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Abstract
With the increasing environmental pressure, reducing the environmental impact on hybrid flow shops (HFS) has 
attracted extensive attention because of its broad industrial applications. The selection of machines in the 
implementation of HFS is a complex decision-making process that hinders the optimization efficiency in shops. 
However, this issue has not been addressed thoroughly. In light of this, a multi-objective mathematical model is 
formulated for the minimization of makespan and energy consumption of the hybrid flow shop scheduling problem 
(HFSP). The environmental performance of machines is calculated by the proposed evaluation index and is ranked 
on the basis of the integrated entropy and fuzzy technique for order performance by similarity to ideal solution 
method. Moreover, to solve the multi-objective model of HFSP, an improved differential evolution algorithm with a 
heuristic active decoding rule that incorporates the ranking of environmental performance of machines into the 
iterative process of the algorithm is presented. Finally, a case study is presented to evaluate the effectiveness of the 
proposed method and to prove the feasibility of the ranking-based differential evolution algorithm (RBDE). The 
result shows that the proposed RBDE outperforms RBNSGA-II and RBPSO in searching for non-dominated 
solutions that can solve the environmental production of HFSP effectively.

Keywords: Environmental production, hybrid flow shop scheduling, environmental performance of machines, 
improved differential evolution algorithm
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INTRODUCTION
Excessive emissions of energy and resource increase carbon dioxide significantly, which is the main cause of
ongoing climate change and global warming. Manufacturing has been among the top human activities
worldwide that lead to large amounts of greenhouse gas (GHG) emissions, and environmentally friendly
production in manufacturing can reduce energy consumption and carbon dioxide emissions effectively,
which has aroused worldwide attention in industrial production and academics. Environmentally friendly
production refers to the production or use of products that are not environmentally harmful, namely,
everything from production should be favorable and safe for the planet in terms of products over their
whole life cycle[1]. Nowadays, environmental scheduling is attracting increasing amounts of attention from
numerous manufacturing companies to reduce their energy demand and negative environmental effects.

The hybrid flow shop scheduling problem (HFSP) indicated a combination of the classic flow-shop
scheduling problem and the parallel machine scheduling problem, which was characterized by adjusting the
processing sequence of jobs and allocating the parallel equipment reasonably[2]. With the pressure of
environmental problems, the environmentally friendly production of HFSP has aroused extensive
concerns[3,4]. HFSP takes the processing sequence and equipment as variables and obtains the optimal
scheduling scheme with the principle of minimizing environmental impact through the effective
optimization algorithm. Therefore, the efficient objective modeling, the reasonable processing sequence and
equipment allocation, and the efficiency optimization algorithm have a decisive impact on environmental
scheduling.

A lot of work has been dedicated to hybrid flow shop scheduling. To begin with, most previous work aimed
at improving production efficiency from the perspective of multi-objective scheduling optimization, that is,
the objective in HFSP is mainly focused on the minimization of makespan, the completion time, total
tardiness, or others. For instance, Qin et al. proposed a mathematical model of the distributed
heterogeneous hybrid flow shop problems with blocking constraints, and the optimization algorithm was
developed to minimize the makespan of the hybrid flow shop[5,6]. Xu et al. proposed a shuffled frog-leaping
algorithm to solve the hybrid flow-shop scheduling problem with makespan minimization[7]. Meng et al.
addressed the hybrid flow shop scheduling problem with unrelated parallel machines, in which their
objective focused on minimizing the makespan using eight mixed integer linear programming models[8].
Although production efficiency is essential, by no means should it be the only factor to be considered in
manufacturing operations. Luo et al. considered not only production efficiency but also electric power cost
with the presence of time-of-use electricity prices to improve production efficiency and reduce the energy
consumption of hybrid flow shop[9]. Behnamian established the objective function of earliness, tardiness,
makespan, and total worker employing costs considering the effects of learning, deterioration, and
sequence-dependent setup times and proposed a colonial competitive algorithm to solve the hybrid flow
shop scheduling problem[10]. With the increasing pressure of environmental problems, the energy saving
and emission reduction strategy for scheduling has been proposed[11]. Qin et al considered not only the
energy consumption of the processing time but also the idle and blocking times of all machines to realize to
energy saving of the blocking hybrid flow shop[12]. Meng et al. established the idle energy-based model based
on the modeling ideas of machine tools turning off and on to investigate the energy-conscious hybrid flow
shop scheduling problem[13]. Li et al. developed a hybrid energy-aware multi-objective optimization
algorithm that considered the setup energy consumption to solve the hybrid flow shop scheduling problem
to minimize the energy consumption and the makespan simultaneously[14]. Generally, the decision maker
needs more than a single criterion to reach the decision in real-life problems. With serious environmental
pollution and strict environmental regulation, the multi-objective scheduling that considers the
environmental problems and production demand of the industry has become the greatest challenge in 
HFSP.
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Most previous research reported that the arrangement of parallel machines for various jobs quite affects the
environmental performance of HFSP. According to the characteristic of parallel machines, the classic HFSP
can be divided into three types, namely, the HFSP with identical parallel machines (HFSP-IPM), the HFSP
with uniform machines (HFSP-UM), and the HFSP with unrelated parallel machines (HFSP-UPM). For
HFSP-IPM, a job at a certain stage has the same speed, that is, each machine has an identical processing
time. For HFSP-UM, the speed of parallel machines varies for each job at a stage, and the processing time is
inversely proportional to the speed. HFSP-UPM is the most complex and close to real industrial
manufacturing scheduling problems, which have wide engineering applications[13]. For HFSP-UPM, the
processing time of a job on any parallel machine is independent and the production efficiency quite
depends on the matching degree between the job and the machines[15]. Hence, to implement
environmentally friendly production, the reasonable evaluation of environmental performance for the
parallel machines becomes an urgent demand for scheduling[16]. The environmental performance of parallel
machines can be evaluated from three aspects, i.e., environmental impact, technical performance and
production cost[17]. The energy consumption of parallel machines was supposed to be the main source of
environmental impact, which has been under extensive research. Drake et al. showed that there were
significant amounts of energy associated with machine start-up and idling[18]. In light of this, Mouzon et al.
proposed a greedy randomized adaptive search procedure integrated with the generic algorithm to solve the
minimization of the total energy consumption of HFSP[19]. The result showed that a significant amount of
energy can be saved when the non-bottleneck is turned off during a long idle time. Liu et al. presented an
ultra-low idle state of machines by turning off some auxiliary parts in an idle state[20]. To calculate the energy
consumption of machine tools with respect to various cutting parameters, the specific energy consumption
(SEC) was generally recognized as an essential indicator. Besides, subsidiary materials, such as cutting fluid,
also have an important influence on environmental impact[21]. For the production cost of parallel machines,
the machining cost, the maintenance cost, etc., were generally investigated for optimizing the job scheduling
of the workshop[10]. For technical performance, accuracy and reliability in terms of the basic requirements of
production have been focused[22]. In addition, axes configurations, in particular at high-speed spindle
rotations and high feed rates, have a significant variation of the dynamic properties for the machines[23]. To
sum up, systematic environmentally friendly evaluation criteria for unrelated machines with respect to the
above factors must be taken into account, and the environmental performance of machines should be
qualified.

For the optimization of HFSP, the genetic algorithm[24], grey wolf algorithm[25], backtracking search
algorithm[26], ant colony optimization[27], particle swarm optimization[28], and differential evolution
algorithm[29] were developed. It is noted that the selection of machines for various jobs in HFSP was random
in the iterations and the characteristics of machines have been oversimplified, which results in lower search
efficiency. To overcome this problem, the local search method with a forward decoding method considering
idle time[30,31], energy-saving capability[32], etc., was proposed. However, these methods are mostly applicable
to single objective optimization, which did not apply to environmentally friendly production. Inspired by
the No free lunch theorem, that is, the importance of utilizing problem-specific information to guide the
search process of general-purpose algorithms. In view of the environmental performance of the machine
tools, the information on the characteristics of machines can be exacted and incorporated into the selected
meta-heuristic as a specialized local search module in HFSP to obtain the optimal scheduling scheme. This
method can effectively narrow the search scope and improve search efficiency.
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Based on the existing research on the hybrid flow shop scheduling, two key issues must be addressed: (1)
comprehensive evaluation of the environmental performance of machines; (2) effective scheduling
algorithm with respect to the environmental performance of machines. To rectify these deficiencies, in this
paper, a strategy for hybrid flow shop scheduling with the ranking of the environmental performance of
machines was established. The innovations of the approach are summarized as: (1) A multi-objective
mathematical model for minimization of makespan and energy consumption was formulated with respect
to the stages of processing, waiting and transportation considering the characteristics of the hybrid flow
shop; (2) A multi-level environmentally friendly evaluation system for machines was developed with respect
to the performance of ecological, economic, and technical. Subsequently, the environmental performance of
the machines was ranked through the integrated entropy and fuzzy technique for order performance by
similarity to the ideal solution (TOPSIS) method; (3) An improved differential evolution algorithm was
presented to support the HFSP environmental scheduling with the heuristic active decoding rule referring
to the ranking of the environmental performance of machines, which can narrow the search scope and
accelerate the convergence speed.

The rest of this paper is organized as follows: The section of “PROBLEM FORMULATION” describes 
the characteristics of HFSP and establishes a multi-objective model for it. The section of
“METHODOLOGY” describes the environmentally friendly evaluation criteria, the ranking method of 
the machines, and the ranking-based differential evolution (RBDE) algorithm. The section of “CASE 
STUDY” presents a case study to demonstrate the effectiveness of the developed method. Finally, the 
section of “CONCLUSION” discusses the conclusions and future work.

PROBLEM FORMULATION
The hybrid flow shop scheduling problem[33] was commonly described as a set of n (i = 1, 2, …, n) jobs that 
need to be processed at j (j = 1, 2, …, w) stages in series, as shown in Figure 1. The jobs to be performed for 
a given period are known and do not change, where stage j contains Mk (k = 1, 2, …, m) unrelated parallel 
machines and Mk ≥ 2 exists at no less than one stage. Each job should be processed at all stages sequentially 
and all jobs can be processed by any of the machines at each stage. The formal mathematical definition of 
the problem will be described in detail in the following sections.

Hybrid flow shop scheduling has been extensively examined to improve production efficiency. With the 
serious environmental problems, the assignment of machines and the sequence of operations were set as 
variables in the HFSP to minimize the makespan Tmake and energy consumption Econs. Moreover, the 
denotations of all the parameters for the hybrid flow-shop scheduling problem was shown in Table 1, and 
the hypotheses considered in this paper were summarized as follows:

(1) Jobs are independent and have equal priority.

(2) The job is transported to the next machine immediately after processing is finished processing in the 
previous machine.

(3) All jobs and machines are available at time zero.

(4) The machine cannot be turned off completely until it has finished all operations assigned to it.
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Table 1. Denotations of all the parameters for the hybrid flow-shop scheduling problem

Index:

i Job number

j Stage number

k Machine number

Number:

n Number of total jobs

w Number of total stages

m Number of total machines

k* Selected machine number for the next stage

Parameters:

St(ijk) Start time for the ith job of the jth stage at machine k

St(i+1)jk Start time for the i+1th job of the jth stage at machine k

St(i(j+1)k*) Start time for the ith job of the j+1th stage at machine k*

Sti(j+1) Start time for the ith job of the j+1th stage at any machine

Stij Start time for the ith job of the jth stage at any machine

Ft(ijk) Completion time for the ith job of the jth stage at machine k

Ft(i(j+1)k*) Completion time for the ith job of the j+1th stage at machine k*

Ft((i-1)jk) Completion time for the i-1th job of the jth stage at machine k

Mk Machine set

obj Objective function

Tmake Makespan

Econs Total energy consumption

Pt(ijk) Processing time for the ith job of the jth process at machine k

Pt(i(j+1)k*) Processing time for the ith job of the j+1th process at machine k*

Tt(ijk) Transportation time for the ith job of the jth stage at machine k to j+1th stage

TE(ijk) Transportation energy consumption per unit time for the ith job of the jth stage at machine k to j+1th stage

d(jk) The distance from the j stage at machine k to the machine tool in the next stage

V Transportation speed

PE(ijk) Processing energy consumption per unit time for the ith job of the jth process at machine k

WE(ijk) Waiting energy consumption per unit time for the ith job of the jth process at machine k

Wt(ijk) Waiting time for the ith job of the jth process at machine k

PEtotal Total processing energy consumption

WEtotal Total waiting energy consumption

TEtotal Total transportation energy consumption

Tmax The maximum makespan

Emax The maximum energy consumption

Decision variables:

Xijk The decision variable of the ith job jth stage and kth machine tool

(5) The order of operations for each job is predefined and cannot be modified.

(6) Pre-emption is not allowed, that is, no task can be interrupted before the completion of its current 
operation.

As emphasized by He et al., on average, a machine in the waiting phase consumes 13% of the energy in an 
8-h shift, thereby demonstrating that the waiting stage plays a significant role in energy-saving 
production[34]. Moreover, Lu et al. realized the energy-saving scheduling in the workshop by adjusting the 
transportation time[35]. Thus, in this work, the production process was divided into three stages: (1) 
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Figure 1. Flowchart of HFSP.

processing stage; (2) waiting stage; and (3) transportation stage, and each stage corresponds to the 
consumption of time and energy consumption. The processing time Pt(ijk), processing energy consumption 
per unit time PE(ijk), waiting energy consumption per unit time WE(ijk) on machine k, transportation distance 
of machine tools in different stages d(jk) and transportation energy consumption per unit time TE(ijk) were 
deterministic and known in advance. The waiting time Wt(ijk) as shown in Equation (1) was associated with 
the schedule scenario, which was determined by the completion time Ft(ijk) of the job and the start time of 
the next job St(i+1)jk on the same machine. Moreover, the magnitude of transportation time Tt(ijk) was 
determined by the distance between two consecutive machines, as shown in Equation (2), in which the 
transport speed V was assumed to be fixed for the convenience of calculation. The makespan represents the 
maximum completion time of all the jobs, which can be described in Equation (4).



Kong et al. Green Manuf. Open 2023;1:8 https://dx.doi.org/10.20517/gmo.2022.10 Page 7 of 28

The total energy consumption was composed of the energy consumption for the processing stage PEtotal, 
waiting stage WEtotal and transportation stage TEtotal. PEtotal represents the energy consumption of the 
machine during the processing stage, which was associated with the processing power and processing time. 
WEtotal refers to the energy consumed by machine tools when they are in standby state, that is, waiting to 
process the next job. TEtotal was determined by the transportation process of the jobs among different 
machines.

Mathematically, an integer linear programming model of the HFSP, which will be used throughout the 
paper, was formulated as follows.
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where Equations (9) and (10) are the objective functions. Equation (11) ensures that each operation is 
assigned to only one machine from its candidate parallel machines. Equation (12) means that the operations 
that belong to the same job satisfy the precedence. Equations (13) and (14) ensure that jobs are processed 
according to sequence constraints. Equation (15) governs that a machine can execute one operation at one 
time and becomes available for other operations only if the previous operation is completed. Equation (16) 
defines the assignment of jobs and the sequence of machines. Equation (17) represents the precedence 
relationship among various operations of a job. Equation (18) specifies that the completion time of each 
operation transported from one machine to another is greater than the completion time of the 
corresponding operation. Equation (19) implies that the makespan is equal to the maximum completion 
time of a schedule that includes the completion time of all jobs. Equation (20) guarantees that the 
production process meets the constraints of makespan and energy consumption in the hybrid flow shop.

METHODOLOGY
A novel method for environmental scheduling with respect to the characteristics of unrelated machines was 
proposed in this work. Figure 2 demonstrates the overall structure of the method. This method contains 
three key processes:

(1) The environmentally friendly evaluation system of machines was constructed. The comprehensive 
environmentally friendly evaluation criteria were proposed in terms of the technical, economic, and 
ecological of machines.

(2) The machines were ranked on the basis of their environmental performance. The environmental 
performance of machines was recognized as a multi-level and multiple-indicator decision-making problem. 
An integrated entropy and fuzzy TOPSIS method were developed to rank the environmental performance 
of machines.

(3) The improved algorithm was proposed on the basis of the ranking of the environmental performance of 
machines. The active decoding method was presented according to the environmental performance of 
machines. Then, the RBDE algorithm was proposed to obtain the optimal scheduling solution efficiently.

Ranking of the environmental performance of machines
The environmentally friendly criteria are increasingly recognized as a useful tool for machine tool 
environmental performance assessment, which provides support for the improvement of the HFSP in fields 
such as ecological, technical, and economic improvement. Hence, a scientific and comprehensive 
environmentally friendly evaluation system is the prerequisite. From a systematic analysis of the 
characteristics of the machines and the current environmentally friendly indicators from the literature, a 
general environmentally friendly evaluation system that integrated technical, economic, and ecological 
performance was introduced.

The environmental performance evaluation of machines refers to the quantification of the technical 
indicator of production, the emissions of ecological, and the use of cost in the machining process, which is 
an overall consideration with multi-level and multiple indicators; the evaluation system is shown in 
Figure 3. The system was evaluated by three aspects described as follows.

(1) Technical performance. The technical indicators reflect the reliability and precision of the machines, 
which are the premises of checking whether the basic technical properties of the machine meet the technical 
indicator[36,37], such as reliability (N4) and precision (N3) when evaluating the technical performance[38]. The 
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Figure 2. Flowchart of the proposed method.

Figure 3. The framework of the environmentally friendly evaluation system of machines.

parameter configuration, such as the maximum spindle speed (N1) and feed rate (N2), could always be a 
factor for machine technical indicators.

(2) Economic performance. The economic indicator mainly includes the machining cost (N5), energy 
consumption cost (N6), and maintenance cost (N7). It does not only refer to the general cost of the product 
but also to the energy cost generated by electricity consumption in the processing.
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(3) Ecological performance. The ecological indicator aims to reduce ecological environment destruction for 
the machine when it is processed. Generally, the major environmental impact was due to the energy 
consumption of the machines, and it can be characterized by the power of machines (working power N8 
and waiting power N9) and SEC (N10). Besides, the cutting fluid (N11) is also an important factor in the 
environmental impact.

The selection of the machines in HFSP is typically a multi-criterion decision-making (MCDM) process. 
TOPSIS, as one of the most popular methods for solving MCDM problems, has been widely used. This 
method is based on the concept that the chosen alternative should have the shortest distance to the Positive 
Ideal Solution (PIS) (the solution which minimizes the cost criteria and maximizes the benefit criteria) and 
the farthest distance to the Negative Ideal Solution (NIS). Based on the construction of the multi-level 
system, the ranking of the environmental performance of machines was calculated by the integrated entropy 
fuzzy TOPSIS method[39,40]. The idea of the proposed method can be expressed in a series of three steps as 
follows.

Step1: Data preparation

The evaluation system covers the quantitative and qualitative indicators. For the qualitative ones, the 
linguistic variables were defined, and the corresponding membership function by the triangular fuzzy 
number was listed in Table 2. The decision matrix D was constructed by the decision maker by selecting the 
appropriate linguistic variables for the alternatives with respect to the criteria in accordance with Table 2. In 
addition, normalization was adopted to make all indicators conform to a norm or standard, and the 
influence of dimension was eliminated. The normalized value will be a positive value between 0 and 1, and 
the normalized process was recognized as three groups: benefit attributes, cost attributes, and non-
monotonic attributes. Their details can be seen in Reference[41]. The normalized fuzzy-decision matrix 
denoted by R is shown in Equation (21).

where aij is the value of the jth indicator of the ith machine tool. The value is determined by the attributes 
of the machine tool itself, which can be divided into qualitative and quantitative. The qualitative indicator is 
obtained from the proposed triangular fuzzy; m means the number of machines; n represents the indicators 
for the evaluation; K means the number of decision-makers.
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Table 2. Membership function of linguistic scale

Linguistic evaluation 
of parallel machines Linguistic evaluation of the weight of criteria Scale of fuzzy number

Very low (VL) Little importance (VL) (1,1,3)

Low (L) Moderately important (MI) (1,2,5)

Good (G) Important (I) (3,5,7)

High (H) Very important (VI) (5,7,8)

Excellent (Ex) Absolutely important (AI) (7,9,9)

Step2: Data processing

During the fuzzy comprehensive evaluation, the weight of the indicators wj is an essential step. This paper 
introduces the concept of “entropy” to solve the problem, and it is a quantitative measure of the amount of 
thermal energy not available to do work in a closed thermodynamic system. In information theory, entropy 
is a method used to measure the disorder degree of a system, which can measure the amount of information 
provided by data effectively. The detail of this method can be found in References[42,43]. The small entropy 
value indicates that the indicators provide a more effective amount of information, and the weight of the 
indicators is higher. The weighted normalized decision matrix V is shown as follows.

where wj is the weight of the indicators through the entropy method, and Hj represents the information 
entropy of the indicators.

Furthermore, the positive ideal and negative ideal solutions, i.e., PIS and NIS were respectively determined, 
and the PIS A+ (aspiration levels) and NIS A- (the worst levels) were defined as Equation (23). Then, the area 
compensation method[44] was proposed to measure the distances (di

+ and di
-) of each alternative to the A+ and 

A-.
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Step3: The ranking of the environmental performance of machines

The relative closeness to the ideal solution was calculated by Equation (24). Moreover, the order of the 
alternatives was obtained according to the descending order of the value of Ci, which means the ranking of 
the environmental performance of machines.

Differential evolution algorithm based on the environmental performance of machines
In HFSP, the selection of machines from unrelated parallel machines is an important decision-making
process. Generally, the machines were randomly assigned, which increased the search space and was time-
consuming. To handle this problem, a modified algorithm was proposed in accordance with the ranking of
the environmental performance of machines in “Ranking of the environmental performance of 
machines”. This algorithm narrowed the search space and could obtain environmental scheduling
solutions efficiently.

Differential Evolution (DE) refers to a stochastic direct search and global optimization algorithm that
include genetic operations (i.e., differential mutation, crossover, and selection)[45,46]. It is a parallel search
evolution strategy that is fairly fast and reasonably robust, which makes differential evolution a versatile tool
today. Inspired by the No Free Lunch Theorem, the ranking of machines’ environmental performance was
integrated with the DE by the heuristic decoding rule[47]. Hence, a ranking-based differential evolution
algorithm (RBDE) was proposed to solve the hybrid flow-shop environmental scheduling problems. In this
approach, the active decoding method was carried out and integrated into the iterations of the algorithm
after the genetic operations. The selection pressure to the proper direction could be obtained to enhance its
performance by accelerating the convergence speed in the iteration of DE. The procedures are described in
detail below.

(1) Ranking-based active decoding rule
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The decoding method is the key factor in decoding the iterative chromosome sequence into a reasonable
production scheduling scheme, which has a great impact on the efficiency and accuracy of the solution. The
heuristic active decoding rule proposed in this paper mainly refers to the directional selection of machines
according to the environmental performance of machines. The machine with top-ranking environmental
performance is more suitable for the jobs. Figure 4 presents the heuristic active decoding rule, in which the
environmental performance of the parallel machines that correspond to the first process of job 2 is M3 >  
M2 > M1 > ...; therefore, M3 was selected for production after decoding. The pseudocode of the 
heuristic decoding process is shown in Table 3.

(2) An improved DE following the decoding rule

Further, the proposed ranking-based heuristic active decoding rule was integrated with the differential
evolution algorithm for HFSP environmental scheduling. The flowchart of the RBDE, which can realize the
directional selection of the most environmental machines to accelerate the convergence speed, is illustrated
in Figure 5. The detail was presented as follows:

Step1: Initialization. Set simulation phase gen = 1, and initialize the population P0 = {p1, p2, …, pp} uniformly
distributed in the search space. The scale factor of mutation and crossover operators were set as F and cr,
respectively.

Step 2: Mutation. Difference strategy was carried out to realize individual variation, and the process can be
described as:

Mu(NP) = xr1|(P0) + F·(xr2-xr3)|(P0)

where xr (P0) means the rth chromosome of the P0 population.

Step3: Crossover. Cross operation of P0 population and its mutant intermediates Cr(P0 + 1) was
implemented as follows.

where rand (0, 1) is the random number that is evenly distributed between 0 and 1. xgr() represents the 
selection gene of the rth chromosome for the population.

Step5: Evaluation and Selection. The ranking-based active decoding method was applied for the selection of 
the machine for various jobs. The machine with the top ranking in environmental performance was 
probably selected for production. Then, the energy consumption and makespan could be calculated using 
the developed model [i.e., Equations (9) and (10)]. Moreover, the iteration process should satisfy the 
constraints of Equations (11)-(20). In this step, only non-dominated individuals were carried on to the next 
generations.
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Table 3. Pseudocode of heuristic decoding process

Algorithm1 Heuristic active decoding rule

Input i, j//i means the number of jobs; j is the number of stages

Output Select_M(i, j)//Select_M(i, j) represents the selected machine

(1) For i = 1 To n do

(2) For j = 1 To w

(3) Determined the parallel machines of the (i, j), namely as p_M(i, j);

(4) Calculate the matching degree for the ith job of j stage Md (i, j) via section “METHODOLOGY”;

(5) Ranking the environmental performance of machines, set the machine order as Set(i, j);

(6) Selected machine Select_M(i, j) = min{Set(i, j)}

(7) j++;

(8) End For

(9) i++;

(10) End For

Figure 4. Heuristic active decoding rule.

Step6: Stopping criteria. The evolution termination judgment was re-executed from Steps 2 to 5 until all 
termination conditions were met.

Step7: Report. Report the best individual outcome as the optimal solution.

CASE STUDY
A case was presented to testify the feasibility and effectiveness of the proposed methodology for 
environmental hybrid flow shop scheduling. In this case, four jobs were processed on 25 machines and each 
job requires 5 steps of operations. Five unrelated parallel machines exist in each process. The data were 
collected from Chongqing Machine Tool Co., Ltd, China.
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Figure 5. Flowchart of the RBDE.

Data preparation
The related information, including the job number, processing time, process power, and wait power, can be 
seen in Table 4. In addition, the environmental performance of each machine was evaluated and ranked 
using the integrated entropy and fuzzy TOPSIS method. The optimal scheduling solutions were obtained by 
the modified differential evolution algorithm with the objective of makespan and energy consumption and 
the variables of machine assignment and process sequence. In addition, the program was implemented in 
MATLAB 2016 and ran on an Intel Core i5 CPU (2.53 Ghz/8.00 G RAM) PC with a Windows 10 operation 
system, and the parameters and their selected values for the algorithm are summarized in Table 5.

The environmentally friendly evaluation information of each machine was measured in Table 6. The 
reliability of the technical performance was determined by the quality of the product, which was formulated 
by qualified rate Qr. The basic parameters, namely, the maximum spindle speed, feed rate and precision, 
were referred from the technical manual of the machines. The processing energy consumption of the 
environmental performance was related to SEC, which was determined by MRR[21]. The power of the 
working and waiting stage was listed in Table 4, and all the machines were dry-cutting in the case. The 
machining cost for the economic performance was measured by uup, the energy consumption was 
calculated by Equation (10), the value of the cost per unit energy consumption was set as 0.75 RMB/kW·h, 
and the maintenance cost when processing the 4 four jobs was close to zero.
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Table 4. The production information in HFSP

Processes Machines Job1 Job2 Job3 Job4 Process power(kW) Waiting power(kW)

M1 6 4.2 6.1 5.8 20 15

M2 2.3 2.6 4.1 3.4 30 25

M3 4.2 3.2 5.6 4.3 25 20

M4 8.1 4.2 7.4 6.9 10 5

Process 1

M5 1.5 2.6 3.6 2.8 35 30

M6 2.3 2.4 2.2 2.9 30 25

M7 3.5 3.6 3.2 2.6 23 18

M8 4.3 4.3 4.8 3.6 18 13

M9 5.2 4.5 4.8 4.8 12 7

Process 2

M10 6.1 5.2 5.6 5.1 8 5

M11 8.1 4.8 4.5 4.8 10 5

M12 7.2 3.3 3.4 3.3 18 13

M13 3.1 2.5 1.5 1.9 35 30

M14 5.3 3.4 2.1 2.1 23 18

Process 3

M15 9 5.3 5.3 5.6 8 5

M16 2.6 1.5 2.2 2.8 25 20

M17 3.6 2.5 4.3 3.5 20 15

M18 3.8 1.9 3.4 3.5 23 18

M19 5.1 2.6 5.6 4.6 15 10

Process 4

M20 6.2 3.9 6.3 5.3 10 5

M21 4.5 4.8 7.5 7.3 10 5

M22 3.6 3.4 6.6 6.8 13 8

M23 2.7 3.5 5.8 5.6 15 10

M24 1.3 2.6 3.7 3.3 20 15

Process 5

M25 1.5 2.6 4.8 4.6 18 13

Table 5. Parameters of the proposed algorithm

Parameters Constraints

Initial population size 100

F 0.5

Cr 0.3

Stopping condition Max iteration 200 or convergenceǁ△fǁ ≤ 10-3

RESULTS
Optimal value
To test the effectiveness of the methodology, we expanded the instance size by increasing the times of the 
data of jobs/processes/machines in Table 4. For simplicity of presentation, an instance with n jobs, s 
processes, and m machines was denoted as n × s × m. For each instance, the RBDE algorithm was run 50 
times independently and took the average value of the solutions. The makespan and energy consumption of 
the energy-saving and high-efficiency solution obtained by the 12 instances of the simulation are shown in 
Table 7. The energy-saving point represents the average value of the lowest energy consumption in all 
optimization results. The high-efficiency point means the average value of the minimum makespan in all 
optimization results. It can be seen that the variation of energy consumption and makespan agrees with the 
variation trend of the objectives, as well as the variation trend of the instances. Moreover, it denoted the 
effectiveness of the proposed integer linear programming model and the algorithm.
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Table 6. Environmentally friendly evaluation information for the machines

Job1 Job2 Job3 Job4
Processes Machines

Qr/MRR/uup Qr/MRR/uup Qr/MRR/uup Qr/MRR/uup

M1 0.90/22/1.67 0.87/25/1.67 0.89/50/1.67 0.96/27/1.67

M2 0.75/30/3.00 0.79/32/3.00 0.92/58/3.00 0.92/34/3.00

M3 0.80/25/2.50 0.86/29/2.50 0.87/54/2.50 0.87/30/2.50

M4 0.91/20/1.00 0.91/21/1.00 0.95/38/1.00 0.82/21/1.00

Process 1

M5 0.83/40/3.33 0.95/35/3.33 0.94/62/3.33 0.92/36/3.33

M6 0.80/35/3.67 0.93/54/3.67 0.91/35/3.67 0.89/36/3.67

M7 0.85/32/3.00 0.89/523.00 0.86/32/3.00 0.91/31/3.00

M8 0.90/29/2.50 0.85/48/2.50 0.89/28/2.50 0.87/26/2.50

M9 0.79/25/2.17 0.78/45/2.17 0.84/26/2.17 0.95/21/2.17

Process 2

M10 0.84/20/1.33 0.75/40/1.33 0.95/20/1.33 0.97/17/1.33

M11 0.85/38/1.67 0.92/25/1.67 0.84/15/1.67 0.88/32/1.67

M12 0.79/45/2.00 0.97/27/2.00 0.86/18/2.00 0.95/37/2.00

M13 0.82/52/3.00 0.92/35/3.00 0.91/24/3.00 0.94/47/3.00

M14 0.94/48/2.50 0.89/32/2.50 0.82/22/2.50 0.86/45/2.50

Process 3

M15 0.89/35/1.33 0.86/22/1.33 0.78/13/.33 0.87/26/1.33

M16 0.78/38/3.33 0.76/37/3.33 0.82/34/3.33 0.98/42/3.33

M17 0.91/25/2.50 0.82/34/2.50 0.84/29/2.50 0.95/34/2.50

M18 0.82/32/3.00 0.84/30/3.00 0.91/32/3.00 0.85/39/3.00

M19 0.95/20/2.17 0.79/27/2.17 0.72/26/2.17 0.91/31/2.17

Process 4

M20 0.92/17/1.83 0.83/25/1.83 0.85/24/1.83 0.87/24/1.83

M21 0.84/22/1.67 0.95/21/1.67 0.92/21/1.67 0.98/18/1.67

M22 0.87/25/2.67 0.97/26/2.67 0.98/32/2.67 0.94/22/2.67

M23 0.91/28/3.00 0.89/30/3.00 0.91/37/3.00 0.87/24/3.00

M24 0.88/35/3.83 0.92/34/3.83 0.89/47/3.83 0.86/36/3.83

Process 5

M25 0.85/32/3.50 0.93/32/3.50 0.95/43/3.50 0.93/31/3.50

Table 7. Best-found results of RBDE with various instance

High-efficiency point Energy-saving point
No. Instances

Makespan(s) Energy consumption 
(kWh) Makespan(s) Energy consumption 

(kWh)

Running time 
(s)

1 4 × 5 × 25 21 2404 22.9 1949 34.3

2 8 × 5 × 25 26.5 4067 33.8 3089 61.7

3 12 × 5 × 25 30.8 4900 38.2 4253 90.3

4 16 × 5 × 25 36.6 6051 40.3 5587 117.2

5 20 × 5 × 25 41.8 7113 50.2 6791 143.8

6 25 × 5 × 25 47.6 9315 56.7 8374 178.8

7 4 × 10 × 50 38.4 8249 39.9 6821 62.0

8 8 × 10 × 50 46.9 11,500 53.1 10,590 114.47

9 12 × 10 × 50 51.2 16,300 59.0 13,042 169.0

10 16 × 10 × 50 58.9 17,330 63 16,400 220.2

11 20 × 10 × 50 64.7 19,140 67 18,730 271.6

12 25 × 10 × 50 71.7 22,230 74.9 21,850 339.6

Analysis of the ranking of the environmental performance of machines
To visualize the performance of RBDE, the approximation of Pareto front solutions of NO3 and NO9 
instances was selected for further illustration. It can be seen from Figure 6 that the results are distributed 
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Figure 6. Approximation of Pareto front solutions obtained by RBDE.

evenly and widely, thereby denoting the effectiveness of the proposed method. Moreover, the extreme
points A, A’, B, B’ were selected from the obtained approximation of Pareto front solutions in Figure 6A
and B to further assess the versatility of the proposed methodology, and the Gantt charts of the four test
instances are shown in Figure 7.

As shown in Figure 7, the optimal processing sequence of the jobs in the four instances was optimized as:
(A)-(8,10,9,2,4,3,1,6,5,7,12,11); (B)-(11,10,6,9,3,12,2,5,1,8,4,7); (C)-(12,4,2,11,3,10,8,6,9,7,1,5); (D)-
(1,4,11,7,5,2,6,8,10,12,9,3), in which the legend for each color means the number of jobs in the hybrid flow
shop. The ranking of the environmental performance of machines for each process for different jobs can be
obtained according to section “METHODOLOGY” , as shown in Table 8, in which the high ranking 
of environmental performance means that the machine has better environmental performance and is 
easier to be selected. It can be seen from Figure 7A and B that the M1, M8, M9, M10, M13, M11, M18, 
M21 and M23 have low utilization in parallel machine tools, which demonstrated that the lower 
ranking of the environmental performance of machines was less likely to be selected for production. 
Besides, the results of the select machine in Figure 7C and D were double in Figure 7A and B, which was 
also consistent with the ranking of machines.

The assignment of job 1 was adopted to illustrate the feasibility of the method. The scatter diagram of the
environmental performance value of the selected machine for job 1’s process was generated, as shown in
Figure 8, which vividly illustrated the comparison of environmental performance value. As can be seen from
Table 8, the machines with the high ranking of environmental performance are M2, M3, M5 in process1,
M6, M7, M8 in process2, M11, M13, M14 in process3, M16, M17, M18 in process4, M23, M24 and M25.
The selected machines of job 1 were M5, M8, M14, M18 and M25 according to the Gantt chart in Figure 7A,
which means that all the operations avoid the machine tools with the lower ranking. It also reveals the
effectiveness of the heuristic active decoding rule in solving environmental scheduling problems.

Analysis of the proposed RBDE
In order to verify the effectiveness of the proposed RBDE, three algorithms were adopted for comparison,
i.e., PSO, NSGA-II, and DE, and the machines of the instance were expanded to 100. For these algorithms,
the population size is set as 100, the number of iterations is 200, and the detailed parameters are shown in
Table 9. The running time, energy consumption, and makespan were set as criteria. Moreover, there are
some differences in the optimization results of the algorithm, which cannot guarantee that the optimal
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Table 8. The ranking of the environmental performance of machines

Ranking of the environmental performance of machines
Processes Machines

Job1 Job2 Job3 Job4

M1 5 5 4 5

M2 2 1 3 2

M3 3 4 5 4

M4 4 2 2 3

Process 1

M5 1 3 1 1

M6 1 1 1 3

M7 2 3 2 1

M8 3 5 3 2

M9 5 4 4 5

Process 2

M10 4 2 3 4

M11 2 4 4 4

M12 4 1 3 3

M13 5 2 1 1

M14 1 3 2 2

Process 3

M15 3 5 5 5

M16 1 1 1 1

M17 2 3 3 2

M18 3 2 2 3

M19 4 4 5 4

Process 4

M20 5 5 4 5

M21 5 5 4 3

M22 4 3 5 5

M23 3 4 3 4

M24 2 2 1 1

Process 5

M25 1 1 2 2

Table 9. Parameters of these algorithms

Parameters Constraints

Size of the population 100

Crossover rate 0.8

Mutation rate 0.2

Maximum generations 200

Threshold value 0.001

Number of particles in a swarm 50

Max number of iterations 40

Acceleration coefficients 2

Inertia coefficients (min, max) 0.6, 0.9

optimization results can be obtained every time. Therefore, the standard deviation was introduced to reflect 
the stability of the optimization results of the algorithm. The comparison result is shown in Table 10.

It can be seen from Table 10, the proposed RBDE performs better than other algorithms in terms of running 
time, the consumption of energy and makespan in both the high-efficiency point and the energy-saving 
point, which means that the RBDE has higher search efficiency and can obtain better scheduling scheme. 
The values of different criteria of four algorithms under different scales show that the proposed RBDE has 



Page 20 of 28 Kong et al. Green Manuf. Open 2023;1:8 https://dx.doi.org/10.20517/gmo.2022.10

Table 10. The comparison of optimization results of PSO, NSGA-II, DE and RBDE

High-efficiency point Energy-saving point
Running time

Makespan/energy consumption/standard deviation Makespan/energy consumption/standard deviationNo. Instances
PSO NSGA-

II DE RBDE PSO NSGA-II DE RBDE PSO NSGA-II DE RBDE

1 4 × 5 × 25 43.2 41.5 39.7 34.3 35.5/2617/8.95 34.7/2580/7.25 28.4/2479/5.85 21/2404/2.64 26.3/2104/8.95 23.4/2104/7.25 23.5/1986/5.85 22.9/1949/2.64

2 8 × 5 × 25 71.2 67.8 65.2 61.7 39.6/4325/10.32 36.2/4210/6.59 32.6/4125/4.63 26.5/4067/3.15 41.5/3207/10.32 40.5/3207/6.59 38.2/3145/4.63 33.8/3089/3.15

3 12 × 5 × 25 104.3 102.5 95.4 90.3 41.8/5312/9.76 41.3/5294/5.76 35.1/5203/5.32 30.8/4900/1.76 43.9/4425/9.76 44.2/4425/5.76 42.1/4327/5.32 38.2/4253/1.76

4 16 × 5 × 25 141.5 142.3 132.7 117.2 44.5/6294/8.36 45.8/6312/9.36 42.6/6254/8.8 36.6/6051/2.62 47.3/5618/8.36 48/5618/9.36 44.6/5596/8.80 40.3/5587/2.62

5 20 × 5 × 25 160.5 162.4 157.6 143.8 52.1/7386/11.1 53.6/7425/9.5 49.7/7211/9.2 41.8/7113/3.24 51.2/6791/11.1 54.6/6791/9.5 53.7/6810/9.2 50.2/6791/3.24

6 25 × 5 × 25 205.7 213.5 192.2 178.8 57.2/9483/17.19 60.2/9573/10.21 56.4/9462/8.57 47.6/9315/4.65 59.7/8510/17.19 61.2/8510/10.21 59.2/8421/8.57 56.7/8374/4.65

7 4 × 10 × 50 73.4 71.5 69.8 62.0 53.7/8627/12.35 51.4/8462/8.69 45.3/8351/7.98 38.4/8249/3.1 45.6/7125/12.35 42.3/7125/8.69 40.3/6932/7.98 39.9/6821/3.10

8 8 × 10 × 50 131.2 126.7 120.5 114.47 65.4/13011/15.51 63.5/12035/9.39 58.5/11798/8.65 46.9/11500/5.38 60.3/11742/15.51 57.9/11742/9.39 55.8/11620/8.65 53.1/10590/5.38

9 12 × 10 × 50 185.3 184.6 178.3 169.0 66.2/17684/10.98 65.7/17256/8.42 60.2/17001/7.21 51.2/16300/7.61 67.4/13965/10.98 65.3/13965/8.42 62.4/13872/7.21 59.0/13042/7.61

10 16 × 10 × 50 232.4 238.1 232.4 220.2 70.8/17925/10.34 71.9/18103/7.35 68.9/17856/6.89 58.9/17330/4.77 70.5/16492/10.34 71.2/16492/7.35 67.5/16475/6.89 63/16400/4.77

11 20 × 10 × 50 289.7 293.6 286.5 271.6 75.7/20473/11.32 76.3/20975/6.84 72.2/20113/5.32 64.7/19140/7.76 74.3/20112/11.32 75.6/20112/6.84 70.1/19023/5.32 67/18730/7.76

12 25 × 10 × 50 365.1 378.4 352.6 339.6 82.6/22868/17.08 85.4/23109/9.21 78.5/22870/6.38 71.7/22230/2.91 76.7/22367/17.08 79.1/22367/9.21 23.5/1986/5.85 74.9/21850/2.91

13 4 × 15 × 100 123.6 117.6 110.2 103.5 79.5/15953/9.67 81.6/15224/9.25 76.2/15005/8.35 57.6/15357/2.89 88.3/11923/14.32 87.7/12037/9.17 81.5/11984/9.21 59.7/11325/4.35

14 8 × 15 × 100 206.9 201.3 182.5 171.4 91.2/17105/12.68 89.3/17021/8.41 80.5/16981/6.57 65.4/16493/4.35 96.2/13398/11.38 94.8/13429/9.58 86.4/13369/7.36 69.6/12985/6.52

15 12 × 15 × 100 266.4 261.3 241.3 235.0 95.7/18936/13.57 92.6/18725/9.23 89.4/18116/8.51 73.2/17536/5.32 99.1/16813/12.69 98.4/17153/7.46 94.5/16211/8.29 79.5/14889/5.71

16 16 × 15 × 100 319.8 321.6 301.7 291.5 101.2/19031/12.35 105.8/19242/8.64 96.3/18927/7.32 79.2/18253/3.95 109.9/18137/11.98 110.4/18269/8.26 105.7/17675/6.24 87.2/16920/6.28

17 20 × 15 × 
100

368.3 377.4 362.4 351.9 106.3/22763/10.68 110.7/23082/7.25 103.5/22563/6.87 85.6/21335/6.25 116.6/21057/10.52 121.4/21989/7.34 110.1/20132/4.58 97.5/18730/5.39

18 25 × 15 × 
100

439.7 441.6 433.8 426.3 115.8/24069/16.59 118.6/24105/8.91 110.2/23948/7.14 91.1/23514/3.98 129.7/23150/15.87 132.4/23856/8.91 124.5/22854/7.13 103.2/21387/4.16

more advantages in solving large-scale problems. Moreover, it can be observed from the results that RBDE has strong advantages in solving stability of 
scheduling problems of any instance comparing the standard deviation of optimization results of these algorithms. To sum up, the proposed RBDE has more 
advantages in solving HFSP.

Furthermore, in order to test the performance of the proposed algorithm, the heuristic rule was implanted in the Non-dominated sorting genetic algorithm-II 
(NSGA-II) and Particle Swarm optimization algorithm (PSO), namely RBNSGA-II and RBPSO. The ‘Max.’, ‘Avg.’, and ‘Min.’ columns represent the 
maximum, average, and minimum number of non-dominated solutions, respectively. It can be clearly found from Table 11 that the overall Avg, Max and Min 
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Table 11. Number of non-dominated solutions of each algorithm

RBDE RBPSO RBNSGA-II
No. Instance

Max Min Avg Max Min Avg Max Min Avg

1 4 × 5 × 25 6 4 5.2 4 3 3.1 5 3 4.6

2 8 × 5 × 25 18 10 14.5 15 9 11.3 17 10 13.2

3 12 × 5 × 25 21 12 14.2 16 11 12.5 17 12 13.4

4 16 × 5 × 25 28 10 21.7 13 8 10.3 23 10 18.5

5 20 × 5 × 25 22 15 19.4 18 12 15.6 20 13 18.9

6 25 × 5 × 25 28 13 20.1 18 12 17.4 24 12 18.3

7 4 × 10 × 50 5 3 4.5 3 2 2.6 4 3 3.2

8 8 × 10 × 50 12 9 11.3 11 5 7.9 13 7 9.8

9 12 × 10 × 50 24 13 22.4 18 11 16.3 21 14 18.1

10 16 × 10 × 50 23 15 19.5 17 10 12.6 20 12 16.4

11 20 × 10 × 50 17 10 12.3 14 8 10.5 15 9 11.2

12 25 × 10 × 50 15 7 9.6 12 6 8.3 13 6 8.9

13 4 × 15 × 100 16 9 13.6 9 5 6.1 9 6 7.5

14 8 × 15 × 100 27 16 19.7 17 8 15.5 14 8 12.1

15 12 × 15 × 100 37 24 29.4 25 17 21.3 27 16 21.4

16 16 × 15 × 100 26 13 22.7 15 10 12.6 19 12 13.7

17 20 × 15 × 100 31 19 24.3 15 9 11.2 20 13 17.9

18 25 × 15 × 100 35 21 31.5 18 11 15.7 26 15 20.6

Figure 7. Gantt chart for the four instances.

yielded by RBDE were better than those generated by RBNSGA-II and RBPSO algorithms in the same 
running time for different scale problems. The reason can be explained by the fact that the proposed 
algorithm can take full of the non-dominated solutions to generate excellent offspring and the heuristic rule 
for iteration operators to disturb old individuals. Besides, in this paper, four performance metrics were 
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utilized to evaluate the improved methods, i.e, convergence metric, uniformity performance, diversity 
metric, and hyper-volume.

(1) convergence metric γ represents the distance between Pareto front P and the true Pareto-optimal front 
P*[48].

where |P| is the approximate Pareto-optimal front obtained by the specific algorithm, and dip, p* is the 
Euclidean distance between the ith solution in P and its closest neighbor in P*. P* refers to the true Pareto-
optimal front. Since the true Pareto-optimal front P* is unknown for the test benchmarks, we merge the 
solutions obtained by all algorithms that we adopted and take the nondominated ones as P*.

(2) Uniformity Performance. Spacing Metric sp was used to measure the standard deviation of the 
minimum distance from each solution to others. The small value of spacing means that the distribution of 
the solutions in the Pareto solution set is more balance[49].

where di is the minimum distance from t point i on the Pareto frontier of the algorithm to the other 
points,    is the average value of all distance di.

(3) Diversity metric △ measures the extent of spread achieved among the obtained solutions[48].

where df and dl are the Euclidean distances between the extreme solutions and the boundary solutions of 
the obtained non-dominated set. Assuming that there are N solutions on the best non-dominated front.
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(4) Hyper-volume, HV. The volume of the region in the target space was enclosed by the non-dominant 
solution set and the reference point obtained by the algorithm. The larger the HV value, the better the 
comprehensive performance of the algorithm[50].

where δ is the Lebesgue measure, which was used to measure volume. |S| represents the number of non-
dominated solution sets. vi means the Super volume composed of the reference point and the ith solution in 
the solution set.

Table 12 shows the statistical performance metrics obtained by the three algorithms. It was revealed from 
the table that RBDE outperforms RBNSAG-II and RBPSO for almost all the metrics, particularly for γ and 
sp, which means that RBDE can achieve the most proximity to the reference front. In terms of convergence 
γ, RBDE and RBPSO can quickly converge to a better value than RBNSAG-II. However, RBPSO is easy to 
fall into local convergence, and the universality and diversity of RBDE and RBNSGA-II (△ and HV) are 
significantly superior to the RBPSO. From the uniformity performance perspective (i.e, sp), it can be 
observed that the proposed RBDE and RBPSO outperform RBNSGA-II when the size is small. However, 
such an advantage will no longer exist if the problem size is larger. In the large-scale problems, the proposed 
RBDE and the RBNSGA-II can find more non-dominated solutions. In addition, RBDE can efficiently solve 
multi-objective HFSP problems, which means the proposed algorithms have better search ability than the 
others in this work.

To visualize the performance of these algorithms intuitively, the approximation of the Pareto front of the 
different scope of job instance, i.e., NO2, NO3, NO4, NO6, NO11 and NO12 are shown in Figure 9.

As shown in Figure 9, the curves of these three schemes converge toward the approximation of the Pareto 
front, which gives an intuitive illustration of some results derived from the performance metrics. In 
addition, the RBDE algorithm performs the best among the three algorithms both in the quality and 
diversity of the solutions. These results also well explain the differences in the above-mentioned 
performance metrics for the three algorithms.

To sum up, the proposed RBDE algorithm was capable of providing better solutions than RBNSGA-II and 
RBPSO in terms of quality, running time and distribution of Pareto solutions. Besides, the heuristic active 
decoding rule of the proposed algorithm on the basis of the ranking of the environmental performance of 
machines can effectively narrow the research scope and improve search efficiency.

CONCLUSION
The accelerating use of energy and resource causes a significant increase in carbon dioxide, one of the 
foremost greenhouse gases (GHGs), which has radically contributed to the threat of global warming and 
climate change. In order to reduce the emissions for production, environmental scheduling has attracted 
worldwide attention. In this work, an environmental scheduling method is proposed to support the 
environmental production of the hybrid flow shop by evaluating and ranking the environmental 
performance of machines and integrating the active decoding rule for machine assignment into the 
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Table 12. Comparison of optimization results of the algorithms

RBDE RBPSO RBNSGA-II
No. Instance γ Sp � HV γ Sp � HV γ Sp � HV

1 4*5*25 69.00 141.44 0.60 13.50 69.00 141.44 0.60 13.50 69.00 141.44 0.60 13.50

2 8*5*25 191.38 112.81 0.75 444.20 148.72 134.00 1.41 230.30 191.41 166.44 0.83 239.30

3 12*5*25 123.61 55.89 0.69 331.80 228.20 82.55 0.75 150.10 153.51 100.23 0.73 197.00

4 16*5*25 162.31 48.05 0.86 353.30 363.70 64.75 0.95 309.10 249.64 101.42 0.89 309.10

5 20*5*25 84.33 55.44 0.86 3879.00 276.67 86.66 0.97 1068.00 154.15 161.59 0.94 1506.40

6 25*5*25 80.38 85.16 0.61 966.50 267.86 195.66 0.94 333.80 140.72 98.15 0.92 949.30

7 4*10*50 35.00 37.79 0.07 37.00 35.00 37.79 0.07 37.00 35.00 37.79 0.07 37.00

8 8*10*50 94.42 163.86 0.85 135.00 94.42 163.86 0.85 135.00 94.42 163.86 0.85 135.00

9 12*10*50 103.75 173.27 0.67 312.00 128.33 249.99 0.75 120.00 113.76 181.53 0.73 247.00

10 16*10*50 112.31 158.39 0.72 321.78 267.82 205.69 0.74 125.42 198.53 176.33 0.74 273.25

11 20*10*50 323.00 123.57 0.73 347.00 761.25 196.00 0.80 136.00 453.75 180.19 0.74 146.00

12 25*10*50 150.00 94.44 0.52 439.50 350.47 125.62 0.79 376.81 236.00 82.82 0.73 409.00

13 4 × 15 × 100 29.72 92.31 0.71 52.36 29.72 98.72 0.61 52.36 29.72 105.72 0.65 52.36

14 8 × 15 × 100 52.69 113.62 0.87 97.25 50.37 116.21 0.92 78.69 52.09 120.62 0.91 78.69

15 12 × 15 × 100 98.51 149.73 0.79 305.43 90.35 158.15 0.84 205.73 83.12 160.44 0.83 287.75

16 16 × 15 × 100 157.32 171.81 0.62 317.68 234.51 189.63 0.79 247.61 201.31 177.52 0.72 354.27

17 20 × 15 × 100 251.86 188.40 0.76 367.93 347.25 192.76 0.85 183.64 417.53 185.35 0.81 217.62

18 25 × 15 × 100 231.60 163.12 0.84 397.25 302.72 181.37 0.97 217.98 310.42 170.37 0.95 241.01

differential evolution algorithm. In light of this, the environmental scheduling method can be elaborated and applied in terms of production timely and 
efficiently.

This method is suitable for environmental production in HFSP, which can be extended to other complex workshops, such as flexible flow shop scheduling 
problems. Moreover, efforts are expected to supplement the criteria of an environmentally friendly evaluation system, such as the social aspect. In future work, 
the multi-objective optimization tools are expected to be established to make use of to achieve comprehensive optimization by considering large numbers of 
variables and constraints, e.g., setup time of machines, limited resources, and requirements of customer order. The actual jobs-shop production to validate this 
method for environmental scheduling will be further discussed. Also, how to effectively avoid the problem that some machine tools are often selected and 
some are ignored in the production will further analyze.
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Figure 8. Scatter diagram of the environmental performance of the machines for job1.

Figure 9. The approximation of Pareto front solutions of RBDE, RBNSGA-II and RBPSO algorithms. (●-RBDE, ◆-RBNSGA-II,   -
RBPSO)
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