Supplementary Material

Two-dimensional nitrogen and phosphorus co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor

Tong Li^{1,#}, Xinli Huang^{1, #}, Shulai Lei^{2,3,#}, Jing Zhang^{4,*}, Xin Li¹, Chengxiang Wang¹, Zhiwei Zhang¹, Shijie Wang^{5,*}, Longwei Yin¹, Rutao Wang^{1,*}

¹Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, Shandong, China.

²Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
³Institute of Chemistry, Free University of Berlin, Arnimallee 22, Berlin D-14195,

Germany.

⁴Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China.

⁵Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

[#]These authors contributed equally to this work.

ADDITIONAL EXPERIMENTAL

Electrochemical Measurements

Electrochemical workstation (CHI760E, Shanghai Chenghua, Ltd., China) was used to record cyclic voltammetry curves (CV), galvanostatic charge/discharge curves and electrical impedance spectroscopy (EIS). A battery test system (Land CT2001A model, Wuhan Land Electronics, Ltd., China) was used to implement rate life-span tests and galvanostatic intermittent titration technique (GITT) test for half-cell and hybrid cells. The energy density (E, Wh kg⁻¹) of PICs can be evaluated by the constant discharge current (I), the cell voltage (V) and the start and end of-discharge time (t_1 and t_2) according to the following equation:

$$E = \int_{t_1}^{t_2} IV \,\mathrm{d}t \tag{1}$$

The power density (P, W kg⁻¹) of PICs can be evaluated by the energy density (E) and the discharging time (t) according to the following equation:

$$P = E/t \tag{2}$$

Density Functional Theory (DFT) computational details

All the first-principles calculations are performed using the density functional theory (DFT), as implemented in Vienna ab initio Simulation Package (VASP). The interactions between electrons and ion-cores are described by the projector augmented wave (PAW) method and the exchange-correlation interactions are treated by the generalized gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof (PBE). The cut-off energy is set to 500 eV for the plane-wave basis in all our calculations. Γ -centered k-point meshes of 3 × 3 × 1 based on Monkhorst-Pack scheme are employed for the geometric structure's calculations. A vacuum space of 15.0 Å along the z-axis is adopted to ensure no appreciable interaction between the image layers under periodic boundary condition. The self-consistent convergence criterion for the total energy and Hellmann-Feynman force are smaller than 10⁻⁵ eV and 0.01 eV/Å, respectively.

Supplementary Figure 1. SEM images of (a, b) RGO and (c, d) N/P-MC.

Supplementary Figure 2. Pore size distribution evaluated from TEM image of Fig. 1f.

Supplementary Figure 3. Fitted Raman spectra curves of as-prepared (a) RGO, (b) N/P-

MC, and (c) N/P-MC@RGO samples.

Supplementary Figure 4. (a) Full-scale XPS spectra of N/P-MC@RGO. (b) C1s and (c) O1s high-resolution XPS spectra of N/P-MC@RGO.

Supplementary Figure 5. (a) Full-scale XPS spectra of RGO.

Supplementary Figure 6. The initial CV curves of N/P-MC@RGO anode at a sweep rate of 0.2 mV s⁻¹.

Supplementary Figure 7. The CV curves of N/P-MC@RGO anode with the scan rates from 20 mV s⁻¹ to 100 mV s⁻¹.

Supplementary Figure 8. Contribution ratio of the capacitive charge versus scan rate for N/P-MC@RGO anode.

Supplementary Figure 9. Voltammetry response for N/P-MC electrode at 5 mV s⁻¹. The shaded region is associated to the capacitive contribution to the total current.

Supplementary Figure 10. b value evaluated from the anodic peak currents.

Supplementary Figure 11. Contribution ratio of the capacitive charge versus scan rate

Supplementary Figure 12. Schematic illustration of essential parameters in GITT analysis during charging/discharging process.

GITT is considered as a powerful method to evaluate the apparent ion diffusion coefficient at different-equilibrium potentials. In this work, the charging/discharging current density is set to 0.1 A g⁻¹ with a relatively short period of 300s (τ) to induce a potential shift (ΔE_{τ}), followed by much longer relaxed period of 1500s to reach a quasiequilibrium potential for the calculation of (ΔE_s). The titration-relaxation cycle is performed continuously at the potential window of 0.01-3.0 V vs. K/K⁺. The apparent ion diffusion coefficient (D, cm² s⁻¹) is calculated based on the following equation with sufficiently small current:

$$D = \frac{4}{\pi} \left(\frac{mV_m}{MA}\right)^2 \left(\frac{\Delta E_S/\tau}{dE_t/d\sqrt{\tau}}\right)^2 = \frac{4}{\pi} L^2 \left(\frac{\Delta E_S/\tau}{dE_t/d\sqrt{\tau}}\right)^2$$

Where m (g) is mass loading, Vm (cm³ mol⁻¹) is molar volume of the electrode, M (g mol-1) is molar weight of the electrode, A (cm²) is electroactive area of the electrode, ΔE_s (V) is the change of quasi-equilibrium potential after two sequential relaxation period, τ (s) is charge/discharge time during each titration, $dE\tau/d\sqrt{\tau}$ (V s^{-1/2}) is potential shift rate, and L (cm) is the thickness of the electrode. For an electrode-level analysis, the geometric area of the electrode is thus used as the electroactive area to highlight the significance of porosity of the apparent K⁺ diffusion. The above equation can be simplified by applying the small current density for a sufficiently short time in each titration, so that $dE\tau/d\sqrt{\tau}$ can be estimated as a stepwise constant for each titration:

$$D = \frac{4}{\pi} L^2 \left(\frac{\Delta E_S/\tau}{\Delta E_t/d\sqrt{\tau}}\right)^2 = \frac{4}{\pi} L^2 \left(\frac{\Delta E_S}{\tau \Delta E_t}\right)^2$$

Supplementary Figure 13. (a) GITT test on N/P-MC anode. (b) The K⁺ diffusion coefficient for N/P-MC evaluated by GITT method during the different charge/discharge process. (c) GITT test on RGO anode. (d) The K⁺ diffusion coefficient for RGO evaluated by GITT method during the different charge/discharge process.

Supplementary Figure 14. EIS spectra of N/P-MC@RGO half cell achieved during the

(a) initial discharge and (b) charge processes.

Supplementary Figure 15. Cycling performance of N/P-MC@RGO anode at 0.2 A g⁻¹.

Supplementary Figure 16. Ex-situ XPS spectra curves of N/P-MC@RGO anode during the different charging/discharging states: pristine state (green), initial potassiated state (red), initial depotassiated state (blue), depotassiated state after long-term cycles (black).

Supplementary Figure 17. High-resolution (a) C1s, (b) N1s, (c) P2p, and (d) F1s ex-situ XPS spectra curves of N/P-MC@RGO anode during the different charging/discharging states.

Supplementary Figure 18. SEM images of N/P-MC@RGO anode (a) before and (b) after long cycles.

Supplementary Figure 19. (a) and (b) TEM images of N/P-MC@RGO after cycles.

Supplementary Figure 20. Supplementary EDS mappings of (a) F, (b) N, and (c) P for N/P-MC@RGO after cycles.

Supplementary Figure 21. The electrochemical performance of as-fabricated PICs with the different anode/cathode mass ratios: (a) rate capability from 0.1 to 5 A g^{-1} , (b)

charge/discharge curves at 0.5 A $\rm g^{-1}.$

Supplementary Figure 22. Cycling performance at 0.5 A g^{-1} of as-fabricated PICs with the different anode/cathode mass ratios.

Supplementary Figure 23. Charge/discharging curves under the different current densities from 2 to 8 A g^{-1} .

Supplementary Figure 24. Structural and surface information of N/P-MC@RGO anode detached from PICs after long-term cycles: (a) Raman spectra, (b) full-scale XPS, (c) C 1s XPS spectrum, (d) N 1s XPS spectrum, (e) O 1s XPS spectrum, and (f) P 2p XPS spectrum.

Sample	$\mathbf{S}_{\text{BET}}^{a}$	S _{micro} ^b	V_t^c	${D_{avg}}^d$	I_D/I_G	С	Ν	0	Р
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)		(at.%)	(at.%)	(at.%)	(at.%)
N/P-	831.4	106.67	1.93	9.30	1.34	84.68	4.17	6.53	3.37
MC@RGO									
N/P-MC	1009.1	268.94	2.471	9.80	1.70	79.52	3.99	12.32	3.04
RGO	750.95	69.83	3.09	3.19	1.23	93.99	0.98	3.70	1.33

Supplementary Table 1. Physical Parameters for RGO, N/P-MC, N/P-MC@RGO samples

*a-BET surface area; b-BET surface area contributed by micropores; c-Total volume of pore; d-average pore width.

Supplementary Table 2. A summary of characteristic EIS data and the kinetic parameters of N/P-MC@RGO anode based half cell under the different cycles obtained from equivalent circuit model $(R_0(R_1Q_1)(R_2Q_2)Q_3)$

Cycle	Rs (R ₀ ,	Rsei	Rct (R2,	CPE1-	CPE1-	CPE2 -	CPE2-	CPE3-	CPE3-	Chi-
Numbr	Ω)	(R ₁ , Ω)	Ω)	Т	Р	Т	Р	Т	Р	Squard
(n)				(S·sec ⁿ)	(n)(0 <n< th=""><th>(S·secⁿ)</th><th>(n)(0<n< th=""><th>(S·secⁿ)</th><th>(n)(0<n< th=""><th></th></n<></th></n<></th></n<>	(S·sec ⁿ)	(n)(0 <n< th=""><th>(S·secⁿ)</th><th>(n)(0<n< th=""><th></th></n<></th></n<>	(S·sec ⁿ)	(n)(0 <n< th=""><th></th></n<>	
					<1)		<1)			
Initial	6.135	6.624	425.4	4.77E-5	0.85	6.22E-5	0.86	0.0032	0.51	0.0022
200	11.51	11.66	537.6	5.36E-5	0.84	1.02E-4	0.78	0.0029	0.60	0.0009 1
400	15.62	18.64	600.1	7.64E-5	0.74	9.56E-5	0.77	0.0028	0.63	0.0006 7
600	18.69	26.45	652.4	9.61E-5	0.68	9.59E-5	0.75	0.0031	0.62	0.0005 3

Structure	P-C	N5-C	N5/P-C	N6-C	N6/P-C	NQ-C	NQ/P-C
style							
B.E. (eV)	-1.32	-2.96	-3.03	-2.62	-1.9	-0.89	-1.61

Supplementary Table 3. Binding energy (B.E.) of K atom adsorption in different structure styles

Supplementary Table 4. A summary of the kinetic parameters of N/P-MC@RGO//PDPC PIC and other typical carbon anode electrodes and other state-of-art PICs.

PICs type	Workin	Energy	Power	Cycling Life	Ref	
	g	Density	Density			
	Potenti	(Wh kg ⁻	(W kg ⁻¹)			
	al (V)	1)				
Graphite//AC	0-4	57.8	15,887	91% after 5,000 cycles	54	
				at 15 A g ⁻¹		
Soft Carbon	0-4	120	599	71.4% after 1,000	52	
(SC) //AC				cycles at 0.35 A g^{-1}		
N-	0-3.0	51	9,600	80% after 10,000	53	
Graphene//AC				cycles at 0.8 A g ⁻¹		
NHCS ^a //ANHC	0-4	114.2	8,203	80.4% after 5,000	55	
$\mathbf{S}^{\mathbf{b}}$				cycles at 2 A g ⁻¹		
N/P-Graphene ^c	1-4	195	1,4976	70% after 1,000 cycles	56	
//AC				at 1 A g ⁻¹		
NCNTsd//AC	0.01-4	117 1	1713.4	81.6% after 2000	57	
	0.01 4	11/.1	1/13.4	cycles at 1 A g ⁻¹		
Hard Carbon	0_3	77	2800	80% after 10,000	58	
(HC) //AC	0-5	11	2000	cycles at 0.8 A g ⁻¹	50	
N-CNTs ^e //I SG ^f	1_4	65	80	91.8% after 5,000	59	
N-CN13 //LSG	1-4	05	00	cycles at 0.4 A g ⁻¹	57	
MDPC ^h //PDPC ⁱ	1_1	120	26,000	79% after 120,000	32	
	1-4	120	20,000	cycles at 2 A g ⁻¹	52	
N/P-MC@RGO	1-4.2	107	18,300	95.3% after 4,000	Our	
//PDPC				cycles at 0.5 A g^{-1} ;	Wor	
				76.3% after 40,000	k	
				cycles at 2 A g ⁻¹		

*a-Nitrogen-doped hierarchical porous hollow carbon spheres; b-Activated nitrogen-

doped hierarchical porous hollow carbon spheres; c-Nitrogen and phosphorus co-doped graphene; d-Hierarchical porous activated carbon; e-N-doped carbon nanotubes; f-nitrogen doped carbon nanotubes; g-three dimensional (3D) laser scribed graphene; h-Mn-MOF derived porous carbon; i-polyaniline derived porous carbon.