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ADDITIONAL EXPERIMENTAL  

Electrochemical Measurements  

Electrochemical workstation (CHI760E, Shanghai Chenghua, Ltd., China) was used to 

record cyclic voltammetry curves (CV), galvanostatic charge/discharge curves and 

electrical impedance spectroscopy (EIS). A battery test system (Land CT2001A model, 

Wuhan Land Electronics, Ltd., China) was used to implement rate life-span tests and 

galvanostatic intermittent titration technique (GITT) test for half-cell and hybrid cells. 

The energy density (E, Wh kg−1) of PICs can be evaluated by the constant discharge 

current (I), the cell voltage (V) and the start and end of-discharge time (t1 and t2) according 

to the following equation: 



𝐸 = ∫ 𝐼𝑉 d𝑡
t2

t1
                                                         (1) 

The power density (P, W kg−1) of PICs can be evaluated by the energy density (E) and the 

discharging time (t) according to the following equation: 

𝑃 = 𝐸/𝑡                                                                           (2) 

 

Density Functional Theory (DFT) computational details  

All the first-principles calculations are performed using the density functional theory 

(DFT), as implemented in Vienna ab initio Simulation Package (VASP). The interactions 

between electrons and ion-cores are described by the projector augmented wave (PAW) 

method and the exchange-correlation interactions are treated by the generalized gradient 

approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof (PBE). The 

cut-off energy is set to 500 eV for the plane-wave basis in all our calculations. Γ-centered 

k-point meshes of 3 × 3 × 1 based on Monkhorst-Pack scheme are employed for the 

geometric structure’s calculations. A vacuum space of 15.0 Å along the z-axis is adopted 

to ensure no appreciable interaction between the image layers under periodic boundary 

condition. The self-consistent convergence criterion for the total energy and Hellmann-

Feynman force are smaller than 10-5 eV and 0.01 eV/Å, respectively. 

 



 

Supplementary Figure 1. SEM images of (a, b) RGO and (c, d) N/P-MC. 

 

 

Supplementary Figure 2. Pore size distribution evaluated from TEM image of Fig. 1f. 

 



 

Supplementary Figure 3. Fitted Raman spectra curves of as-prepared (a) RGO, (b) N/P-

MC, and (c) N/P-MC@RGO samples.  

 

 

Supplementary Figure 4. (a) Full-scale XPS spectra of N/P-MC@RGO. (b) C1s and (c) 

O1s high-resolution XPS spectra of N/P-MC@RGO. 

 



 

Supplementary Figure 5. (a) Full-scale XPS spectra of RGO. 

 

 

Supplementary Figure 6. The initial CV curves of N/P-MC@RGO anode at a sweep 

rate of 0.2 mV s-1. 

 

 



 

Supplementary Figure 7. The CV curves of N/P-MC@RGO anode with the scan rates 

from 20 mV s-1 to 100 mV s-1. 

 

 

 

Supplementary Figure 8. Contribution ratio of the capacitive charge versus scan rate for 

N/P-MC@RGO anode. 

 

 

 

 



 

Supplementary Figure 9. Voltammetry response for N/P-MC electrode at 5 mV s−1. The 

shaded region is associated to the capacitive contribution to the total current. 

 

Supplementary Figure 10. b value evaluated from the anodic peak currents. 

 

Supplementary Figure 11. Contribution ratio of the capacitive charge versus scan rate 



for N/P-MC electrode. 

 

Supplementary Figure 12. Schematic illustration of essential parameters in GITT 

analysis during charging/discharging process. 

 

GITT is considered as a powerful method to evaluate the apparent ion diffusion 

coefficient at different-equilibrium potentials. In this work, the charging/discharging 

current density is set to 0.1 A g-1 with a relatively short period of 300s (τ) to induce a 

potential shift (𝜟Eτ), followed by much longer relaxed period of 1500s to reach a quasi-

equilibrium potential for the calculation of (𝜟Es). The titration-relaxation cycle is 

performed continuously at the potential window of 0.01-3.0 V vs. K/K+. The apparent ion 

diffusion coefficient (D, cm2 s-1) is calculated based on the following equation with 

sufficiently small current:  

𝐷 =
4

𝜋
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𝑚𝑉𝑚

𝑀𝐴
)2(

∆𝐸𝑆/𝜏
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4
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𝐿2(

∆𝐸𝑆/𝜏

𝑑𝐸𝑡/𝑑√𝜏
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Where m (g) is mass loading, Vm (cm3 mol-1) is molar volume of the electrode, M (g mol-

1) is molar weight of the electrode, A (cm2) is electroactive area of the electrode, 𝜟Es (V) 

is the change of quasi-equilibrium potential after two sequential relaxation period, τ (s) is 

charge/discharge time during each titration, dEτ/d√τ (V s-1/2) is potential shift rate, and L 

(cm) is the thickness of the electrode. For an electrode-level analysis, the geometric area 

of the electrode is thus used as the electroactive area to highlight the significance of 



porosity of the apparent K+ diffusion. The above equation can be simplified by applying 

the small current density for a sufficiently short time in each titration, so that dEτ/d√τ can 

be estimated as a stepwise constant for each titration: 
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Supplementary Figure 13. (a) GITT test on N/P-MC anode. (b) The K+ diffusion 

coefficient for N/P-MC evaluated by GITT method during the different charge/discharge 

process. (c) GITT test on RGO anode. (d) The K+ diffusion coefficient for RGO evaluated 

by GITT method during the different charge/discharge process. 

 

Supplementary Figure 14. EIS spectra of N/P-MC@RGO half cell achieved during the 



(a) initial discharge and (b) charge processes. 

 

 Supplementary Figure 15. Cycling performance of N/P-MC@RGO anode at 0.2 A g−1. 

 

Supplementary Figure 16. Ex-situ XPS spectra curves of N/P-MC@RGO anode during 

the different charging/discharging states: pristine state (green), initial potassiated state 

(red), initial depotassiated state (blue), depotassiated state after long-term cycles (black). 



 

Supplementary Figure 17. High-resolution (a) C1s, (b) N1s, (c) P2p, and (d) F1s ex-situ 

XPS spectra curves of N/P-MC@RGO anode during the different charging/discharging 

states.  

 

 

Supplementary Figure 18. SEM images of N/P-MC@RGO anode (a) before and (b) 

after long cycles. 

 



 

Supplementary Figure 19. (a) and (b) TEM images of N/P-MC@RGO after cycles. 

 

 

Supplementary Figure 20. Supplementary EDS mappings of (a) F, (b) N, and (c) P for 

N/P-MC@RGO after cycles. 

 

Supplementary Figure 21. The electrochemical performance of as-fabricated PICs with 

the different anode/cathode mass ratios: (a) rate capability from 0.1 to 5 A g-1, (b) 



charge/discharge curves at 0.5 A g-1. 

 

 

Supplementary Figure 22. Cycling performance at 0.5 A g-1 of as-fabricated PICs with 

the different anode/cathode mass ratios. 

 

 

Supplementary Figure 23. Charge/discharging curves under the different current 

densities from 2 to 8 A g-1. 

 



 

Supplementary Figure 24. Structural and surface information of N/P-MC@RGO anode 

detached from PICs after long-term cycles: (a) Raman spectra, (b) full-scale XPS, (c) C 

1s XPS spectrum, (d) N 1s XPS spectrum, (e) O 1s XPS spectrum, and (f) P 2p XPS 

spectrum. 

  



Supplementary Table 1. Physical Parameters for RGO, N/P-MC, N/P-MC@RGO 

samples 

 

Sample SBET
a 

(m2 g-1) 

Smicro
b 

(m2 g-1) 

Vt
c 

(cm3 g-1) 

Davg
d 

(nm) 

ID/IG C 

(at.%) 

N 

(at.%) 

O 

(at.%) 

P 

(at.%) 

N/P-

MC@RGO 

831.4 106.67 1.93 9.30 1.34 84.68 4.17 6.53 3.37 

N/P-MC 1009.1 268.94 2.471 9.80 1.70 79.52 3.99 12.32 3.04 

RGO 750.95 69.83 3.09 3.19 1.23 93.99 0.98 3.70 1.33 

*a-BET surface area; b-BET surface area contributed by micropores; c-Total volume of 

pore; d-average pore width. 

 

Supplementary Table 2. A summary of characteristic EIS data and the kinetic parameters 

of N/P-MC@RGO anode based half cell under the different cycles obtained from 

equivalent circuit model (R0(R1Q1)(R2Q2)Q3) 

Cycle 

Numbr 

(n) 

Rs (R0, 

Ω) 

RSEI 

(R1, Ω) 

Rct (R2, 

Ω) 

CPE1-

T 

(S·secn) 

CPE1-

P 

(n)(0<n

<1) 

CPE2 -

T 

(S·secn) 

CPE2-

P 

(n)(0<n

<1) 

CPE3- 

T 

(S·secn) 

CPE3- 

P 

(n)(0<n 

Chi-

Squard 

Initial 6.135 6.624 425.4 4.77E-5 0.85 6.22E-5 0.86 0.0032 0.51 0.0022 

200 11.51 11.66 537.6 5.36E-5 0.84 1.02E-4 0.78 0.0029 0.60 
0.0009

1 

400 15.62 18.64 600.1 7.64E-5 0.74 9.56E-5 0.77 0.0028 0.63 
0.0006

7 

600 18.69 26.45 652.4 9.61E-5 0.68 9.59E-5 0.75 0.0031 0.62 
0.0005

3 

 

 

 

 

 



Supplementary Table 3. Binding energy (B.E.) of K atom adsorption in different 

structure styles 

 

Structure 

style 

P-C N5-C N5/P-C N6-C N6/P-C NQ-C NQ/P-C 

B.E. (eV) -1.32 -2.96 -3.03 -2.62 -1.9 -0.89 -1.61 

 

Supplementary Table 4. A summary of the kinetic parameters of N/P-

MC@RGO//PDPC PIC and other typical carbon anode electrodes and other state-of-art 

PICs. 

PICs type Workin

g 

Potenti

al (V) 

Energy 

Density 

(Wh kg-

1) 

Power 

Density 

(W kg-1) 

Cycling Life Ref 

Graphite//AC 0-4 57.8 15,887 91% after 5,000 cycles 

at 15 A g-1 

54 

Soft Carbon 

(SC) //AC 

0-4 120 599 71.4% after 1,000 

cycles at 0.35 A g-1 

52 

N-

Graphene//AC 

0-3.0 51 9,600 80% after 10,000 

cycles at 0.8 A g-1 

53 

NHCSa//ANHC

Sb 

0-4 114.2 8,203 80.4% after 5,000 

cycles at 2 A g-1 

55 

N/P-Graphenec 

//AC 

1-4 195 1,4976 70% after 1,000 cycles 

at 1 A g-1 

56 

NCNTsd//AC 0.01-4 117.1 1713.4 
81.6% after 2000 

cycles at 1 A g-1 

57 

Hard Carbon 

(HC) //AC 
0-3 77 2800 

80% after 10,000 

cycles at 0.8 A g-1 
58 

N-CNTse//LSGf 1-4 65 80 
91.8% after 5,000 

cycles at 0.4 A g-1 
59 

MDPCh//PDPCi 1-4 120 26,000 
79% after 120,000 

cycles at 2 A g-1  
32 

N/P-MC@RGO 

//PDPC 

1-4.2 107 18,300 95.3% after 4,000 

cycles at 0.5 A g-1; 

76.3% after 40,000 

cycles at 2 A g-1 

Our 

Wor

k 

*a-Nitrogen-doped hierarchical porous hollow carbon spheres; b-Activated nitrogen-



doped hierarchical porous hollow carbon spheres; c-Nitrogen and phosphorus co-doped 

graphene; d-Hierarchical porous activated carbon; e-N-doped carbon nanotubes; f-

nitrogen doped carbon nanotubes; g-three dimensional (3D) laser scribed graphene; h-

Mn-MOF derived porous carbon; i-polyaniline derived porous carbon. 


