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Abstract

Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, 
organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and 
its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer 
target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular 
mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review 
assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the 
therapeutic implications based on our current understanding of these effects.
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INTRODUCTION
Development of resistance to therapy is one of the toughest challenges in disease management. On one 
hand, as scientists delve into comprehending the disease towards identifying a cure, another complex 
challenge is inherently conceived in the development of resistance towards a specific therapy. Cancer 
accounts for the maximum number of deaths in current times, second only to cardiovascular disease. 
Almost all our organs are susceptible to neoplastic transformations not only through genetic or epigenetic 
alterations, but also by complex interactions with the non-cancerous cells in the tumor microenvironment. 



These transformed cells can collectively progress to a state of malignancy, followed by metastasis, and 
subsequently death. Currently, the cancer field is equipped with multiple methods of detection as well as 
multiple modalities of therapy using surgery, radiation, chemotherapy, targeted-therapy, immunotherapy 
and combinations of these - leading to a 26% drop in cancer death rates in United States since 1991. 
However, despite this positive improvement in treatment, there were 1,735,350 new cancer cases, 609,640 
cancer-related deaths, and a $147.3 billion national expenditure for cancer care in the United States in 2017 
(SEER program, National Cancer Institute, www.cancer.gov). For more than a hundred other countries as 
well as in the global scenario, the statistics are significantly worse. Thus, there is still a “standing order” to 
decipher and overcome the hurdle of therapy refractoriness in cancer, a multi-factorial process with diverse 
underlying mechanisms[1]. A growing body of research appears to indicate that the growth hormone (GH)/
growth hormone receptor (GHR) interaction might provide a valuable clue towards a solution[2-4]. In this 
review we analyzed collective reports of GH action in cancer and attempted to clarify the newly understood 
role of GH in driving tumoral resistance to different anti-cancer treatments.

GH-GHR ACTION
GH is a central regulator of tissue and organ development, with anabolic as well as catabolic effects in 
a tissue-dependent manner[5]. Centrally, GH is secreted as a peptide hormone in circulation, from the 
anterior pituitary somatotroph cells in a pulsatile manner, under direct control of hypothalamic neuronal 
projections[6]. GH secretion is mainly modulated positively by growth hormone releasing hormone (GHRH), 
ghrelin[7,8], and negatively by somatostatin (SST), free fatty acids, and insulin-like growth factor 1 (IGF1)[4], in 
addition to catecholamines to a limited extent[9-12]. Following release, GH can bind to pre-dimerized GHR on 
cell surfaces[13-15], activating associated kinases like JAK2 and SRC, to initiate a signaling cascade including 
but not limited to STATs 1, 3, 5, the PI3K-AKT-mTOR, the Grb10-SOS-RAS-RAF-MEK-MAPK, as well 
as PLC/PKC/Ca2+ pathways, in a tissue and cell-specific manner[16-19]. GH-GHR interaction is crucial 
for longitudinal growth by promoting bone, cartilage, and muscle development, and attaining optimum 
reproductive capacity[20] by effects mediated directly by GH or via GH-stimulated production of IGF1, 
the surrogate marker for GH action. Importantly, GH also has a profound role in whole-body metabolic 
homeostasis by virtue of its critical effects on carbohydrate, lipid, and protein production and turnover[21-23] 
in liver, adipose tissue (AT), and muscle[24] - the organs expressing highest levels of GHR - as well as in 
other organs like the kidney, pancreas, brain, heart, skin and immune cell populations[23]. GH breaks down 
lipids[25,26], blocks protein degradation, upregulates gluconeogenesis and protein production[23], increases 
water retention, and modulates albumin and transthyretin levels throughout the human lifespan[27]. 
In adulthood, following sexual maturity, elevated GH levels lead to insulin resistance, reduced stress 
resistance, and accelerated aging[28-30]. A series of studies spanning several decades in human patients and 
animal models have highlighted that a congenital disruption of GH action can lead to a protective effect 
from diabetes, cancer, and aging-associated physiological decline including cognition [2,31-36]. Landmark 
studies on cohorts of human Laron Syndrome (LS) patients with a non-functioning GHR, in Israel by 
Laron and colleagues[34,37,38] and in Ecuador by Jaime Guevara-Aguerra and colleagues[33,39,40], as well as on 
LS mouse models of GHR knock-out (GHRKO) produced in our laboratory[2,3,41,42] have established the 
beneficial effects of congenital resistance to GH action. It is important to note here that the observations 
in congenital or adult-onset GH deficient (GHD) patients are more disparate with very different 
underlying mechanisms and implications and are not discussed here. Cohorts of GHD patients in Krk[43,44], 
Itabaianinha[45,46], Sindh[47], Swiss[48], or African pygmies[49] do share defects in the GH axis but not GH 
alone and have been reviewed elsewhere[2,42]. On the other hand, the condition of GH excess, mostly due 
to a hypersecreting pituitary adenoma, and known as acromegaly[50], when left untreated in children will 
lead to a condition of unregulated longitudinal growth resulting in gigantism. However, in most patients 
acromegaly arise at adulthood and is accompanied by increased risks of stroke[51], significantly higher 
incidence of benign and malignant colorectal and thyroid neoplasms[52-55], insulin resistance and diabetes, 
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diabetic nephropathy[56-58], and multi-organ failures leading to a significantly reduced lifespan[59]. Mouse 
models of GH excess - mice transgenic for bovine GH (bGH) - corroborate the above human data[2,42,60-62]. 
These pleiotropic effects of GH action positions GH as a truly enigmatic biomolecule and a topic of intense 
research in human health for the last century. Several reviews cited above elaborately discuss the structure, 
activation, signal transduction, and metabolic effects of GH in health and disease in different tissues. In 
this review, we exclusively focus on the unique role of GH-GHR in cancer therapy resistance.

GH-GHR IN CANCER
A significant volume of research in vitro, in vivo, in clinical specimens and retrospective meta-analysis 
on human patients of GH-excess (acromegaly) and GH-resistance (LS) have established that a paracrine/
autocrine GH supports oncogenesis and drives neoplasms towards malignancy, metastasis or relapse in 
multiple tissues[2,3,63]. We refer our readers to a series of relevant reviews by us and colleagues in this regard, 
compiling the systematic comprehension of the overall and molecular details of how GHR-positive cancer 
cells exploit the versatile effects of GH action[2-4,64-69]. In relevance, the association between GH treatment 
and cancer incidence in GHD patients remains unclear and widely debated[70]. A population-based cohort 
study of 6,874 patients in France reported elevated risk of bone tumors but no other primary cancers in 
GH-treated GHD patients[71]. Recent reports from the Safety and Appropriateness of Growth Hormone 
Treatments in Europe (SAGhE), the European cohort study across 23,984 patients in eight European 
countries indicate a distinct risk of cancer, especially Hodgkin’s lymphoma and meningioma[72], in pediatric 
GHD patients “with previous history of cancer” and treated with GH in childhood[73]. However, multiple 
subsequent reports did not find a consistently elevated risk of cancer incidence or mortality in GH-treated 
adult GHD patients[74-76]. Another multinational observational study from 1999-2015 on 22,311 GH-treated 
children from 827 investigative sites in 30 countries called GeNeSIS (Genetics and Neuroendocrinology 
of Short Stature International Study) also did not find a significantly overall increased risk of cancer 
mortality or incidence[77]. On the other hand, the association between cancer risk in human patients of 
GH-excess/acromegaly has also been unclear. A confounding factor in this case are variations in IGF1-
normalizing medical interventions (surgery, GHR-inhibitors, somatostatin-analogs) the study participants 
underwent prior to the study[2]. However, a number of recent large-scale retrospective meta-analyses 
reveal a distinctly higher standardized incidence ratio for multiple cancers in these patients[52,78]. A single 
nucleotide polymorphism in GHR, as observed in P495T GHR variant in some ethnic groups, impairs 
the SOCS-mediated deactivation of an activated GHR, thereby prolonging GH action[79,80]. This P495T 
variant with elevated GH-GHR signaling has been associated with markedly increased incidence of lung 
cancer in patients[80,81]. On the other hand, resistance to cancer has been one of the consistent features of 
the two cohorts of LS patients in both Israel[34,63,82,83] and Ecuador[33], with multiple studies focusing on 
the underlying molecular mechanisms[83-85]. Mouse models of dysregulated GH action - the bGH and the 
GHRKO mice - closely recapitulates the oncogenic profiles of the corresponding human patients[2]. A 
number of in vivo xenograft studies on bGH, GHRKO, as well as on mice transgenic for a GHR-antagonist 
(GHA mice) revealed an intrinsic resistance to tumor development and cancer progression due to 
abrogation of GHR function[2,3,86]. 

Several different types of human cancers, including cancers of breast, colon, thyroid, blood, skin, pancreas, 
liver, endometrium, kidney, lung, stomach, glia, thymus, and brain express GHR[2]. In these cancers 
paracrine/autocrine GH induces oncogenic signaling for classical oncogenic processes like proliferation, 
migration, invasion, angiogenesis[87], metastasis[65], and avoiding apoptosis[88]. IGF1, one of the principal 
effectors of GH action, is also[89] important in progression of specific transformed cells and in  driving 
therapy resistance in cancer[90]. While several reviews have described the effects of GH action in cancer 
prognosis and progression, the unique role and molecular details of GH-GHR action in promoting the 
resistance of tumors to therapy has not been reviewed. Here, we exclusively zoom in on this critical aspect 

Basu et al . Cancer Drug Resist  2019;2:827-46  I  http://dx.doi.org/10.20517/cdr.2019.27                                                    Page 829



of GH signaling in GHR-positive human cancers, which appears to point toward a novel target towards 
tackling malignant cancer subtypes. The specific reports implicating GH action in mediating therapy 
resistance in cancer are summarized in Table 1. The underlying molecular mechanisms of GH mediated 
cancer therapy resistance, based on discussions in the subsequent text, is described in Figure 1.

GH-GHR IN CANCER THERAPY RESISTANCE
Deregulated apoptosis
The mitogenic and anti-apoptotic role of GH as a growth factor is common knowledge. In fact, GH 
treatment in GH deficient (D) children lowers the apoptosis of CD34+ hematopoietic cell population[91]. 
Chemotherapies like doxorubicin as well as radiation induce cell death by inflicting significant DNA 
damage selectively in highly proliferative cells in the body, leading to apoptosis or senescence. A critical 
role in DNA damage repair and cellular commitment to apoptosis, is played by p53 (TP53 gene), a tumor 
suppressor protein, and one of the most studied proteins in cancer research[92,93]. Functional p53 can 
lead to senescence by inducing a cell-cycle arrest by activating p21 transcription/translation, which in 
turn inhibits cell-cycle regulators like cyclin dependent kinase (Cdk) 2 and 4. This leads to reduced pRb 
phosphorylation which sequesters E2F1 and attenuates transcription of mediators of DNA replication and 
cell-cycle progression. On the other hand, DNA-damage induces activation of ATM which in turn activates 
p53 to induce apoptosis by effecting mitochondrial outer membrane permeabilization via transcription 
of pro-apoptotic proteins like Bad, Bak, Bax, Puma, and Noxa, death receptors like Fas, and apoptosis 
mediators like Apaf1 and Caspase6. Cancer initiation and progression often is accompanied by loss-of-
function p53 mutant protein, while gain-of-function mutations of aberrantly oncogenic p53, especially in 
hematological malignancies, are also known[94]. As early as 2004, GH overexpressing EL4 T-cell lymphomas 
were reported to have reduced apoptosis when treated with methyl methanosulfonate (MMS) and reduced 

Type of therapy resistance Cancer type Treatment Mechanistic observations Ref.
1. Deregulated Apoptosis Lymphoma Methyl methanosulfonate 

(MMS)
GH overexpression → lower Bax, BAD, 
Caspases-3, -8, -9 

[95]

Colorectal Nutlin, Etoposide, Radiation DNA damage → p53 → GH. GH blocks 
p53 by blocking ATM

[96-98]

Breast Doxorubicin GH induced c-fos [103,104]
Breast, 
Endometrial

Mitomycin-C Autocrine GH → suppressed DNA 
damage and reduced apoptosis

[146]

Endometrial Doxorubicin, paclitaxel, 
cisplatin

GH → ERK1/2 and PKC → suppressed 
Caspase 3/7 activation

[103,105]

Colon PPARg ligands GH → STAT5b → reduced Bax, PPARg [106]
2. Epithelial-to-mesenchymal 
transition (EMT)

Breast Serum withdrawal GH → p38-MAPK → CHOP [109,110]
Breast GH → elevated miR-96-182-183 cluster → 

BRMS1L
[196,197]

3. Drug efflux via ABC-
transporters

Melanoma Doxorubicin, paclitaxel, 
cisplatin, oridonin, 
vemurafenib

GH → JAK2/STAT5 + SRC → ABCB1, 
ABCBB5, ABCB8, ABCC1, ABCC2, ABCG1, 
ABCG2

[132,148]

Breast Ruxolitinib GH → JAK2, AKT, PI3K-AKT, MAPK → 
drug resistance

[147]

Breast Docetaxel GH → JAK2/STAT5 → ABCG2 [149]
4. Stemness (cancer stem cell) Breast MCF7-hGH cells → increased markers of 

CSCs
[168,169] 

Colon DLD1-hGH, Caco2-hGH cells → increased 
ALDH1, NANOG, CD24, CD44, etc

[131]

Liver Huh7-hGH, HepG2-hGH cells → 
suppressed CLDN1, elevated ABCG2, 
NANOG, etc.

[170]

5. Radiation resistance Breast, 
Endometrial

Radiation GH → increased clonogenicity post-
irradiation

[177,185]

Colorectal Radiation GH → reduced DNA damage + increased 
post-irradiation survival

[186,216]

Table 1. List of reports implicating growth hormone in development of therapeutic resistance in human cancers
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levels of Bax, BAD, and caspases-3, 8, and 9[95]. A series of reports, especially from Melmed and colleagues, 
described a GH-induced feedback inhibition on p53 following DNA-damage in cells[96-98]. They showed 
that Nutlin-induced DNA damage and induction of the p53/p21 senescent pathway lead to GH expression 
in vitro in rodent primary pituitary cultures, in human pituitary adenoma samples and in vivo in C57BL/6 
mice[98]. Chesnokova et al.[98], reported direct p53 binding at sites -1118bp and -680bp upstream of GH 
transcription start site using ChIP assays, supporting GH as a direct p53-target in senescence, in pituitary 
adenomas as well as non-pituitary cells[98]. This senescence-induced p53-mediated GH production 
appears to have an autocrine/paracrine as well as intracrine effect[98-100]. Interestingly this p53-induced GH 
subsequently appears to exert an anti-apoptotic effect, part of which is mediated by blocking p53 activation. 
Chesnokova et al.[96], also described this seemingly feedback inhibition of p53 by GH, in an elegant study 
on development of colonic neoplasms[96]. GH was found to suppress p53 as well as the p53/p21 activation 
in cultured colon cells, in colon tissues in vivo, as well as in iPSC-derived intestinal organoids, while 
upregulating epithelial-to-mesenchymal transition (EMT)[96]. Additionally, the GH-deficient Ames’ mice 
(Prop1-/-) as well as the GHRKO mice had higher colonic p53 expression than WT counterparts while 
APC-deficient Ames’ mouse (APCmin+/- Prop1-/-) had lower incidence of colonic neoplasms than APCmin+/-  

counterparts[96] highlighting the GH-p53 association. The mechanism of p53 suppression and abetting the 
oncogenic pathway by GH was recently further clarified to be due to GH induced higher-TRIM29-lower-

Figure 1. Mechanisms of growth hormone mediated therapy resistance in human cancers: (A) therapeutic interventions (radiation or 
chemotherapy) which cause DNA damage in tumor cells (1), induce ATM (2) mediated p53 production (3) which directly increases GH 
production (4). This GH can have an autocrine/paracrine effect on binding to same or neighboring cell surface GH receptors (GHR) (5), 
initiating a JAK2 and SRC mediated signaling cascades which lead to elevated TRIM29 and decreased Tip60 (6), which in turn blocks 
ATM (7) and decreases p53 via feedback inhibition. GH-GHR interaction also decreases pro-apoptotic molecules (Bax, PPARγ) and 
suppresses Caspase activation (8) thus allowing escape from cell death and providing resistance to therapy; (B) GH-GHR interaction 
drives resistance against pharmacologic intervention (chemotherapy or targeted therapy) by upregulating ABC-multidrug efflux pumps, 
inducing epithelial-to-mesenchymal transition or EMT (elevated mesenchymal transcription factors SNAI1, SNAI2, ZEB1/2, TWIST1/2, 
CLDN1, VIM, and miRNA cluster 96-182-183, along with decreased CDH1, and increased CDH2) and by inducing markers of stemness 
like ALDH1, NANOG, and CD24 to effect a phenotype switch. The combination of GH mediated suppression of apoptosis, increased 
capacity of drug efflux, increased stemness and invasive mesenchymal properties allow therapy resistance, metastasis, and relapse of the 
tumor. Green arrow indicates upregulation while red arrow indicates downregulation of target gene expression
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Tip60 mediated suppression of ATM (Ataxia-Telangiesctasia mutated) activation[97]. ATM is induced by 
DNA-damage and p53 is a primary ATM-target[93,101]. A recent study revealed increased DNA damage 
repair (DDR) in GHRKO mice colon and human non-tumor colon cells (hNCC); whereas etoposide and 
500ng/mL GH led to increased transformation of hNCC and increased metastasis in colon tumor xenograft 
bearing mice[97]. Thus locally produced GH, in response to therapy induced DNA damage, clearly foster a 
“milieu permissive of neoplastic growth”[96] by rescuing cells from committing to senescence[98], protecting 
them from apoptosis[96], or allowing oncogenic mutations by blocking DDR[97], wherein p53 is a central 
target of GH-induced oncogenicity and therapy evasion. Podlutsky et al.[102] have shown improved DDR 
capacities and upregulated p53-target genes like Gadd45b and Mdm2 in primary fibroblasts from GH/IGF1 
deficient Lewis dwarf rats and dwarf Snell mice[102], further bolster the argument presented here that GH 
action attenuates p53 action and can be a critical oncogenic factor.

Several other studies provide definitive support to the anti-apoptotic effect of GH action in cancer. Studies 
by Zatelli and colleagues had reported that chemotherapy induced apoptosis via JNK expression and 
phosphorylation, was blocked by GH - an effect reversed by GHR-antagonist, pegvisomant, in triple-
negative breast cancer (TNBC) cells[103]. Their studies also found that in TNBC, GH did induce drug-
resistance independent of IGF1, by directly inducing c-fos and suppressing apoptosis[104]. In a recent study 
by the same group, GH was found to confer chemoresistance from doxorubicin, paclitaxel, and cisplatin in 
human endometrial adenocarcinoma[105]. In human endometrial cancer, GH was found to suppress caspase 
3/7 activation and appeared to function differentially either through the ERK1/2 or PKC pathways depending 
upon the drug or the cell line; again pegvisomant was found to reverse the effects[105]. Bogazzi et al.[106] had 
proposed another mechanism of the anti-apoptotic effects of GH where it blocks the expression of pro-
apoptotic PPARγ and Bax in colon cancer cells[106]. This survival advantage of tumors bestowed upon by 
GH to evade the DNA damaging effects of therapy and avoid apoptosis, were also reported in pancreatic 
cancer[107], and breast cancer[108-110]. Therefore, there appears to be a consensus over the anti-apoptotic effects 
of GH which is harnessed by the proliferative tumor cells; while the details of molecular events converging to 
the net effect of escaping cell death are overlapping and still emerging.

EMT
EMT is a biological process involved in diverse cellular contexts like organ development (type 1 EMT), 
tissue regeneration/wound healing and organ fibrosis (type 2 EMT), and neoplastic events as observed 
in tumor cells (type 3 EMT). Several excellent reviews have thoroughly described the versatile aspects 
of EMT in all the above contexts, including in cancer[111-115]. Currently, it is well established that EMT is 
a critical juncture in the life-cycle of a tumor and a determinant in the subsequent fate in tumor death 
or survival against therapeutic challenges as well as for subsequent successful metastasis[113,114,116-118]. In 
cancer, a fraction of the highly proliferating tumor cells undergoes EMT, when induced by mutational 
changes and increased DNA damage as a result of therapy. The process of EMT is abetted by growth 
factor mediated increase in EMT specific transcription factors like Snail, Slug, Zeb1, Zeb2, Twist1, and 
others which drive a massive concerted change in gene transcription leading to a “switch” in cellular 
identity and phenotype from “epithelial” to that of “mesenchymal”. Through an elaborate reprogramming 
of gene expression and cytoskeletal reorganization, the cells lose their adherens junctions, depolarize and 
assume spindle-shape, and secrete proteases to breakdown extracellular matrix (ECM) and to activate 
more potent inducers of EMT like TGFb[112]. This switch in phenotype is accompanied by a convergence 
of increased invasive properties, increased drug-efflux capacity, acquisition of stem-cell markers[116], and 
resistance to apoptosis[111,112]. In the last few years, the EMT process has been found to be more closely 
linked to chemoresistant metastasis than metastasis alone. Using elegant EMT lineage tracing models 
Fischer et al.[119] had demonstrated that in primary mammary tumor bearing mice  cyclophosphamide 
(CTX) treatment selected for tumors which underwent EMT (GFP+) to achieve a mesenchymal phenotype 
compared to in the untreated tumor cells. The same set of GFP+ cells expressed significantly more multidrug 
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efflux transporters (Abcb1a, Abcb1b, ABcc1), cytochrome P450s (CYPs), and aldehyde dehydrogenases 
(ALDHs)[119] - all mediators of chemoresistance. Intriguingly, the suppression of EMT transcription factors 
by overexpressing miR200, did not affect the rate of lung metastasis of primary mammary tumors, but 
proved essential to overcome CTX treatment[119]. In multiple recent independent studies Snail, Slug, Zeb1, 
and Twist1 were all found to specifically orchestrate resistance to both chemotherapy or radiation treatment 
in ovarian[120], nasopharyngeal[121], gastrointestinal[122] and lung[123,124] cancers. The process of EMT in cancer 
cells thus appears to be initiated by a therapeutic challenge, catalyzed by favorable growth factors. Several 
studies have reported that GH is a potent inducer of EMT in tumor and normal cells, directly as well as via 
secondary effectors like IGF1 and TGFb (reviewed in[65]). 

Elaborate studies by us and others have identified a direct association of GH and EMT in GHR expressing 
human cancers[2,65]. A series of previous and ongoing work by Peter Lobie’s group have described the 
potent cancer driving properties of autocrine/paracrine GH using breast cancer cell line MCF7 and its 
mutant variants - MCF7-hGH and MCF-MUT, with constitutive expression or absence of transgenic hGH 
respectively[109,125]. His group showed that GH stimulated the expression of EMT transcription factors Snail, 
Slug, downregulated E-cadherin (CDH1), and upregulated mesenchymal markers Vimentin, N-cadherin 
(CDH2), as well as matrix metalloproteases (MMPs) preferentially in the MCF7-hGH cells. Increased 
invasive and migratory potential and apoptosis resistance are hallmark feature of cancer cells undergoing 
EMT[115,126,127]. The MCF7-hGH cells were reported to be significantly resistant to apoptosis, mediated by an 
autocrine GH-dependent p38-MAPK-induced CHOP[110], along with increased metastasis and anchorage 
abilities in collagen and 3D-matrices[109] due to autocrine-GH-directed HOXA1 mediated expression of 
cMyc, Cyclin-D1, and Bcl2 - genes involved in facilitating tumor invasion[128]. The above phenomenon in 
MCF7-human (h)GH cells were also found to be JAK2-dependent and was attenuated by AG490, a JAK2-
inhibitor[129]. Additionally, the b-catenin homolog γ-catenin (plakoglobin) which are involved in tethering 
E-cadherins at intracellular adherens junctions, were found to have significantly lower expression in the 
highly invasive MCF7-hGH cells[125], possibly due to a concomitant upregulation of methyltransferase 
proteins DNMT3A and DNMT3B, which caused plakoglobin transcription arrest by hyper-methylating 
CpG islands at exon-1 of plakoglobin gene[130]. Blocking SRC kinase or MMP9, but not JAK2, attenuated this 
invasive phenotype of the MCF7-hGH cells[125]. Lobie’s group had also identified autocrine GH-regulated 
miRNA clusters regulating EMT in MCF7 breast cancer cells and will be discussed in a subsequent section. 
Autocrine/paracrine GH was further found to turn on EMT cascade in human colorectal cancer cells, 
where E-cadherin was suppressed with a concomitant increase in mesenchymal proteins Vimentin and 
FN1, via ERK1/2[131]; while exogenously added GH increased Snail and Twist2 and suppressed PTEN 
activity[96]. We had reported an increase in mesenchymal proteins N-cadherin and Vimentin and decrease 
of E-cadherin following a GH dose-dependence in human melanoma[132]. Blocking GH signaling by 
siRNA-mediated GHR knock-down (GHRKD) reversed the effects[132]. Consistent results of GH induced 
EMT were also observed in GHR-expressing pancreatic ductal adenocarcinoma cells following exogenous 
GH treatment or GHRKD[107]. B2036 was reported to also inhibit GH-induced EMT, tumor invasion and 
anchorage-independent cell growth in vivo in endometrial cancer[133]. No direct association between GH-
induced EMT and GH-directed chemoresistance has been drawn in the above studies, apparently because 
the role of EMT in driving chemoresistance independent of metastasis have only come to light in recent 
years, predating the above studies. Apart from driving a highly invasive and metastatic tumoral phenotype, 
a re-evaluation of earlier reports of GH, EMT, invasion, and therapy-resistance in cancer, collectively does 
implicate GH in catalyzing EMT-driven evasion of therapy. Thus, from a therapeutic perspective, it would 
be valuable to know whether the GH induced EMT is critical for driving metastasis or therapy resistance 
especially in the context of individual cancer types and remains to be delineated through animal studies.

Drug efflux (multi-drug efflux pumps/ABC transporters)
A multitude of studies have implicated GH action in tumor cells with intrinsic or acquired resistance to 
chemotherapy like cisplatin, doxorubicin, paclitaxel, Cyclophosphamide (CTX), mitomycin-C (MMC), 
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and others; yet the involvement of membrane-spanning ATP-hydrolyzing multi-drug efflux pumps or ABC 
(ATP-binding cassette containing)-transporters were not investigated until recently. The ABC-transporter 
family has 48 members, classified into seven groups ABC-A through ABC-G based on sequence 
similarities, and involved in efflux of xenobiotics as well as biological macromolecules like peptides and 
lipids from the cytoplasmic compartment of the mammalian cell[134-136]. Excellent reviews have delved 
into the mechanism of action, subtypes, molecular functions, substrate specificities, and role in health 
and disease of ABC-transporters, especially in cancer[134,137-142]. Over the last 30 years, numerous studies 
have established ABC-transporters as a major determinant of failure of antineoplastic chemotherapy. 
The most studied members of the ABC-family of drug efflux pumps in cancer are ABCB1/MDR1/P-gp 
(P-glycoprotein), ABCC1 and ABCC2 (multi-drug resistance associated proteins 1 and 2; MRP1 and MRP2 
respectively), and ABCG2 (breast cancer resistance protein; BCRP)[143]. Between them, these major drug-
efflux pumps have a wide repertoire of specific as well as overlapping substrates, including antibiotics, 
antihistamines, analgesics, lipids, neuroleptics, natural products, antihypertensives, HIV drugs, Ca-channel 
blockers, antivirals, antilipidemics, and anti-cancer drugs. Anti-cancer drugs like doxorubicin, cisplatin, 
paclitaxel, 5-FU, methotrexate, etoposide, tamoxifen, MMC, vinblastine, and several others are efficiently 
and rapidly removed from the cytoplasm of tumor cells, following influx, thereby reducing drug retention 
and efficacy leading to poor prognosis[134]. Additionally, especially in melanoma, ABC-transporters play 
a vital role in drug sequestration inside intracellular vesicles like melanosomes - a process which further 
protects the tumor from drug action[144,145]. Bougen et al.[146] have reported that autocrine GH conferred 
MMC resistance in MCF7, MDA-MB-231, and T47D breast cancer cells in 2D and 3D culture systems and 
protected them from DNA-damage induced apoptosis[146]. Minoia et al.[103] and Zatelli et al.[104] had reported 
about GH induced chemoresistance from doxorubicin in MDA-MB-231 and MCF7 breast cancer cells 
respectively resulting in reduced tumor apoptosis, which was reversed by pegvisomant. A similar effect 
of GH in protecting endometrial cancer cells from doxorubicin, cisplatin, and paclitaxel treatment was 
also recently identified by Gentilin et al.[105]. Further, protection of endocrine-resistant breast cancer from 
ruxolitinib, a JAK2-inhibitor, was reported to coincide with GHR expression[147]. The first clue that GH acts 
via direct upregulation of ABC-transporter expression in conferring this chemoresistance in tumors came 
from our study in human melanoma[2,132,148]. We observed that doxorubicin, cisplatin, paclitaxel, oridonin, 
and vemurafenib, in four different human melanoma cell lines, in presence of GH differentially upregulated 
ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2 multi-drug efflux pump expressions. In 
fact prolonged GH treatment alone rendered the melanoma cells resistant to chemotherapy, reflected by 
a two to five fold elevation in the vemurafenib EC50 value[148]. GHRKD reversed these effects, increased 
drug retention, thereby sensitizing the melanoma tumors to low doses of chemotherapy[148]. Analysis of 
murine tumor xenografts in immunocompetent C57BL6/J mouse models of GH excess, e.g., the bovine 
(b) GH transgenic mouse (bGH), found significantly upregulated ABC-transporters compared to wild-
type littermates and verified our in vitro observations (unpublished results). Another very recent study 
in estrogen receptor negative breast cancer cells and in patient-derived nude mice xenografts treated 
with docetaxel, shRNA mediated silencing of GHR indeed suppressed multi-drug efflux pump ABCG2 
and re-sensitized the tumors to the anti-cancer agent[149], thereby providing additional evidence to GHR-
mediated induction of drug efflux via upregulated ABC-transporter expression. GHR silencing appeared 
to concomitantly increase drug-induced apoptosis, and reduced cell viability, migration and invasion 
properties of the breast cancer cells in vitro and in vivo[149]. Incidentally Wu et al.[150] did report that 
prolactin (PRL), another member of the type 1 cytokine family similar in structure to GH, also conferred 
docetaxel resistance via ABCG2 upregulation in T47D human breast cancer cells in a JAK2-STAT5 as well 
as PI3K-MAPK dependent manner. In their study, a putative GAS (gamma interferon activation sequence) 
motif just 434-bp upstream of the ABCG2 transcription start site, was found to directly bind STAT5 and 
activate transcription of ABCG2[150]. It is highly probable that a direct GH induction of ABC-transporter 
expression in human cancers proceed through a similar direct binding to GAS elements upstream of ABC-
transporters and remains to be verified through future studies. However, the recently identified role of 
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GH action in regulating ABC-transporters is a significant finding, keeping in mind the diverse cellular 
substrates and established relevance of ABC-transporters in multiple disease states including cancer[151,152], 
neurological disorders[153-155], obesity[156], cardiovascular diseases[157,158], and more[159,160].

Cancer stem cells
Cancer stem cells (CSCs) are a sub-population of the tumor bulk characterized by stem-cell like properties 
of self-renewal, extreme resistance to therapeutic challenges, high degree of invasiveness, heightened 
survival capacities, and ability to differentiate into aggressive, treatment-resistant tumors[161,162]. CSCs 
resemble quiescent adult stem cells, thus avoiding chemotherapy which primarily targets the highly 
proliferating population of the tumor bulk and are responsible for tumor dormancy, inevitable recurrence 
of tumor after an initial successful therapy, and metastasis[161-163]. The CSCs overexpress multi-drug 
efflux pumps (ABCG2, ABCB1, ABCB5), have high propensity to undergo EMT, and are resistant to 
apoptosis[161,163] - properties catalyzed by GH-GHR interaction on tumors as discussed above. In relevance, 
agonists of GHRH stimulated self-renewal and survival of cardiac stem cells, via an upregulated GH 
action[164]. Also PRL, had a comparable oncogenic potential in multiple cancer types, exhibited a similar 
regulatory effect in adult stem cells[165] and in prostate[166] and colorectal CSCs[167].

GH induced phenotypic plasticity resembling CSCs was first observed in autocrine GH expressing breast 
cancer (MCF7-hGH) cells by Lobie and colleagues[125,168]. The promotion of CSC formation via the Wnt/
b-catenin pathway proceeds through a necessary downregulation of the epithelial marker E-cadherin[96] 
and was indeed found to be the case for GH driven acquisition of stemness in breast cancer. Independent 
research by Lombardi et al.[169] showed GHR expression in a subset of normal human breast epithelia that 
co-expressed stem cell markers but lacked lineage differentiation markers, and could form mammospheres 
while GHR-negative cells could not[169]. Further progesterone stimulation induced GH secretion from 
normal mammary epithelia, which in turn induced proliferation of GHR-positive mammary stem cells, 
in an autocrine/paracrine manner[169]. The same GHR-positive subsets appeared on 90% of 175 samples 
of human ductal carcinoma in situ (DCIS) lesions which are precursors to invasive breast cancer[169]. 
Additional studies on human colorectal cancer cells DLD-1 and Caco2 as well as their constitutive hGH-
expressing variants DLD-1-hGH and Caco2-hGH exhibited more and larger colonosphere formation 
by the latter group[131]. Further in the autocrine GH producing DLD-1-hGH and Caco2-hGH cells, the 
expression of CSC marker ALDH1 was 2-3-fold higher than DLD-1 and Caco2 set. The RNA expression 
of CSC markers like CD24, CD44, NANOG, SALL4, and POU5F1 were also exclusively observed in GHR-
expressing subsets of the colorectal cancer cells[131]. The CSC promoting effect of autocrine GH was further 
validated in human hepatocellular carcinoma cells Huh7 and HepG2[170]. Forced GH expression in stably 
transfected Huh7-hGH and HepG2-hGH cells induced a JAK2-STAT3 mediated suppression of the tight 
junction component CLAUDIN1, leading to conferral of CSC properties, including upregulated ABCG2, 
NANOG, SALL4, and other CSC markers and mediators in these liver cancer cells[170]. Collectively, these 
results do establish a stem-cell promoting property of GH in cancer and warrant further in vivo studies in 
GHR-overexpressing cancers like melanoma, thwarted by drug-resistance, relapse and high mortality.

Resistance to radiation therapy
Ionizing radiation (IR) like X-rays and γ-rays are cost-effective and one of the most extensively used 
treatments for cancer as a single-modality therapy or combined with surgery and chemotherapy; it is used 
extensively also for disease management in cured cancer patients[171]. IR treatment stalls tumor growth by 
inducing either apoptosis, necrosis, necroptosis, mitotic catastrophe, autophagy or senescence by inflicting 
extensive DNA damage in the form of single and double strand breaks, DNA-protein crosslinking and 
transiently increasing the levels of cytotoxic reactive oxygen species (ROS)[171,172]. Although IR is useful for 
cessation of tumor growth in case of laryngeal, nasopharyngeal, skin, cervical, head-and-neck, prostate and 
breast cancer, radiotherapy is less or ineffective against bladder cancer, glioblastoma, and soft-tissue cancers, 
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as well as advanced non-small cell lung cancer (NSCLC) due to their intrinsic resistance to IR. Even in the 
cancers that respond to IR, rapid recurrence as well as acquired resistance to IR is common[172-174]. Multiple 
mechanisms of developing resistance to radiotherapy are known and include: (1) adaptation to radiation 
via increased anti-oxidant enzymes like SOD, Rel/NF-κB activation, and survivin mediated apoptosis 
inhibition; (2) intense DNA damage repair by non-homologous end joining (NHEJ) and homologous 
recombination (HR) via DNA-PK, RAD51, ATM, ATR, and PARP; (3) inflammatory cytokine (IL6, IL1b, 
IL8) release from tumor and tumor infiltrating lymphocytes (TILs) which in turn increase tumor invasion 
and successful metastasis; (4) increased cell adhesion to ECM via ICAM and VCAM; (5) activation of 
hypoxia inducible factor 1a (HIF1a) and HIF1a mediated pro-angiogenic stimuli through VEGF and pro-
vasculogenic stimuli through CXCL12; and (6) fibrosis of the tumor microenvironment and immune cell 
death allowing immune tolerance and tumor invasion[173-175]. GH alone, as well as its primary effector IGF1 
have a significant effect on IR resistance and post-IR recovery[176,177].

Adult male Wistar rats treated with GH for 7 days, showed an improved rescue from an abdominal 
mucosal lesion (enteritis) caused by a lethal IR dose[178]. Recombinant hGH treatment also rescued 
irradiated peripheral blood lymphocytes from cell death via Bcl2 activation and restored their cytokine 
secretory profile[179]. BDIX rats with colon tumor xenografts were treated with IR and GH and exhibited 
a GH-induced decrease in apoptosis and preferential protection in non-tumor intestinal cells and not the 
irradiated tumor[180,181]. The anti-apoptotic effects of GH were validated in irradiated BALB/c mice treated 
for 35 or 5 days post-irradiation, where recombinant GH treatment significantly restored hematologic and 
immune recovery compared to saline-treated irradiated mice[182]. Non-human primates exhibited similar 
protective effects of GH[182]. IGF1 exhibited an identical anti-apoptotic effect on irradiated BALB/c mice 
indicating that part of the radioprotection of GH might be mediated through IGF1[183]. The studies which 
used a post-irradiation GH treatment to effect recovery of non-tumor cells, did not include a long-term 
follow up on any subsequent neoplasmic occurrences in the same patients. This could be pivotal based on 
the above-mentioned recent reports by Chesnokova et al.[97], where a GH excess although anti-apoptotic, 
actually inhibits DDR, thereby allowing oncogenic transformation in epithelial cells[97]. 

The effect of GH on cancer cells have reflected the observations with non-tumor cells. Studies by Lobie, 
Perry, and colleagues have clearly shown that GH does confer radioresistance in tumor cells. GH treated 
breast cancer cells MDA-MB-435S and T47D, as well as endometrial cancer cell RL95-2 showed markedly 
reduced DNA damage as well as heightened clonogenic survival post-irradiation[177]. GHR-expressing 
human colorectal cancer cells HCT-8, pretreated with different doses of recombinant hGH, showed a dose-
dependent increase in post-irradiation survival while comet assays exhibited reduced DNA damage[184]. The 
effects were again suppressed on exposure to an anti-GHR antibody[184]. In animal studies, immunodeficient 
NIH-III mice with RL95-2 xenografts, when gamma irradiated with or without 100 mg/kg pegvisomant 
injections every alternate day, showed reduced growth and anti-vascular effects in animals subjected to 
GHR antagonism[185]. Another study involving human cancer patients, looked at pre-operative biopsy 
and post-irradiation specimens in 98 patients of rectal cancer and found that increased GHR expression 
was associated with poor response to IR treatment and postulated that GHR-antagonism can actually 
improve rectal cancer sensitivity to IR therapy[186]. Collectively these results bolster the fact that GH action 
is protective against radiotherapy in human cancers and that functional GH antagonism using a GHR-
antagonist helps to sensitize the cancer to IR treatment.

MECHANISMS OVERLAPPING GH-ACTION AND CANCER THERAPY RESISTANCE
ECM remodeling: Composed of about 300 proteins including collagens, proteoglycans and glycoproteins, 
the ECM is a non-cellular highly dynamic essential support structure within tissues [187]. The ECM 
undergoes remodeling in the form of synthesis, assembly, degradation, reassembly, and chemical 
modification. Dysregulation in ECM remodeling leads to pathological states and exacerbates disease 
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progression like in cancer[187]. Increase in type-IV collagen mediated signaling drastically increased liver 
metastases in multiple tumor types, especially the ones with markedly higher IGF1R expression [188]. In 
melanoma, therapeutic intervention with BRAF-V600E targeted vemurafenib (PLX4032), increased 
collagen synthesis in vitro and increased collagen deposition in vivo[189]. Although collagen deposition 
seems to be beneficial in restricting metastasis of the tumor, increased collagen correlates with increased 
angiogenic (VEGF) and inflammatory factors (TGFb)[190]. In mice with orthotopic human breast cancer 
xenografts, metastatic cells in the lymph nodes increased collagen-I density compared to non-metastatic 
xenografts[191]. Collagen-I is now known to cause a metastatic reactivation through a non-canonical collagen 
receptor tyrosine kinase discoidin domain-containing receptor 1 (DDR1) signaling pathway mediated by 
JAK2[192]. Further up to 50-fold  upregulation in expression of a number of collagen genes were found to be 
associated with drug resistance in ovarian cancer cells[193]. Active degradation of collagens and elastins by 
matrix metalloproteases (MMPs) release angiogenic signals like VEGF and activate immunomodulatory 
and apoptotic cytokines like TGFb which help in depolarization of tumor cells and initiation of EMT[187,190]. 
These are hallmarks of early metastasis of an aggressively growing tumor. Therefore, increased collagen 
deposition as well as increased collagen breakdown are fundamental methods of ECM remodeling[190]. 
GH is known to upregulate both collagen synthesis in human subjects[194] and to increase expression of 
collagen degrading and TGF-activating MMPs[107,133] in tumors. Additionally, autocrine GH expressing 
breast cancer cells show increased blood and lymphatic microvessel infiltration in tumor xenografts in vivo, 
due to elevated VEGF signaling[87]. No studies have examined the direct relationship of collagen deposition, 
degradation, and therapy resistance from a GH context, although peripheral GH action can have profound 
influence around the tumor microenvironment of GHR-positive tumors as well as GHR-expressing normal 
cells in the immediate milieu. Future findings in this regard can be valuable from the clinical viewpoint of 
fibrosis and cancer.

MicroRNA mediated epigenetic mechanisms: Broadly conserved across species, microRNAs (miRNA) 
are a family of single-stranded non-coding RNA sequence 20-25 nucleotides in length located in intronic 
as well as exonic transcription regions. They regulate almost half of all protein expressions at the post-
transcriptional level by direct base-pairing with the 3’-untranslated regions (3’UTR) of corresponding 
target mRNA and blocking translation[195]. Using microarray profiling of MCF-7 breast cancer cells 
expressing autocrine GH (MCF7-hGH) Zhu, Lobie and colleagues have identified the miRNA cluster 
96-182-183 to be under GH regulation[196]. The miR-96-182-183 cluster strongly promoted tumor cell 
migration, invasion and EMT by directly targeting BRMS1L via a STAT3 and STAT5 dependent pathway 
and promoted distant metastasis of primary mammary tumor in mouse xenografts [195]. Interestingly, 
GHR was one of the targets of miR-96. The miR-96-182-183 cluster have been found to be a critical in 
tumor proliferation, invasion, and metastases[197]. Additionally, another set of sexually dimorphic miRNA 
expression under GH-mediated JAK2-STAT5 regulation was reported in adult mouse liver. In males miR-
1948-5p was expressed and repressed female-biased mRNAs; while miR-802-5p was expressed in female 
livers and repressed male-biased mRNAs[198]. In relevance, while there is no available information yet on 
miR-1948 in ovarian or endometrial cancers, the miR-802 was found to be a potent onco-suppressor by 
attenuating EMT via targeting Flotillin2 (Flot2) in prostate cancer[199]. Therefore, targeting GHR action as 
well as identifying sexually dimorphic GH-regulated miRNAs can be a promising drug discovery exercise 
especially in relevant cancers.

Drug metabolism: The cytochrome-P450 (CYP) family of enzymes can metabolize a broad range of 
chemotherapy drugs including doxorubicin, CTX, and others and therefore play critical roles in cancer 
drug resistance[200]. The cytochrome P450 family of proteins located in the inner mitochondrial membrane 
or endoplasmic reticulum of the cells are the major oxidizing enzymes of the electron transport chain. 
The CYPs are broadly divided into xenobiotic (CYP1-4) and endogenous (CYP7-51). They have been 
implicated strongly as drivers of several different types of human cancers and have been implicated in 
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primary, malignant, and metastatic stages of the disease[201]. Several classes of CYP-inhibitors have been 
or are under development for the treatment of prostate cancer. In 1995, it was found that pulsatile GH can 
induce expression of CYP2A2 and CYP3A2 in GH-depleted male but not female rats[202]. Multiple studies 
have reported modulation of hepatic CYPs (CYP2D6, CYP3A) due to GH treatment in GH-deficient 
human subjects[203,204]. Currently there are no direct query into the direct relationship of GH-GHR axis and 
variations in CYP expression or activity, during drug-treatment in cancer. 

In addition to the above, an important method of drug metabolism in human patients is caused by the 
gut microbiome[205]. Increasing volume of research has started to make researchers cognizant of the role 
that the gut microbiota exerts in determining the efficacy of several classes of drugs including anti-cancer 
therapeutics[206,207]. The delineation of good versus bad microbiome in the context of different cancers[208,209] 
is gradually being clarified; while we do not know yet how GH excess, deficit, or resistance affects the 
gut microbiota[210] and its response in cancer and other disease sets. This unexplored area of research can 
provide vital clues not only for cancer therapy, but also for metabolic dysfunctions like obesity, insulin 
resistance, and gastrointestinal pathologies.

CONCLUSION
Our current understanding of GH mediated cancer therapy resistance is a function of GHR hyperactivation 
due to increased autocrine/paracrine as well as endocrine GH. A constitutive activation of GHR is also 
known, as in the case of the P495T mutation, disabling SOCS2 binding to the activated-GHR[79-81]. However, 
the effect of this or other constitutive GHR activations though of significant interest are yet unknown. The 
existing body of evidences justify GHR-antagonism as a viable approach as monotherapy in cancer[211]. 
However, the identification of a GH dependence of GHR-positive human tumors in driving a distinct radio- 
and chemo-resistant phenotype is unique and clinically relevant. Pegvisomant, as an existing example 
of a GHR-antagonist, can be combined with specific anti-cancer therapeutic approaches to improve 
treatment efficacy. The collection of the above information does warrant GHR-antagonism as a critical 
strategy in re-sensitizing tumors resistant to a range of anti-cancer therapies. Hitherto, an appropriately 
designed clinical trial combining pegvisomant or any agent that inhibits GH action with chemo-or radio- 
or targeted- or immune-therapy does not exist. In a 2015 report, a 72-year male patient with acromegaly 
and prior colorectal cancer history was diagnosed with breast cancer [212]. Following no response from 
pituitary surgery or SST-analog treatments, he was put on pegvisomant which successfully normalized his 
IGF1 levels. Following breast cancer surgery, the patient discontinued pegvisomant, contrary to medical 
advice. He was subsequently detected with two pulmonary metastases and elevated serum IGF1 and was 
put back on pegvisomant and tamoxifen. In 4-months IGF1 normalized again, the metastatic lesion in 
left lung reduced, and a 24-month follow-up showed further reduction in the secondary tumor and a 
stabilized metastases[212]. Currently there is a significant  pharmaceutical interest in attenuating GH action 
as is evident from recent strategies in development or in trial including SSTR agonists, dopamine agonists, 
GH analogs, antisense oligonucleotides, anti-GHR as well as anti-IGF1R monoclonal antibodies, and small 
molecules aiming at intercepting the GH-GHR mediated signaling[4]. While the process of discovery of 
new therapeutics is an uphill task, re-positioning existing drugs[213] or combining mechanistically relevant 
drugs[214] has been identified as a more immediate and highly effective solution in tackling the need for 
millions of patients worldwide[215]. The scientific rationale for combining GHR-antagonism with existing 
anti-cancer treatments, that we present in this review, appear to be viable and systematic in vivo studies 
specifically validating this approach should pave the way for a clinical trial in immediate future.
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