(MS), Parkinson’s syndromes, myasthenia gravis (MG), and myositis[1]. Based on clinical observations, ND 
can be classified into the following seven distinct phenotypes, which are particularly useful when etiological 
diagnosis is in doubt: (i) premature bolus spillage; (ii) delayed swallowing reflex, both characteristic of 
stroke; (iii) predominance of residue valleculae, common in patients with Parkinson’s disease; (iv) 
predominance of residue in the piriform sinus, characteristic of myositis, motor neuron disease, or 
brainstem stroke; (v) pharyngolaryngeal movement disorder, observed in patients with parkinsonism and 
stroke; (vi) fatigable swallowing weakness in individuals with myasthenia gravis; and (vii) complex disorder, 
as occurs in ALS[2].

The importance of dysphagia stems mostly from the increased risk of death caused by aspiration 
pneumonia, and conditions related to dehydration or malnutrition[3,4]. In addition to these factors, aging 
reduces the frequency of spontaneous swallowing[5]. To ensure proper diagnosis and management of ND, it 
is mandatory to: (i) obtain a complete medical history; (ii) perform screenings that assess the risk of 
aspiration (e.g., a swallowing test with water and other consistencies); (iii) conduct counseling tests and 
clinically evaluate dysphagia by videofluoroscopy (VFSS), swallowing endoscopy (FEES), or manometry, 
and other additional tests such as ultrasonography or electromyography); (iv) perform treatments based on 
dietary therapeutic interventions, behavioral interventions, oral hygiene measures, neurostimulation, 
pharmacotherapy, and surgical treatments[6]. In this third step, the management of special groups such as 
tracheostomized patients and patients with nasogastric tubes is of particular interest[6].

The treatment of ND is mainly based on rehabilitation therapies performed by speech therapists and other 
non-pharmacological approaches. However, some medications may be effective in improving impairment 
during the different phases of swallowing[6,7]. The majority of medications used to treat oropharyngeal 
dysphagia have a general effect on swallowing function that is independent of the underlying neurological 
disease; this allows for standardized use[8]. Pharmacotherapy, however, produces limited results and should 
therefore not be used as a stand-alone treatment, but rather as an adjunct to other therapies[8]. Furthermore, 
medications such as antidopaminergic agents, anticholinergic drugs, or benzodiazepines induce or 
exacerbate dysphagia[9-12].

In view of these considerations, research into specific ND-related genes may be useful in the prognosis of 
this condition. Because pharmacogenetics also plays a key role in both the diagnosis and the correct 
pharmacological management of patients with dysphagia, to increase the benefit of compounds that can 
improve swallowing difficulty and minimize the risk with the use of dysphagia-inducing drugs, in this 
review, we highlight these ND mechanisms from a pharmacogenomic perspective.

DOPAMINE AS A NEUROTRANSMITTER
Dopamine is a neurotransmitter of high relevance in the swallowing process. Its precursor, L-DOPA, is 
synthesized from the essential amino acid tyrosine or indirectly through phenylalanine, a non-essential 
amino acid. Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine (NE), 
and NE is then converted into epinephrine by phenylethanolamine N-methyltransferase with 
S-adenosyl-L-methionine as the cofactor. Dopamine is degraded by monoamine oxidase (MAO-A and 
MAO-B), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), which act 
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sequentially[13].

Dopamine is synthesized and acts primarily in the central nervous system (CNS). Dopaminergic neurons 
project to different brain regions along the mesolimbic, mesocortical, nigrostriatal, and tuberoinfundibular 
pathways. Dopamine exerts its effects by binding to five G-protein-coupled receptors (D1-D5); of these, D1 
receptors are the most abundant in the CNS. These receptors are divided into D1-like (D1 and D5) and 
D2-like (D2, D3, and D4) receptors. D1-like receptors exert a stimulatory effect through sodium channels or 
an inhibitory effect through potassium channels. At the peripheral level, dopamine does not cross the 
blood–brain barrier and is synthesized independently. Dopamine is present in plasma as dopamine sulfate, 
and only a small unconjugated amount can be synthesized by peripheral tissues[14,15].

DOPAMINE AND SWALLOWING
The swallowing process requires, at least in part, dopamine activity and its binding to its receptors[16]. 
Although most dopamine receptors would theoretically be relevant to ND, the role of the dopamine 
D1 receptor (DRD1) is particularly important in this condition. For example, DRD1 antagonists alter the 
swallowing reflex and reduce substance P (SP) levels in peripheral organs[17]. Specifically, in the striatum in 
an animal model of Huntington’s chorea, Drd1a, SP, and dynorphin expression is downregulated, whereas 
the expression of the dopamine D2 receptor (Drd2) and enkephalin is upregulated after ablation of D1 
receptor-expressing cells[18]. In this animal model, the resulting phenotype includes swallowing disturbances 
and poor oromotor coordination with tongue protrusion[18]. This role of DRD1 has also been observed in 
certain single nucleotide polymorphisms (SNPs) in humans. The DRD1 rs4532 polymorphism confers a 
worse prognosis of swallowing function in individuals over the age of 65 following a stroke. Other SNPs, 
such as DRD2 rs1800497 and DRD3 rs6280, do not appear to be involved in ND[19]. Moreover, interactions 
between the COMT rs165599 and BDNF rs10835211 polymorphisms are linked to dysphagia with increasing 
age; the effect of the SNP rs10835211 heterozygosity is dependent on the status of SNP rs165599[20].

The use of dopaminergic agonists in the treatment of neurogenic dysphagia
Levodopa, rotigotine, cabergoline, apomorphine, and amantadine are dopamine agonists that have been 
used generically to treat a variety of neurological conditions associated with oropharyngeal dysphagia[8]. The 
drug that provides the best outcome is controversial because of conflicting outcomes across different 
studies. However, among these, levodopa is the most widely used, and it is also used to evaluate the 
swallowing response during the Fiberoptic Endoscopic Evaluation of Swallowing (FEES) test[21,22]. Most 
studies have focused on the effect of dopaminergic agonists in Parkinson’s disease, and several publications 
show that these drugs improve dysphagia, especially in the oral phase and, to a lesser extent, in the 
pharyngeal phase[23-25]. This clinical improvement is related to swallowing alterations due to nigrostriatal 
dopamine deficits and to other structures such as the pedunculopontine nucleus or the medulla[23]. In a 
small group of patients, an improvement in bolus fragmentation, vallecular stasis, and laryngeal penetration 
was observed, together with a shortening of the swallowing phase; these findings are associated with an 
improvement in bucco-linguo-facial motility[26]. Paradoxically, and despite most articles reporting a 
beneficial effect, one clinical trial showed that levodopa could worsen dysphagia by inhibiting brainstem 
reflexes[27]. Overall, however, the results appear to support its use in PD patients despite the lack of high-
quality evidence[28]. Although dopaminergic agonists have a modest effect on the motor symptoms of 
progressive supranuclear palsy, they help some patients improve their swallowing[21]. However, these drugs 
can also be employed in acquired neurological conditions. Following a lacunar stroke involving the basal 
ganglia, for example, levodopa decreases the risk of aspiration by shortening the latency of the swallowing 
reflex, as shown after examining the submental electromyographic activity and the visual observation of the 
laryngeal movement[29]. This reduction, according to monocentric randomized trials in which imaging and 
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physical signs were evaluated, is also observed with other dopamine agonists such as cabergoline and 
amantadine; the elderly population, in particular, may benefit from treatment with dopamine agonists[30,31].

The search for new compounds to treat ND also includes natural supplements that contain dopamine, for 
use mainly in groups where dosage or side effects may be contraindicated, such as children or the elderly. 
Natural sources of dopamine include Mucuna pruriens, Vicia faba, or Musa cavendishii[32-34]. In fact, several 
studies in patients with Parkinson’s disease reveal the effectiveness of these treatments with extracts derived 
from these products; these compounds reduce the risk of adverse effects such as dyskinesias as well as 
induce epigenetic and pharmacoepigenetic modifications[35,36].

Pharmacogenetics of dopaminergic agonists in the treatment of neurogenic dysphagia
Anti-ND drugs exhibit different specific pharmacogenetic profiles [Table 1][37]. All of the medications used 
to treat ND show, among others, DRD1 as a mechanistic gene and the binding of drugs to this receptor. All 
of the anti-ND drugs have COMT as substrates, where COMT shortens the activity of these dopaminergic 
drugs[38]. Moreover, the COMT rs4680 polymorphism may induce motor complications such as dyskinesia 
during treatment with levodopa[38-40]. Levodopa also has DBH as substrate[37]. ADORA2A SNPs and 
HOMER1 variants are associated with L-DOPA-induced adverse motor (e.g., dyskinesia) and psychotic 
symptoms[41,42]. A haplotype integrating -141CIns/Del, rs2283265, rs1076560, C957T, TaqIA, and rs2734849 
polymorphisms at the DRD2/ANKK1 gene region is linked to L-DOPA-induced motor dysfunction[43]. 
SLC6A3 is a genetic modifier of the treatment response to L-DOPA[44]. The multi-drug resistance gene 
(MDR1) C1236T polymorphism may also influence pharmacotherapy[45] and SNPs in genes that encode the 
dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2)[46]. 
Despite the fact that dopamine agonist therapy has applicability in other ND diseases, these studies focus on 
Parkinson’s disease, which limits inferences in other acquired or degenerative neurological illnesses.

Antidopaminergics and neurogenic dysphagia 
In a significant number of cases, the causes of ND can be induced or exacerbated by certain drugs[9-11]. Many 
patients with different neurological conditions are treated with antidopaminergic medication[10,11]. Adverse 
reactions are especially frequent in senescence and are relevant since they are reversible, and dysphagia may 
be the only or the predominant extrapyramidal symptom. Although it is recommended that drug intake be 
minimized as much as possible, this is not feasible in many cases. It is therefore recommended that the drug 
dose be adjusted to avoid the aforementioned side effects. Knowing the pharmacogenetic profiles of these 
drugs is, therefore, very important to therapeutic strategies[37] [Table 2].

Antipsychotics ,  as  antidopaminergic medications,  are primari ly metabolized through 
CYP1A2/2D6/3A4/2C19[47]. Of these, CYP2D6 is the most relevant because 40% of these neuroleptics are 
major substrates of this enzyme. CYP2D6, however, is associated with side effects. Other genes such as 
HTR2A, SLC18A2, GRIK3, and DRD2 are linked to extrapyramidal reactions[48]. Drugs that exert an 
antidopaminergic effect on DRD1 are of particular interest. In ND, DRD1 is the pathogenic gene that is 
involved in the pharmacogenomic response to haloperidol, aripiprazole, olanzapine, quetiapine, or 
risperdone. Other DRDs (not DRD1) pathogenic variants mediate the adverse effects of antipsychotic drugs 
such as sulpiride, domperidone, and metroclopramide, causing oropharyngeal dysphagia; this suggests that 
other dopamine- and non-dopamine pathways mediate blocking of the swallowing phase[37].

TRANSIENT RECEPTOR POTENTIAL CHANNEL (TRP) GENES
Transient receptor potential (TRP) channel genes encode ion channels that are classified into two broad 
groups: (i) Group 1 includes TRPC (canonical), TRPV (vanilloid), TRPVL (vanilloid-like), TRPM 
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Table 1. Pharmacogenetics of dopaminergic agonists in the treatment of neurogenic dysphagia

Drug Properties Pharmacogenetics

Name: Levodopa 
IUPAC Name: l-Tyrosine-3-hydroxy 
Molecular Formula: C9H11NO4 
Molecular Weight: 197.19 g/mol 
Mechanism: Levodopa circulates in the plasma to the blood–brain barrier, 
where it crosses and is then converted by striatal enzymes to dopamine. Carbidopa inhibits the 
peripheral plasma breakdown of levodopa by inhibiting its carboxylation, and thereby increases 
available levodopa at the blood–brain barrier 
Effect: Antiparkinsonian agents, dopamine precursors 

Pathogenic genes: ANKK1, BDNF, LRRK2, PARK2 
Mechanistic genes: CCK, CCKAR, CCKBR, DRD1, DRD2, DRD3, DRD4, DRD5, GRIN2A, 
GRIN2B, HCRT, HOMER1, LMO3, OPRM1 
Metabolic genes: Substrate: COMT, CYP1A2, CYP2B6, CYP2C19, CYP2D6, CYP3A4, 
CYP3A5, DBH, DDC, G6PD, MAOB, TH, UGT1A1, UGT1A9 
Transporter genes: SLC22A1, SLC6A3, SLC15A1 (inhibitor). SLC16A10 (inhibitor), 
SLC7A5, SLC7A8 
Pleiotropic genes: ACE, ACHE

Name: Cabergoline 
IUPAC Name: Ergoline-8β-carboxamide, N-[3-(dimethylamino)propyl]-N-[(ethylamino)carbonil]-6-
(2-propenyl) 
Molecular Formula: C26H37N5O2 
Molecular Weight: 451.60 g/mol 
Mechanism: A long-acting dopamine receptor agonist. 
Has high binding affinity for dopamine D2-receptors and lesser affinity for D1, α1- and α2-adrenergic, 
and serotonin (5-HT1 and 5-HT2) receptors. 
Reduces serum prolactin concentrations by inhibiting release of prolactin from the anterior pituitary 
gland (agonist activity at D2 receptors) 
Effect: Antiparkinsonian agents, ergot-derivative dopamine receptor agonists

Pathogenic genes: BDNF, GSK3B 
Mechanistic genes: ADRA1A, ADRA1B,ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, 
ADRB2, AKT1, BDNF, CNR1, DRD1, DRD2, DRD3, DRD4, DRD5, GSK3B, HTR1A, HTR1B, 
HTR1D, HTR2A, HTR2B, HTR2C, HTR7 
Metabolic genes: Substrate: COMT, CYP1A2, CYP2B6, CYP2C19, CYP2D6, CYP3A4 
(minor), CYP3A5, DDC 
Transporter genes: ABCB1

Name: Rotigotine 
Molecular Formula: C19H25NOs 
Molecular Weight: 315.47 g/mol 
Mechanism: A non-ergot dopamine receptor agonist with specificity for D3-, D2-, and D1-dopamine 
receptors.  
Although the precise mechanism of action of Rotigotine is unknown,  
it is believed to be due to stimulation of postsynaptic dopamine D2-type autoreceptors within 
substantia nigra in brain, leading to improved dopaminergic transmission in motor areas in basal 
ganglia, notably caudate nucleus/putamen regions 
Effect: Antiparkinsonian agents, non-ergot-derivative dopamine receptor agonists

Pathogenic genes: ANKK1, BDNF, LRRK2 
Mechanistic genes: CCK, CCKAR, CCKBR, DRD1, DRD2, DRD3, DRD4, DRD5, GRIN2A, 
GRIN2B, HCRT, HOMER1, LMO3, OPRM1, HTR1A, ADRA2B 
Metabolic genes: 
Substrate: COMT, MAOB, CYP3A4, CYP2D6 
Inhibitor: CYP2D6, CYP2C19 
Transporter genes: SLC22A1, SLC6A3 
Pleiotropic genes: ACE, APOE

Name: Apomorphine 
Molecular Formula: C17H17NO2HCl1/2H2O 
Molecular Weight: 312.79 g/mol 
Mechanism: Stimulates postsynaptic D2-type receptors within the caudate-putamen in the brain 
Effect: Antiparkinsonian agents, non-ergot-derivative dopamine receptor agonists

Pathogenic genes: PARK2 
Mechanistic genes: ADRA2A, ADRA2B, ADRA2C, CALY, DRD1, DRD2, DRD3, DRD4, 
DRD5, HTR1A, HTR1B, HTR1D, HTR2A, HTR2B, HTR2C 
Metabolic genes: 
Substrate: COMT, CYP1A2 (minor), CYP2B6, CYP2C9 (minor), CYP2C19 (minor), 
CYP2D6, CYP3A4 (minor), CYP3A5, DDC, UGT1A1, UGT1A9, SULT1A1, SULT1A2, 
SULT1A3, SULT1E1, SULT1B1 
Inhibitor: CYP1A2 (weak), CYP2C19 (weak), CYP3A4 (weak) 
Transporter genes: SLC18A2

Name: Amantadine 
IUPAC Name: Tricyclo[3.3.1.13,7]decan-1-amine, hydrochloride 
Molecular Formula: C10H17NHCl 
Molecular Weight: 187.71 g/mol 
Mechanism: Antiparkinsonian activity may be due to inhibition of dopamine reuptake into presynaptic 

Pathogenic genes: PARK2 
Mechanistic genes: CCR5, CXCR4, DRD1, DRD2, GRIN3A, CHRNA3, CHRNA4, CHRNA7 
Metabolic genes: 
Substrate: COMT, CYP1A2, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5, DDC, 
UGT1A1, UGT1A9 
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neurons or by increasing dopamine release from presynaptic fibers 
Effect: Antiparkinsonian agents, adamantanes, dopamine agonists

Inhibitor: MAOB 
Transporter genes: SLC22A1 (Substrate/inhibitor), SLC22A2 (Substrate/inhibitor)

(melastatin), TRPS (soromelastatin), TRPN (no mechanoreceptor potential C), and TRPA (ankyrin); (ii) Group 2 consists of TRPP (polycystic) and TRPML 
(mucolipin)[49]. Some of these targets represent a therapeutic strategy of interest for dysphagia by stimulating areas that evoke the swallowing reflex. Group 1 
genes are the most relevant where TRPV1, TRPA1, and TRPM8, for example, are involved in stimulation of thermal sensitivity and the release of CGRP and 
inflammatory mediators[50]. These receptors are expressed on trigeminal, vagal, and glossopharyngeal nerve terminals; these nerves are critical in the 
swallowing process[51,52]. Three compounds of clinical relevance in ND that stimulate these receptors are capsaicin, piperine, and menthol. Capsaicin increases 
the frequency of spontaneous swallowing by stimulating TRPV1 receptors, piperine stimulates TRPV1/A1 receptors, and menthol stimulates TRPM8 
receptors[53,54]. A recent meta-analysis revealed the effectiveness of TRP channel agonists in treating ND[55]. Capsaicin produces the highest therapeutic 
outcomes by lowering the risk of laryngeal penetration and pharyngeal residue and increasing bolus velocity[54]. Capsaicin also induces the release of SP, a 
neurotransmitter involved in amplifying the inflammatory response and nociceptive sensitization. Since DBH inhibits capsaicin, a pharmacogenetic study in 
patients with variants of interest is mandatory[37]. As mechanistic genes, TRPV1 Val585Ile and UCP2 -866 G/A variants correlate with the capsinoid therapeutic 
response[56]. All three, but mainly capsaicin, inhibit CYP group enzymes (CYP3A4, CYP2C9, and weak in CYP2D6). Furthermore, capsaicin and piperine 
inhibit CYP1A2[57]. In silico, piperine weakly inhibits CYP2D6 WT and CYP2D6*53[58]. Capsaicin and the other compounds, in addition to exhibiting large 
heterogeneity in their metabolic genes, exert anti-inflammatory effects by modulating pleiotropic genes such as TNF andILs[37] [Table 3].

OTHER DRUGS USED IN NEUROGENIC DYSPHAGIA
Angiotensin-converting enzyme inhibitors (ACE inhibitors) inhibit substance P degradation[59]. These drugs reduce the cough threshold and subsequently can 
be used in aspiration prophylaxis; however, results from studies on perindopril, lisinopril, or imidapril are inconclusive[59-61]. Imidapril is effective in controlling 
dysphagia after stroke[30]. In one study, levetiracetam was beneficial to the recovery of dysphagia in post-stroke patients[62]. Several reports describe the 
usefulness of cough provocation tests with irritants (citric acid, tartaric acid, and mannitol) as a diagnostic tool[63-65], but it remains to be determined whether 
such agents are useful for treating dysphagia. Table 3 shows the pharmacogenetic profiles of other drugs used to treat ND[37]. It should furthermore be noted 
that drugs used to treat ND (including dopaminergic agonists) may influence neuroplasticity and axonal regrowth or sprouting to improve, for example, the 
level of consciousness that would facilitate swallowing[66].

OTHER GENES RELATED TO NEUROGENIC DYSPHAGIA
Few reports have linked other genes to dysphagia. However, the BDNF gene has been studied the most in this regard; the influence of the COMT gene on 
symptomatic dysphagia has been previously discussed[20]; rs6265 polymorphisms exert disparate effects on pharyngeal stimulation in healthy subjects[67] and 
appear to influence a better prognosis in swallowing after stroke or poor tolerance to esophageal electrostimulation in carriers of the Met allele[68-70]. 
Furthermore, a study with a large sample of elderly individuals showed that e4 homozygous APOE carriers have low swallowing evaluation scores[71]. Finally, 
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Table 2. Pharmacogenetics of antidopaminergic drugs and the risk of neurogenic dysphagia

Drug Properties Pharmacogenetics

Name: Haloperidol 
IUPAC Name: 4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-1-(4-fluorophenyl)butan-1-one 
Molecular Formula: C21H23ClFNO2 
Molecular Weight: 375.864223 g/mol 
Mechanism: Haloperidol is a butyrophenone antipsychotic which blocks postsynaptic mesolimbic 
dopaminergic D1 and D2 receptors in brain. Depresses release of hypothalamic and hypophyseal hormones. 
Believed to depress reticular activating system 
Effect: Antipsychotic agent, Serotonergic antagonist, Dopaminergic antagonist, antiemetic, antidyskinesia 
agent, sedative effects, hypotension

Pathogenic genes: ADRA1A, ADRA2A, ADRA2B, ADRA2C, BDNF, DRD1, DRD2, 
DRD3, DRD4, DTNBP1, GRIN2B, HTR2A 
Mechanistic genes: ANKK1, BDNF, COMT, DRD1, DRD2, DRD3, DTNBP1, 
GRIN2A, GRIN3B, GRIN2C, GRIN2B, SLC6A3, MCHR1, SLC18A2, HTR2C, 
SIGMAR1, HRH1, CHRM3, HTR1A, HTR6, HTR7 
Metabolic genes: 
Substrate: CBR1, CYP1A1 (minor), CYP1A2 (minor), CYP2A6, CYP2C8 (minor), 
CYP2C9 (minor), CYP2C19 (minor), CYP2D6 (major), CYP3A4/5 (major), 
CYP3A7, GSTP1, UGT1A9 
Inhibitor: CYP2D6 (moderate), CYP3A4 (moderate) 
Transporter genes: ABCB1 (substrate/inhibitor), ABCC1, KCNE1, KCNE2, 
KCNH2, KCNJ11, KCNQ1, SLC6A3 
Pleiotropic genes: CHRM2, FOS, GSK3B, HRH1, HTR2A, HTT, IL1RN

Name: Sulpiride. 
IUPAC Name: N-[(1-ethylpyrrolidin-2-yl)methyl]-2-methoxy-5-sulfamoylbenzamide 
Molecular Formula: C15H23N3O4S 
Molecular Weight: 341.42582 g/mol 
Mechanism: It is a selective antagonist at postsynaptic D2 and D3 receptors. It appears to lack effects on 
norepinephrine, acetylcholine, serotonin, histamine, or GABA receptors. It also stimulates secretion of 
prolactin. 
Effect: Antipsychotic agent, dopaminergic antagonist, antidepressant effect, antiemesis, sedation 
(> 600 mg/day), dopamine reuptake inhibition (< 200 mg/day), antiemesis, antimigraine effects, 
antivertiginous activity, prolactin-releasing stimulation

Pathogenic genes: DRD2, DRD3, DRD4 
Mechanistic genes: DRD2, DRD3, DRD4, PRLH, CA2, CA3 
Metabolic genes: 
Substrate: CYP1A2, CYP2B1, CYP3As 
Inhibitor: BCHE, CYP1A2, CYP2B1, CYP3As 
Transporter genes: SLC22A1, SLC22A2, SLC47A1, SLC47A2, SLC22A3, ABCB1, 
ABCG2

Name: Aripiprazole.  
IUPAC Name: 7-{4-[4-(2,3-dichlorophenyl) piperazin-1-yl]butoxy}-1,2,3,4-tetrahydroquinolin-2-one 
Molecular Formula: 448.38538 g/mol 
Molecular Weight: C23H27Cl2N3O2 
Mechanism: Partial agonist at the D2 and 5-HT1A receptors, and as an antagonist at the 5-HT2A receptor 
Effect: Antipsychotic agent, H1-receptor antagonist, serotonergic agonist

Pathogenic genes: DRD1, DRD2, DRD3, DRD4, HTR1A, HTR2A, HTR2C 
Mechanistic genes: ADRA1A, ADRA1B, ADRA2A, ADRA2B, ADRA2C, CHRM1, 
CHRM2, CHRM3, CHRM4, CHRM5, CALy, GSTP1,DRD1, DRD2, DRD3, DRD4, 
HRHs, HTR1A, HTR1B, HTR1D, HTR1E, HTR2A, HTR2B, HTR2C, HTR3A, HTR6, 
HTR7, CYP1A1 
Metabolic genes: 
Substrate: CYP1A2, CYP2A6, CYP2D6 (major), CYP3A4 (major), CYP2C8, 
CYP2C9, CYP2C19, CYP3A5, FMO3, UGT1A4 
Inhibitor: CYP2D6, CYP3A4, CYP2C19 
Transporter genes: ABCB1

Pathogenic genes: COMT, DRD1, DRD2, DRD3, DRD4, GRM3, HTR2A, HTR2C, 
LPL 
Mechanistic genes: ABCB1, ADRA1A, ADRA1B, ADRB3, AHR, BDNF, CHRM1, 
CHRM2, CHRM3, CHRM4, CHRM5, COMT, DRD1, DRD2, DRD3, DRD4, DRD5, 
GABRs, GRIN2B, HRH1, HTR2A, HTR2C, HTR3A, HTR6, HRH1,LEP, RGS2, RGS7, 
SLC6A4, STAT3, TMEM163 
Metabolic genes: 
Substrate: COMT, CYP1A2 (major), CYP2C9, CYP2D6 (major), CYP3A4, 
CYP3A5, FMO1, FMO3, GSTM3, TPMT, UGT1A1, UGT1A4, UGT2B10 
Inhibitor: CYP1A2 (weak), CYP2C9 (weak), CYP2C19 (weak), CYP2D6 (weak), 
CYP3A4 (weak) 
Inducer: GSTM1, MAOB, SLCO3A1 

Name: Olanzapine. 
IUPAC Name: 5-methyl-8-(4-methylpiperazin-1-yl)-4-thia-2,9-diazatricyclo[8.4.0.03,7]tetradeca-
1(14),3(7),5,8,10,12-hexaene 
Molecular Formula: C17H20N4S 
Molecular Weight: 312.4325 g/mol 
Mechanism: It displays potent antagonism of serotonin 5-HT2A and 5-HT2C, dopamine D1-4, histamine H1 
and α1-adrenergic receptors, moderate antagonism of 5-HT3 and muscarinic M1-5 receptors, and weak 
binding to GABA-A, BZD, and β-adrenergic receptors. 
Effect: Antipsychotic agent, GABA modulator, muscarinic antagonist, serotonin uptake inhibitor, dopaminergic 
antagonist, serotonergic antagonist, histamine antagonist, antiemetic activity
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Transporter genes: ABCB1 (substrate/inhibitor), KCNH2, SLC6A2, SLC6A4, 
SLCO3A1 
Pleiotropic genes: APOA5, APOC3, GNB3, LEP, LEPR, LPL

Name: Quetiapine 
IUPAC Name: 2-[2-(4-{2-thia-9-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,9,11,13-heptaen-10-yl}piperazin-
1-yl)ethoxy]ethan-1-ol 
Molecular Formula: C46H54N6O8S2 
Molecular Weight: 883.08636 g/mol 
Mechanism: Antagonist at multiple neurotransmitter receptors: serotonin 5-HT1A and 5-HT2, dopamine D1 
and D2, histamine H1, and adrenergic α1- and α2-receptors. 
Effect: Antipsychotic agent, Adrenergic antagonist, histamine antagonist, serotonergic antagonist, 
dopaminergic antagonist, sedative activity, orthostatic hypotension

Pathogenic genes: ADRA2A, DRD1, DRD2, DRD4, HTR1A, HTR2A, RGS4 
Mechanistic genes: ADRA1s, ADRA2A, ADRA2B, ADRA2C, BDNF, CHRM1, 
CHRM2, CHRM3, CHRM4, CHRM5, DRD1, DRD2, DRD4, HRH1, HTR1A, HTR1B, 
HTR1D, HTR1E, HTR2A, HTR2B, HTR2C, HTR6, HTR7 
Metabolic genes: Substrate: CYP2D6 (minor), CYP3A4/5 (major), 
CYP3A7,CYP2C19 
Transporter genes: ABCB1 (substrate/inhibitor), KCNE1, KCNE2, KCNH2, 
KCNQ1, SCN5A, SLC6A2 (inhibitor)

Name: Risperdone 
IUPAC Name: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-2-methyl-4H,6H,7H,8H,9H-
pyrido[1,2-a]pyrimidin-4-one 
Molecular Formula: C23H27FN4O2 
Molecular Weight: 410.484483 g/mol 
Mechanism: Antagonist at multiple neurotransmitter receptors: serotonin 5-HT1A and 5-HT2, dopamine D1 
and D2, histamine H1, and adrenergic α1- and α2-receptors. 
Effect: Antipsychotic agent, H1-receptor antagonist, dopaminergic antagonist, alpha-adrenergic antagonist, 
serotonergic antagonist, somnolence, orthostatic hypotension

Pathogenic genes: ADRA2A, BDNF, COMT, DRD1, DRD2, DRD3, DRD4, GRM3, 
HTR2A, HTR2C, HTR7, PON1, RGS4 
Mechanistic genes: ADRA1A, ADRA1B, ADRA2B, ADRA2C, DRD1, DRD2, DRD3, 
DRD4, FOS, HRH1, HTR1A, HTR2A, HTR2C, HTR3A, HTR3C, HTR6, HTR7, NR1I2, 
STAT3 
Metabolic genes: 
Substrate: COMT, CYP2D6 (major), CYP3A4/5 (minor) 
Inhibitor: CYP2D6 (weak), CYP3A4 (weak)  
Inducer: MAOB 
Transporter genes: ABCB1 (substrate/inhibitor), KCNH2, SLC6A4 
Pleiotropic genes: APOA5, BDNF, RGS2

Name: Chlorpromazine 
IUPAC Name: [3-(2-chloro-10H-phenothiazin-10-yl)propyl]dimethylamine 
Molecular Formula: C17H19ClN2S 
Molecular Weight: 318.86416 g/mol 
Mechanism: Blocks postsynaptic mesolimbic dopaminergic receptors in the brain. Has actions at all levels of 
CNS, particularly at subcortical levels; also acts on multiple organ systems. It also exhibits weak ganglionic 
blocking, has a strong α-drenergic blocking effect, and depresses the release of hypothalamic and hypophyseal 
hormones. Depresses the reticular activating system 
Effect: Antipsychotic agent, dopaminergic antagonist, antiemetic, anticholinergic effects, sedative effects, 
antihistaminic effects, anti-serotonergic activity, hypotension

Pathogenic genes: BDNF, DRD1, DRD2, DRD3, DRD4, HTR2A 
Mechanistic genes: ADRA1A, ADRA1B, CHRM1, CHRM2, CHRM3, DRD1, 
DRD2, DRD3, DRD4, DRD5, HRH1, HRH4, HTR1A, HTR2A, HTR2C, HTR6, 
HTR7, KCNH2, SMPD1, CALM1 
Metabolic genes: Substrate: CYP1A2(minor), CYP2A6, CYP2C9, CYP2C19, 
CYP2D6(major), CYP3A (minor), FMO1, UGT1A3, UGT1A4 
Inhibitor:CYP1A2, CYP2D6(strong), CYP2C19, CYP2E1 (weak), CYP3A4, 
DAO, BCHE 
Inductor: CYP3A4 
Transporter genes: ABCB1 (substrate/inhibitor), ABCB11 (inhibitor), CFTR 
Pleiotropic genes: ACACA, BDNF, FABP1, LEP, NPY

Name: Metoclopramide 
IUPAC name: 27. Benzamide, 4-amino- 
5-chloro-N-[2-(diethylamino)ethyl]-2-methoxy-, monohydrochloride, monohydrate,  
Molecular formula: C14H22ClN3O2 HCl H  
Molecular Weight: : 354.2 g/mol 
Mechanism: Blocks dopamine receptors and (when given in higher doses) also blocks serotonin receptors in 
chemoreceptor trigger zone of CNS. Enhances response to acetylcholine of tissue in upper GI tract causing 
enhanced motility and accelerated gastric emptying without stimulating gastric, biliary, or pancreatic 
secretions. Increases lower esophageal sphincter tone 
Effect: Prokinetic agents, antiemetic

Pathogenic genes: DRD2 
Mechanistic genes: DRD2, CHRM1, HTR4, HTR3A 
Metabolic genes: 
Substrate: CYP2D6 (minor), CYP3A4, CYP1A2 (minor) 
Inhibitor: CYP2D6 (strong) 
Transporter genes: ABCB1 
Pleiotropic genes: ACHE

Table 3. Pharmacogenetics of other drugs in the treatment of neurogenic dysphagia
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Drug Properties Pharmacogenetics

Name: Capsaicin 
IUPAC name: 6-Nonenamide, (E)-N-[(4-hydroxy-3-methoxy-phenyl) 
methyl]-8-methyl.  
Molecular Formula: C18H27NO3.  
Molecular Weight: 305.41 g/mol 
Mechanism: Induces release of substance P (main chemomediator of pain impulses from the periphery) 
from peripheral sensory neurons, depletes the neuron of substance 
P (after repeated stimulation), and prevents reaccumulation.  
Effect: Skin and Mucous Membrane Agents, local anesthetics, topical

Pathogenic genes: DBH, MPO, BCHE, TACR2 
Mechanistic genes: TRPV1, PHB2, ABCB1, ACOX1, ACSL3, 
ALOX5, CFTR, F2, FOS, HTR1D, NOS3, NPC1, PPARA, TAC1, 
TGFB1, UCP2 
Metabolic genes: 
Substrate: GLU, CYP2E1 (minor), UGT1A1, UGT1A7, UGT1A9, 
UGT1A10, GSTP1 
Inhibitor: CYP3A4 (strong), CYP2C9, CYP2D6 (weak), PTGS2, 
MPO, CYP1A2 (strong), CYP1A2 (strong), CYP19A2 (strong), 
CYP2E1, DBH, BCHE 
Inductor: CYP1A1, CYP1A2 
Transporter genes: ABCB1 
Pleiotropic genes: TNF

Name: Piperine 
IUAC name: (2E,4E)-5-(2H-1,3-Benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one. 
Molecular Formula: C17H19NO3 
Molecular Weight: 285.34 g/mol 
Mechanism: An alkaloid isolated from the plant Piper nigrum that has a role as an NF-kappaB inhibitor, a plant 
metabolite, a food component, and a human blood serum metabolite. It is a member of benzodioxoles, an N-
acylpiperidine, a piperidine alkaloid, and a tertiary carboxamide.  
Effect: Skin and mucous membrane agents, local anesthetics, topical

Mechanistic genes: TRPV1, TRPA1, NR1I2, FOS 
Metabolic genes: 
Substrate: CYP1A1 
Inhibitor: CYP3A4, CYP2C9, CYP2D6 (weak) 
Transporter genes: ABCB1 (inhibitor) 
Pleiotropic genes: TNF, IL1B, IL6

Name: Menthol 
IUPAC name: (1R,2S,5R)-2-isopropyl-5-methylcyclohexanol 
Molecular Formula: C10H20O 
Molecular Weight: 156.26 g/mol 
Mechanism: A local anesthetic with counterirritant qualities, widely used to relieve minor throat irritation. Menthol also 
acts as a weak κ-opioid receptor agonist. 
Effect: Skin and mucous membrane agents, local anesthetics, topical

Mechanistic genes: TRPM8, TOP1, FOS 
Metabolic genes: 
Substrate: CYP2A6 

Name: Imidapril 
IUPAC name: (4S)-3-[(2S)-2-[[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino]propanoyl]-1-methyl-2-
oxoimidazolidine-4-carboxylic acid;hydrochloride 
Molecular Formula: C2H27N3O6 
Molecular weight: 405,44 g/mol 
Mechanism: Prevents conversion of angiotensin I to angiotensin II, a potent vasoconstrictor. 
Effect: Angiotensin-converting enzyme inhibitors

Mechanistic genes: ACE, AGT, AGTR1, BDKRB2, CES1, CES2, 
NOS3

Name: Lisinopril 
IUPAC name: L-Proline, 1-[N 2-(1-carboxy-3-phenylpropyl)-L- 
lysyl]-, dihydrate, (S) 
Molecular Formula: C21H31N3O52H2O 
Molecular Weight: 441.52 g/mol 
Mechanism: Competitive inhibitor of angiotensin-converting enzyme (ACE). Prevents conversion of angiotensin I to 
angiotensin II, a potent vasoconstrictor. 
Effect: Angiotensin-converting enzyme inhibitors

Mechanistic genes: ACE, ACE2, REN, AGT; BDKRB2, MMP3, 
NOS3, NPPA 
Metabolic genes:  
Substate: CYP3A4/5 (major)
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Name: Perindopril 
IUPAC name: 1H-Indole-2-carboxylic acid, 1-[2-[[1-(ethoxycarbonyl)butyl]amino]-1-oxopropyl]octahydro-, [2S-
[1[R*(R*)],2α,3aβ,7aβ]]- 
Molecular Formula: C19H32N2O5 C4H11N 
Molecular Weight: 441.60 g/mol 
Mechanism: A prodrug for perindoprilat, which acts as competitive inhibitor of angiotensin-converting enzyme. Prevents 
c conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, and causes an increase in plasma renin activity 
and reduction in aldosterone secretion. 
Effect: Angiotensin-converting enzyme inhibitors

Mechanistic genes: SFRP4, ACE, AGT, AGTR1, MMP2, TGFB1 
Metabolic genes:  
Substate: BCHE 
Transporter genes: SLC15A1, SLC15A2

Name: Levetiracetam 
IUPAC name: 1-Pyrrolidineacetamide, α-ethyl-2-oxo-, (α S)- 
Molecular Formula: C8H14N2O2 
Molecular Weight: 170.21 g/mol 
Mechanism: The precise mechanism by which levetiracetam exerts its antiepileptic effect is unknown and does not 
appear to derive from any interaction with known mechanisms involved in inhibitory and excitatory neurotransmission. 
Effect: Anticonvulsants, miscellaneous

Mechanistic genes: SV2A, CACNA1B, MT-TK 
Metabolic genes:  
Unknown: CYP2D6, CYP3A4 
Transporter genes: ABCB1

The T allele of rs17601696 (parent gene FGFR2) is reported to be associated with ND[72].

PHARMACOGENETICS OF DRUGS EMPLOYED IN OTHER ASSOCIATED OROPHARYNGEAL SYMPTOMS IN NEUROGENIC 
DYSPHAGIA
Together with strategies aimed at controlling ND, it is also important to manage those factors that may exacerbate symptoms and increase the risk of 
aspiration. Many patients with CNS conditions exhibit sialorrhea, hiccups, xerostomia, or reflux with swallowing difficulties. Prior to considering systemic 
drugs, it is recommended that local treatment or physical measures be initiated first [Table 4][37].

Sialorrhea
The most used treatments for the control of hypersalivation in patients with neurological damage are based on their anticholinergic profiles. This includes a 
heterogeneous group of drugs such as amitriptyline, scopolamine, glycopyrronium chloride, trihexyphenidyl, atropine, or thiopium bromide. These 
anticholinergic agents present an added benefit in the control of other motor symptoms, as occurs in patients with Parkinson’s disease[73]. However, their main 
drawback is the occurrence of frequent side effects that include sedation, cognitive deficits, constipation, urinary retention, tremor, and blurred vision. Within 
a population where the prevalence of dementia is high, elderly patients often use drugs with anticholinergic effects, and frequently in combination. 
Furthermore, in this patient population, polymedication may mask symptoms that are misdiagnosed as pathology unrelated to drug toxicity[74].

Concerning the pharmacogenetic profile, anticholinergic drug exposure shows associated variants located at chromosome 3p21.1 locus, with the top 
SNP rs1076425 in the inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1) gene[75]. Subjects with CYP2D6/CYP2C19 PM phenotype increase the risk of adverse 
reactions due to increased serum drug concentrations[76]. In contrast, polymorphisms of the ARGEF10, ADRB3, ROCK2, and CYP3A4 genes in the cholinergic 
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Table 4. Pharmacogenetics of drugs in associated symptoms and neurogenic dysphagia

Drug Properties Pharmacogenetics

Name: Omeprazole 
IUPAC name: 1H-Benzimidazole, 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]  
Molecular Formula: C17H19N3O3S 
Molecular weight: 345.42 g/mol 
Mechanism: Concentrates in acid conditions of parietal cell secretory canaliculi. Forms active sulfenamide metabolite which 
irreversibly binds to and inactivates hydrogen-potassium ATPase (proton or acid pump), blocking final step in secretion of 
hydrochloric acid. Acid secretion is inhibited until additional hydrogen-potassium ATPase is synthesized, resulting in 
prolonged duration of action. Suppresses H. pylori in duodenal ulcer and/or reflux esophagitis infected with organism.  
Effect: Antiulcer agents and acid suppressants, proton-pump inhibitors, substituted benzimidazole

Mechanistic genes: ATP4A, AHR, ADH1C, ALDH3A1, 
AHR, ATP4A, ATP4B, CASR, CBR1, CFTR, CHRM3, 
FMO1, HRH2, MMP2, NR1I2, NR1I3, RRAS2, SNAP25, 
SSTR2  
Metabolic genes:  
Substrate: CYP1A1, CYP2C8 (minor), CYP2C9 
(minor), CYP2C18 (minor), CYP3A4 (major), 
CYP2C19 (major), CYP2A6 (minor), CYP2D6 (minor) 
Inhibitor: CYP1A2 (moderate), CYP2C9 (moderate), 
CYP2D6 (moderate), CYP3A4 (moderate), CYP2C19 
(strong) 
Inducer: CYP1A1, CYP1A2, CYP1B1, CYP3A4, CYP2B6 
Transporter genes ABCG2 (inhibitor), ABCC3 
(inducer), ABCB1, ABCC6 (substrate/inhibitor), 
ABCC6, UGT1A1

Name: Pantoprazole 
IUPAC name: (1) 1H-Benzimidazole, 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]  
Molecular Formula: C16H15F2N3O4S. Molecular weight: 383.37 g/mol 
Action: Suppresses gastric acid secretion by inhibiting parietal cell H+/K+ ATP pump 
Effect: Antiulcer agents and acid suppressants, proton-pump inhibitors, substituted benzimidazole

Mechanistic genes: ATP4A, DDAH1, ABCC2, CASR, 
CHRM3, HRH2, IL1B, PPAs, SNAP25, SSTR2  
Metabolic genes:  
Substrate: CYP3A4 (major), CYP2C19, CYP2C19 
(major), CYP2D6 (minor), SULTs, UGTs 
Inhibitor: CYP2C19 (strong),CYP1A2 (weak), CYP2C9 
(moderate), CYP2D6 (weak), CYP3A4 (moderate) 
Inducer: CYP1A2, CYP3A4 
Transporter genes: ABCB1 (substrate/inhibitor), 
ABCG2 (substrate/Inhibitor), SLC22A8 (inhibitor)

Name: Lansoprazole 
IUPAC name: 1H-Benzimidazole, 2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfinyl]- 
Molecular Formula: C16H14F3N3O2S 
Molecular Weight: 369.36 g/mol 
Mechanism: Decreases acid secretion in gastric parietal cells through inhibition of (H +, K +)-ATPase enzyme system, blocking 
final step in gastric acid production 
Effect: Antiulcer agents and acid suppressants, proton-pump inhibitors, substituted benzimidazole

Mechanistic genes: ATP4A; CASR, MAPT, CYP1A1, 
CYP1B1, HRH2, SNAP25, SSTR2 
Metabolic genes:  
Substrate: CYP2C8 (major), CYP2C9 (major), 
CYP2C18 (major), CYP2C19 (major), CYP3A4/5 
(major); POR 
Inhibitor: CYP2C9, (moderate), CYP2C19 (strong), 
CYP3A4 CYP2D6 (moderate), CYP2E1 (moderate), 
CYP3A4 (moderate), PPA1 
Inducer: CYP1A2, CYP1A1, CYP1B1, CYP2C9, CYP3A4 
Transporter genes: ABCG2 (inhibitor), ABCB1 
(substrate/inhibitor), SLC22A8 (inhibitor), SLC22A1, 
SLC22A2, SLC22A3

Mechanistic genes: ATP4A, DDAH1, ATP4B, CASR, 
CHRM3, HRH2, HTR1D, NR1I2, SNAP25, SSTR2 
Metabolic genes:  
Substrate: CYP3A4 (major), CYP2C19 (major), 
CYP2D6 (major) 
Inhibitor: CYP2C9 (moderate), CYP2C8 (moderate), 
CYP2C19 (strong), CYP2D6 (moderate) 

Name: Rabeprazole 
IUPAC name: 1H-Benzimidazole, 2-[[[4-(3-methoxypropoxy)-3-methyl-2-pyridinyl]methyl]sulfinyl]  
Molecular Formula: C18H20N3NaO3S 
Molecular weight: 381.42 g/mol 
Action: Suppresses gastric acid secretion by inhibiting parietal cell H+/K+ ATP pump 
Effect: Antiulcer agents and acid suppressants, proton-pump inhibitors, substituted benzimidazole
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Transporter genes: ABCB1 (substrate/ 
inhibitor), ABCG2 (substrate/inhibitor), SLC22A8 
(inhibitor)

Name: Famotidine 
IUPAC name: Propanimidamide, N’-(aminosulfonyl)-3-[[[2-[(diaminomethylene)amino]-4-thiazolyl]methyl]thio]- 
Molecular formular: C8H15N7O2S3 
Molecular weight: 337.45 g/mol 
Action: Famotidine works by reducing the amount of acid in the stomach, thereby reducing pain and allowing the ulcer to heal, 
and through a competitive inhibition of histamine at H2 receptors of gastric parietal cells, which inhibits gastric acid secretion.  
Effect: Antiulcer agents and acid suppressants, histamine H2-antagonists

Pathogenic genes: HRH2 
Mechanistic genes: HRH2, CAT, FOS 
Metabolic genes:  
Inhibitor: CYP1A2 
Transporter genes: SLC22A6, SLC22A8 
(Substrate/inhibitor), SCL22A2 (Inhibitor), SLC47A1 
(Inhibitor)

Name: Pilocarpine 
IUPAC name:. 2(3H)-Furanone, 3-ethyldihydro-4-[(1-methyl-1H-imidazol-5-yl)methyl]-, monohydrochloride, (3S-cis)-  
Molecular Formula: C11H16N2O2 
Molecular weight: 244.72 g/mol 
Mechanism: Directly stimulates cholinergic receptors in eye causing miosis (by contraction of iris sphincter) and loss of 
accommodation (by constriction of ciliary muscle) and lowering of intraocular pressure (with decreased resistance to aqueous 
humor outflow) 
Effect: Antiglaucoma agents, miotics, cholinergic agonists

Pathogenic genes: BDNF 
Mechanistic genes:CHRM3,CHRM1, CHRM2, 
CHRM4 BDNF; CHRNs; FOS; GRIA3  
Metabolic genes: Substrate: CYP1A2 (minor), 
CYP2C9 (minor), CYP2C19 (minor), CYP2D6 (minor), 
CYP3A4 (minor) 
Inhibitor: CYP2A6, CYP3A4 (weak), CYP2A6 (weak), 
CYP2E1 (weak)

Name: Amitriptyline 
IUPAC Name: dimethyl(3-{tricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene}propyl)amine 
Molecular Formula: C20H24ClN 
Molecular Weight: 313.86426 g/mol 
Mechanism: Increases synaptic concentration of serotonin and/or norepinephrine 
in the central nervous system by inhibiting their reuptake in the presynaptic 
neuronal membrane 
Effect: Adrenergic uptake inhibition, antimigraine activity, 
analgesic (nonnarcotic) activity, antidepressant action

Pathogenic genes: ABCB1, GNB3, HTRs, NTRK2, 
SLC6A4, TNF 
Mechanistic genes: ADRA1A, ADRA1B, ADRA1D, 
ADRA2A, HTRs, HRH1, HRH2, HRH4, SIGMAR1, 
NTRK1, NTRK2, OPRD1, OPRK1, OPRM1 
Metabolic genes: Substrate: CYP1A2 (minor), 
CYP2B6 (minor), CYP2C8, CYP2C9 (minor), CYP2C19 
(minor), CYP2D6 (major), CYP3A4/5 (major), GSTP1, 
UGT1A3, UGT1A4, UGT2B10 
Inhibitor: CYP1A2 (moderate), CYP2C9 (moderate), 
CYP2C19 (moderate), CYP2D6 (moderate), CYP2E1 
(weak) 
Transporter genes: ABCB1 (substrate/inhibitor), 
ABCC2 (inhibitor), ABCG2 (inhibitor), KCNA1, KCNE2, 
KCNH2, KCNQ1, KCNQ2, KCNQ3, SCN5A, SLC6A2, 
SLC6A4 
Pleiotropic genes: FABP1, GNAS, GNB3, NTRK1, TNF

Name: Scopolamine  
IUPAC Name: Benzeneacetic acid, 
α-(hydroxymethyl)-, 9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]non-7-yl ester, hydrobromide, trihydrate, 
[7(S)-(1α,2β,4β,5α,7β)]- 
Molecular Formula: C17H21NO4HBr3H2O 
Molecular weight: 438.31 g/mol  
Mechanism: Competitively inhibits acetylcholine and other cholinergic stimuli at autonomic effectors innervated by 
postganglionic cholinergic nerves and, to a lesser extent, on smooth muscles that lack cholinergic innervation. Doses used to 
decrease gastric secretions likely to cause dryness of mouth (xerostomia). Antagonizes histamine and serotonin 
Effect: Anticholinergic agents, antimuscarinics/antispasmodics

Mechanistic genes: CHRM1, CHRM2, CHRM3, 
CHRM4, CHRM5, CHRNA4, CHRNB2, SI 
Metabolic genes:  Substrate:CYP3A4
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Name: Glycopyrrolate 
IUPAC Name: Pyrrolidinium, 3-[(cyclopentylhydroxyphenylacetyl)oxy]-1,1-dimethyl-, bromide 
Molecular Formula: C19H28BrNO3 Molecular Weight: 398.33 g/mol 
Mechanism: Blocks action of acetylcholine at parasympathetic  
sites in smooth muscle, secretory glands, and CNS 
Effect: Anticholinergic agents, antimuscarinics/antispasmodics

Mechanistic genes: CHRM1, CHRM2, CHRM3, 
CHRM4, CHRM5 
Metabolic genes: Substrate: CYP1A2, CYP2B6, 
CYP2C9, CYP2D6,CYP2C18, CYP2C19, CYP3A4 
Transporter genes: SLC22A2, SLC47A1

Name: Trihexyphenidyl 
IUPAC Name: 1-Piperidinepropanol,α-cyclohexyl-α-phenyl 
Molecular Formula: C20H31NO 
Molecular Weight: 301,46 g/mol 
Mechanism: Exerts direct inhibitory effect on parasympathetic nervous system. It also has a relaxing effect 
on smooth musculature, exerted both directly on muscle itself and indirectly through parasympathetic nervous system 
(inhibitory effect) 
Effect: Antiparkinsonian agents, anticholinergic agents

Pathogenic genes: PARK2 
Mechanistic genes: CHRM1, CHRM2, CHRM3, 
CHRM4, CHRM5

Name: Atropine 
IUPAC Name: Benzeneacetic acid, α-(hydroxymethyl)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester, endo-(–) 
Molecular Formula: C17H23NO3 
Molecular Weight: 289.37 g/mol 
Mechanism: Blocks the action of acetylcholine at parasympathetic sites in smooth muscle, secretory glands, and CNS. 
Increases cardiac output, dries secretions. Reverses the muscarinic effects of cholinergic poisoning  
Effect: Mydriatics, anticholinergic agents, antimuscarinics/antispasmodics, antidote

Mechanistic genes: CHRM1, CHRM2; CHRM3, 
CHRM4, CHRM5, CHRNA4, CHRNB2, FOS, GLRA1, 
PTGS2, TP53  
Transporter genes: ABCB11 
Pleiotropic genes: ACHE, CES1

Name: Domperidone 
IUPAC name: 2H-Benzimidazol-2-one, 5-chloro-1-[1-[3-(2,3-dihydro-2-oxo-1H-benzimidazol-1-yl)propyl]-4-piperidinyl]-1,3-
dihydro- 
Molecular Formula: C 22H24ClN5O2 
Molecular weight: 425.91 g/mol 
Mechanism: Has peripheral dopamine receptor blocking properties. Increases esophageal peristalsis; lowers 
esophageal sphincter pressure, gastric motility, and peristalsis; and enhances gastroduodenal coordination, therefore 
facilitating gastric emptying and decreasing small bowel transit time 
Effect: Prokinetic agents, dopamine antagonist

Pathogenic genes: DRD2, DRD3 
Mechanistic genes: DRD2, DRD3 
Metabolic genes: Substrate: CYP3A5 (major), 
CYP3A7, CYP3A4 (major), CYP1A2 (minor), CYP2B6 
(minor), CYP2C8 (minor), CYP2D6 (minor), CYBs 
(major) 
Transporter genes: ABCB1

Name: Baclofen 
IUPAC name: Butanoic acid, 4-amino-3-(4-chlorophenyl)- 
Molecular Formula: C10H12ClNO  
Molecular weight: 213.66 g/mol 
Mechanism: Inhibits the transmission of mono/polysynaptic reflexes at the spinal cord level, possibly by hyperpolarization of 
primary afferent fiber terminals 
Effect: GABA-derivative skeletal muscle relaxants

Mechanistic genes: GABBR1, GABBR2, CXCR4, CFTR 
Transporter genes: ABCC9, ABCC12, SLC28A1

pathway do not appear to significantly modify parameters related to clinical improvement[77].

Xerostomia
The first line of treatment for xerostomia is to employ local therapies (artificial saliva, sialogogues), avoiding the use of systemic medications (pilocarpine) as 
the first choices due to their common negative effects. Side effects include blurred vision, bronchoconstriction, hiccup, sweating, hypotension, bradycardia, 
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cutaneous vasodilatation, nausea, diarrhea, or increased urinary frequency[78]. Polymorphisms in CYP2A6 
modify the pharmacokinetics of this drug, where the clearance of pilocarpine is significantly lower. In vivo, 
these slow metabolizers have two inactive CYP2A6 alleles: CYP2A6*4A, CYP2A6*7, CYP2A6*9, or CYP2A6
*10[79].

Pharyngolaryngeal reflux
Proton-pump inhibitors (PPI) and H2 receptor antagonists show improvements in gastro‐esophageal reflux 
disease‐like symptoms, being PPIs more effective in subjects with negative endoscopic findings[80]. CYP2C19 
is the most prominent of the PPI-metabolizing enzymes; CYP2C19-specific single nucleotide 
polymorphisms reduce clearance proportionally and increase exposure and prolong proton-pump 
inhibition. Differences in CYP2C19-mediated metabolism lead to marked interpatient variability in acid 
suppression, drug–drug interaction potential, and clinical efficacy[81-84]. This phenomenon has also been 
observed with CYP3A4, but to a lesser degree[82].

Hiccup
Pharmacologically, multiple drugs with different targets are available to control hiccups. Baclofen is a drug 
commonly used in intractable hiccups[85]. The ABCC9 SNP (rs11046232, heterozygous AT versus reference 
TT genotype) is associated with a two-fold increase in oral baclofen clearance[86]. Allelic variants with the 
ABCC12, SLC28A1, and PPARD SNPs generate variable responses in cerebral palsy[86]. Chlorpromazine, 
domperidone, and metoclopramide can also be useful. However, since these are antidopaminergic drugs, 
they should be prescribed with caution because they may worsen dysphagia. Domperidone would be 
recommended amongst these medications because of its limited transit through the blood–brain barrier and 
exceptional central effects[87]. Paradoxically, metoclopramide and other antidopaminergic drugs may be 
beneficial by reducing nausea and vomiting in patients with ND, and therefore the risk of aspiration. In 
these cases, dose adjustment and patient selection are essential due to the risk of adverse effects[45].

CONCLUSION
Treatment of ND must be comprehensive and multidisciplinary. Pharmacological treatments are support 
tools for other therapeutic measures. Dopamine is the main neurotransmitter implicated in these 
swallowing disorders. Of the genes that encode dopaminergic receptors, DRD1 is the most important in the 
prediction and treatment of ND. Other genes such as COMT and DBH have also been considered in the 
management of ND. Polymorphisms in dopaminergic and antidopaminergic agents are associated, 
respectively, with undesired or insufficient effects and increased risk of swallowing impairment. SP is 
another main factor in the treatment of ND, which can be altered with antidopaminergic agents. SP 
degradation is blocked with TRP channel agonists such as capsaicin, piperine, menthol, and ACE inhibitors. 
Genetic variants influence the therapeutic response of TRP channel agonists. When symptoms coexist that 
can worsen dysphagia and increase the risk of aspiration (e.g., reflux, xerostomia, sialorrhea, and hiccups), it 
is recommended to carefully associate other medications with ND treatment due to the risk of adverse 
effects, which may even include swallowing disorders. Dose adjustment and choice of drug in polypharmacy 
patients is one of the main objectives of a pharmacogenetic analysis.
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